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Homework

• Reading (linked from my web page)

– S and S Extracts

– National Semiconductor UART Data Sheet

• Machine Projects

– mp2 due at start of class 12

• Labs

– Continue labs in your assigned section
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Addressing I/O Devices

• Intel I/O devices have addresses assigned in 

an “orthogonal” space from memory addresses

– Remember the M/IO# signal that is used with the 

address bus to select memory versus I/O devices?

• Use I/O instructions for I/O device addresses

inw inb

outw outb
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Addressing I/O Devices

• The “input” instruction – direct addressing
inw $0xdd, %ax   #  8 bit address

inb $0xdd, %al   #  8 bit address

• The “input” instruction – indirect addressing
movw $0x3f8, %dx

inw (%dx), %ax   # 16 bit address

inb (%dx), %al   # 16 bit address

• Reads from an I/O device to a register
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Addressing I/O Devices

• The “output” instruction – direct addressing
outw %ax, $0xdd  #  8 bit address

outb %al, $0xdd  #  8 bit address

• The “output” instruction – indirect addressing
movw $0x3f8, %dx

outw %ax, (%dx)  # 16 bit address

outb %al, (%dx)  # 16 bit address

• Writes from a register to an I/O device
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Addressing I/O Devices

• In some processor architectures (Motorola 68xxx and 

Arduino ATMEGA), there are no M/IO# signal(s) in 

the control bus or special in and out instructions

• This is called using “memory mapped I/O”

– I/O device registers are accessed in the same address space 

as memory locations

– In assembly, use equivalent of “move” instructions to write 

or read data to or from I/O device registers like memory

– In C, dereference pointers to write or read data to or from 

I/O device registers like memory
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Accessing the Serial Port

• PC specification allows up to four serial ports

– COM1: base address is 0x3f8

– COM2: base address is 0x2f8

0x3f8

0x3fc

0x3fb

Write Read
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Accessing the Serial Port

• Don’t want to use hard coded numbers!

• Look at $pcinc/serial.h for symbolic constants

#define COM1_BASE 0x3f8

#define COM2_BASE 0x2f8

#define UART_TX 0  /* send data */

#define UART_RX 0  /* recv data */

. . .

#define UART_LCR 3  /* line control */

#define UART_MCR 4  /* modem control */

#define UART_LSR 5  /* line status */

#define UART_MSR 6  /* modem status */

#define UART_SCR 7  /* scratch */
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Parallel Serial Conversion

• UART performs double buffered, bidirectional, 

parallel-to-serial / serial-to-parallel conversion:

Transmit Holding

Register

Transmit Shift

Register

TXD

(Serial)

THRE

TX Empty

Data Bus

(Parallel)

RXD

(Serial)

Data Ready Receive Shift

Register

Receive Holding

Register

Overrun Error
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UART Receiver Sampling

• Characters are sent/received asynchronously

– Clocks of receiver and transmitter are independent 

and only nominally at the same rate (+/- 0.01%)

– Furthermore, the phases of the clocks relative to 

each other are completely arbitrary

• Receiver strategy:

– Synch on initial edge then “center sample” bits

– Sample 16 times the baud rate, starting with the 

eighth clock period after leading edge of start bit
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UART Receiver Sampling

• “Ideal” Serial Data Waveform

• What the Receiver “sees”

• Therefore receiver “center samples” data bits 
to get accurate indication of one or zero state

Mark Idle Start Bit LSB Data LSB Data . . .

Late Early Who knows? Wow!
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UART Receiver Sampling

• Receiver runs its clock to check for one or zero 

state of input RXD signal at 16 times bit rate:

Detect 

Edge of

Start Bit

Count 8 clock times to

get to center of start bit

Count 16 clock times to sample

at center of each data bit interval

Avoids “seeing” any

glitches between the

bit intervals
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Strategies for I/O Driver Code

• Two Basic Strategies for I/O Driver Code

– Status Polling

– Interrupt Driven

• Status Polling

– Uses only the port addresses on the I/O device

– Ties up the entire processor for the duration of I/O

• Interrupt Driven

– Adds an interrupt line from I/O device to processor

– Allows processor to do other work during I/O
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Status Polling

• Review the serial port details:

– Status and Control Registers

• We will look at assembly language driver to 

send and receive data in “full duplex” mode

– Simplex – Broadcasting

(data going only one direction all the time)

– Half Duplex – Sending or receiving alternately 

(data going only one direction at a time)

– Full Duplex – Sending and receiving at same time 

(data going both directions simultaneously)
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Initializing the UART

• Tutor does this for us on COM1: and COM2:

– Select speed, data bits, parity, and number of stop bits

– Turn on DTR and wait for DSR on

• Half duplex mode modem signal handshake:

– Transmit: Turn on RTS and wait for CTS on

– Receive: Turn off RTS and wait for DCD on

• Full duplex mode modem signal handshake:

– Turn on RTS and leave it on

– Transmit whenever CTS on

– Receive whenever DCD on
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Status Polling

• Loop on send/receive data to/from COM2:

(Assume Tutor has initialized bit rate and line control)

1. Turn on DTR & RTS, wait for DSR, CTS, & DCD

2. Read data ready (DR)

3. If data is ready, read a byte of receive data

4. Read transmit holding register empty (THRE)

5. If THR is empty, write a byte of transmit data

6. Jump back to step 2

• Processor loop is much faster than byte transfer rate

• But, hard to do other work while looping on status 
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Status Polling Assembly Code

• Step 1a: Turn on DTR and RTS

movw $0x2fc, %dx # modem control

inb (%dx), %al # get current

orb $0x03, %al # or on 2 lsbs

outb %al, (%dx) # set control



17

Status Polling Assembly Code

• Step 1b: Wait for DSR, CTS, and DCD

movw $0x2fe, %dx # modem status

loop1:

inb   (%dx), %al # get current

andb  $0xb0, %al # get 3 signals

xorb  $0xb0, %al # check all 3

jnz   loop1 # some missing

# all 3 are on now
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Status Polling Assembly Code

• Step 2: Read Data Ready

• Step 3: If ready, read a byte from receive data

loop2:

movw  $0x2fd, %dx # line status

inb   (%dx), %al # get data ready

andb  $0x01, %al # look at dr

jz    xmit # if recv data

movw  $0x2f8, %dx # i/o data addr

inb   (%dx), %al # move rx to %al

movb  %al, somewhere # save it somewhere

movw  $0x2fd, %dx # line status
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Status Polling Assembly Code
• Step 4: Read transmit holding register empty

• Step 5: If empty, write a byte to transmit data

xmit:

inb   (%dx), %al # get thre

andb  $0x20, %al # look at thre

jz    loop2 # if tx hr empty

movb  somewhere, %al # get data to send

movw  $0x2f8, %dx # i/o data addr

outb  %al, (%dx) # send it

jmp   loop2 # and loop
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COM Port Driver in C - Receive

#include <serial.h>

void unsigned char pollgetc() 

{

/* polling loop, waiting for DR bit to go on */

while ((inpt(COM1_BASE + UART_LSR) & UART_LSR_DR) == 0)

;

/* input character  */  

return inpt(COM1_BASE + UART_RX);

}
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COM Port Driver in C - Transmit

#include <serial.h>

void pollputc(unsigned char ch) 

{

/* polling loop, waiting for THRE bit to go on */

while ((inpt(COM1_BASE + UART_LSR) & UART_LSR_THRE) == 0)

;

/* output character  */  

outpt(COM1_BASE + UART_TX, ch);

}


