
1

Homework

• Reading

– PAL pp 119-125, 161-172

• Continue mp1

– Questions?

• Continue lab sessions with your section

Memory Architectures

• Von Neumann Architecture

– Code and data are accessed in one address space

– The I/O ports may be in:

• The same address space (Memory Mapped I/O)

• A separate I/O address space (Intel)

• Harvard Architecture

– Code is accessed in one address space

– Data and I/O ports are in another address space

2

Memory Architectures

3

Code Data I/O Ports

Atmega

Intel 386

Motorola

68xxx

• Comparison of Memory Architectures

Architecture

Harvard

Von Neumann

4

Intel Memory Architecture

• We’ll discuss various aspects of memory use:

– Storage of bytes

– Storage of words and long words

– Storage of strings

– The stack and the stack pointer

– RAM and ROM

– Addressing - real mode and protected mode

5

Storage of Bytes

• Memory is byte addressable (8 bits/byte)

• A memory address “points” to the location
of a specific byte in memory

• As we know from C data types, a “pointer”
can be “cast” to point to a type or structure
in memory that is larger than one byte

• In that case, the memory address “points” to
the lowest address of the storage area used

6

Storage of Words and Long Words

• Word Sizes

– A Word usually means 16 bits or 2 bytes

– A Long Word usually means 32 bits or 4 bytes

• Many processors (Motorola 68000/PPC and Sun)
store words and long words in memory in “Big
Endian” fashion

• Intel and Atmega Processors store words and
long words in memory in “Little Endian” fashion

7

“Big Endian”

• Mapping a long word from register to memory:

%eax

* * * * * *

Memory Address

0x1000e0 0x1000e1 0x1000e2 0x1000e3

0x12 0x34 0x56 0x78

0x12 0x34 0x56 0x78

8

“Big Endian” Appearance

• Hex value as seen in register:

%eax: 12 34 56 78

• Hex value(s) as seen in memory bytes (md):

0x1000e0: 12 34 56 78

• Irrelevant to the end user – self consistent!

• Has a logical appearance to a programmer

using a debugger!

9

“Little Endian”

• Mapping a long word from register to memory:

%eax

* * * * * *

Memory Address

0x1000e0 0x1000e1 0x1000e2 0x1000e3

0x12 0x34 0x56 0x78

0x78 0x56 0x34 0x12

10

“Little Endian” Appearance

• Hex value as seen in register:

%eax: 12 34 56 78

• Hex value(s) as seen in memory bytes (md):

0x1000e0: 78 56 34 12

• Irrelevant to the end user – self consistent!

• A bit confusing to programmers using a

debugger!

11

Debugging with “Little Endian”

• Mostly learn to live with it!

• To help with displays, the “real” Tutor monitor has

an "mdd" command (memory-display-doubleword)

• This command reorders the bytes and displays four

bytes at a time as a double word value:

Tutor> mdd 1000e0

1000e0 12345678 ...

12

Storage of Strings

• How are strings stored?

– Look at string “help” stored at location 0x200000

– Since memory is “byte addressable” each
character (i.e. each byte) has its own address

– The address of the entire string is the address of
the first byte of the string (the lowest address)

– The null terminator shows the end

* * *

Memory Address

0x200000 0x200001 0x200002 0x200003 0x200004

‘h’ ‘e’ ‘l’ ‘p’ ‘\0’

13

The Stack

• One register is called the “extended stack
pointer” and is used to implement a stack

• There are various times when data is pushed
on the stack and/or popped off the stack that
we will study later

– Function calls and returns

– Interrupts and returns

– System calls and returns

14

The Stack

• For now, we will just understand how the esp register

is used to push and pop data on and off the stack

• Why is a specific register used? Can’t the software

use any register for a stack pointer?

• Not for the system stack! Both hardware and software

must push and pop data on and off the same stack

• Hardware is designed to use a specific register (%esp)

so software must be consistent and use same register

15

The Stack - Initialization

• Software initializes system stack pointer to point

just after the end of available area in memory

(i.e., not used for another purpose than stack)

• Contents of the stack area are not initialized

* * *

Memory Address

0x00FFFFFC 0x00FFFFFD 0x00FFFFFE 0x00FFFFFF

movl $0x01000000, %esp

?? ?? ?? ??

%esp

16

The Stack - Push

• When data is pushed onto the stack, the esp

register is decremented and the value being

pushed is stored to memory at the address

value (“pointer”) stored in the esp register

* * *

Memory Address

movl $0x12345678, %eax

pushl %eax

0x78 0x56 0x34 0x12

0x00FFFFFC 0x00FFFFFD 0x00FFFFFE 0x00FFFFFF

%esp

17

The Stack - Pop

• When data is popped off the stack, the value

of the data is read from memory at the

address value (“pointer”) stored in the esp

register and the esp register is incremented

* * *

Memory Address

popl %eax

(%eax contains 0x12345678 again)

0x00FFFFFC 0x00FFFFFD 0x00FFFFFE 0x00FFFFFF

0x78 0x56 0x34 0x12

%esp

18

The Stack - Remove

• When data is removed from the stack, the

value of the data is NOT read from memory

• The esp register is merely incremented by

the size in bytes of the data being removed

* * *

Memory Address

addl $0x04, %esp

(value of long word on stack is “lost”)

0x00FFFFFC 0x00FFFFFD 0x00FFFFFE 0x00FFFFFF

0x78 0x56 0x34 0x12

%esp

19

Memory Types

• Random Access Memory (RAM)

– Contents are “volatile” (lost when power is off)

– Can be loaded with code from a non-volatile
media/source such as a disk or a network server

– Can be used for reading and writing data via
normal reads and writes to the memory address

– Can be overwritten unintentionally, e.g. using a
“bad” pointer when storing data in memory

– Faster access

20

Memory Types (Continued)

• Read Only Memory (ROM)

– Contents are “non-volatile” (saved with power off)

– Contains code needed to “boot” the processor

– Can be used for reading (but not writing) data

– Programmable Parts: Low Volume/High Cost

(Development and Testing)

– Preprogrammed Parts: High Volume/Low Cost

(Production)

21

Software in Embedded System Memory
(Low volume / High Cost)

Prom

Programmer

Dev’t

Host

File

Inventory of Blank

Memory Chips

Prototype

Board(s)

Manual process

to “burn” PROMs is

costly in high volume!!

If EPROM,

erase and reuse

after testing and

finding bugs

UV Light

“Sun Tan”

22

Software in Embedded System Memory
(High Volume / Low Cost)

Memory Chip

Vendor

Dev’t

Host

File

Production

Boards

Inventory of

Programmed Chips

* * *

Transfer file to

Memory Chip

Vendor

Order Production Quantities

(Least Expensive Per Unit)

BUT, if bugs are found

during production run,

inventory is scrapped!!

EEPROM/Flash Upgrade

• For some computer systems (e.g. PC’s) and

embedded devices, the pre-programmed parts

are electrically writeable using procedures that

are not normal software write operations

• These parts can be reloaded using a special

procedure, e.g. BIOS update for a PC

• Risk: If anything goes wrong, the device may

become unusable and the part need replacing
23

