Storage Strategies: Static Arrays

StackADT Interface

ArrayStack Implementation

ArrayStack Methods with Big-O analysis
Stacklterator Class

Stacklterator Methods

Stacklterator Summary

Reading: L&C 3.6-3.8, 7.3




Stack Abstract Data Type

A stack Is a linear collection where the
elements are added or removed from the
same end

The processing is last in, first out (LIFO)

ne last element put on the stack is the first
element removed from the stack

Think of a stack of cafeteria trays




Stack Terminology

We push an element on a stack to add one
We pop an element off a stack to remove one
We can also peek at the top element without
removing It

We can determine if a stack is empty or not
and how many elements it contains (its size)

The StackADT interface supports the above
operations and some typical class operations
such as toString ()



StackADT and Stack Classes

Since the Java Collections
all extend Iterable<T>, | have
added that to all my versions
of the textbook examples

Each implementing class
satisfies the ADT although
they each use a different
internal storage strategy

ArrayStack<T>

<<interface>>
Ilterable<T>

+ iterator : Iterator<T>
<<extends>>

<<interface>>
StackADT<T>

+ push(element : T) : void
+pop() : T

+ peek() : T

+ iIsEmpty() : boolean

+ size() : int

+ toString() : String

<<implements>>

LinkedStack<T>



Stack Design Considerations

* Although a stack can be empty, there is no
concept for it being full. An implementation
must be designed to manage storage space

* For peek and pop operation on an empty
stack, the implementation would throw an
exception. There Is no other return value
that is equivalent to “nothing to return”

* A drop-out stack Is a variation of the stack
design where there Is a limit to the number
of elements that are retained

5



ArrayStack Implementation

* WWe can use an array of elements as a stack

* The top Is the index of the next available
element in the array

top

T[] stack

integer

\ T [top]

Type T reference

Type T reference

null

Object of type T

Object of type T




ArrayStack Methods

 An interface can't define any constructor methods,
but any implementing class needs to have one or
more of them (maybe overloading the constructor)

 Default Contructor:

public ArrayStack()

{ // must be 1lst statement

this (DEFAULT CAPACITY); // call other constructor
} // with default capacity

« Constructor with a specified initial capacity:

public ArrayStack(int 1nitialCapacity)
{
top = 0;

stack = (T[]) new Object[initialCapacity];



Array Stack Implementation

e push — 0O(1)

public void push (T element)

{
1f (size() == stack.length)
expandCapacity () ; // see next slide

stack [topt++] = element;
)
 Because a Java array’s size cannot be changed
after instantiation, the add method may need to
allocate a larger array, copy the data to the new
array, and release the memory of the old array



ArrayStack Methods

« expandCapacity — O(n)
private void expandCapacity ()

{
T[] larger = // double the array size

(T[]) new Object[Z2 * contents.length];
for (int 1 = 0; 1 < contents.length; 1++)

larger[i] = stack[i];

stack = larger; // original array

// becomes garbage



Array Stack Implementation

* pop() — O(1)

public T pop() throws EmptyStackException

{
if (isEmpty())
throw new EmptyStackException();
T result = stack[--top];
stack[top] = null; // removes “stale” reference
return result;

}

* The “stale” reference stored in stack[top]
would prevent garbage collection on the
object when the caller sets the returned
reference value to null — ties up resourcesw



ArrayStack Implementation

* peek() — O(1)

public T peek () throws EmptyStackException
{
if (isEmpty())
throw new EmptyStackException();
return stack[top - 1];

}

11



ArrayStack Methods

* size - O(1)
public int size ()

{

return top;

}

* ISEmpty — O(1)
public boolean i1sEmpty ()
{

return top == 0;

J



ArrayStack Methods

* toString — O(n)

public String toString/()

\\ 77

String result = ;

for (T obj : stack) {
if (obj == null) // first null is at top
return result;
result += obj + “\n”;
}

return result; // exactly full - no nulls

13



ArrayStack Methods

« All Java Collections API classes implement
(indirectly) the Iterable interface and | add
that to the definition of all textbook classes

e Iterator — O(1)
public Iterator<T> iterator ()

{

return new StackIterator<T> () ;

J

* We need to study the Stacklterator class to
understand how to implement an Iterator ..



Stacklterator Class

* The iterator method of the ArrayStack class
Instantiates and returns a reference to a new
Stacklterator object to its caller

* |f an iterator class Is very closely related to its
collection class, it Is a good candidate for
Implementation as an inner class

 As an Inner class, the Stacklterator code can
access the stack and top variables of the
Instance of the outer class that instantiated it

15



Stacklterator Definition/Attributes

* Class Definition/Attribute Declarations
(implemented as an inner class)

private class StackIterator<T>
implements Iterator<T>

{

private int current;

 Constructor:
public StackIterator ()

{
current = top; // start at top for LIFO

}
16



Stacklterator Methods

* hasNext — O(1)

public boolean hasNext ()
{

return current > 0;

}
* next— O(1)

public T next ()

{
1f ('hasNext ())

throw new NoSuchElementException()

return stack[—--current];

}

// outer class array

17



Stacklterator Methods

* remove — O(1)

« We may or may not implement real code for the
remove method, but there is no return value that
we can use to indicate that it is not implemented

 |f we don’t implement it, we may indicate that it is
not implemented by throwing an exception

public void remove () throws
UnsupportedOperationkException

{

throw new UnsupportedOperationException () ;

}
18



Stacklterator Methods

* |If we do implement the remove method,
notice that we don’t specify the element that
IS to be removed and we do not return a
reference to the element being removed

* |t s assumed that the calling code has been
iterating on condition hasNext () and calling

next () and already has a reference

* The last element returned by next() is the
element that will be removed

19



Stacklterator Method Analysis

« Each of the Stacklterator methods is O(1)

 However, they are usually called inside an
external while loop or “for-each” loop

* Hence, the process of “iterating” through a
collection using an lIterator is O(n) where n
IS the number of objects In the collection

20



ArrayListlterator Class in Textbook

T

he textbook’s iterator classes detect any

modification to the array and cause the iteration
process to “fast-fail” with an exception

T
u

T
If

ne add and remove methods of the outer class
ndate a variable: modCount

ne iterator’s constructor copies that value
the value of modCount changes during the

iteration, the iterator code throws an exception

| have not included that in my example code,
but it Is included in the Java Collections clasges



