Homework

« Reading (linked from my web page)

— S and S Extracts

— National Semiconductor UART Data Sheet
» Machine Projects

— mp2 due at start of class 12

« Labs
— Continue labs in your assigned section

Addressing 1/0 Devices

* Intel 1/0O devices have addresses assigned In
an “orthogonal” space from memory addresses

— Remember the M/10# signal that is used with the
address bus to select memory versus 1/O devices?

e Use I/O instructions for 1/0O device addresses

1nw 1nb

outw outhb

Addressing 1/0 Devices

* The “input” instruction — direct addressing
inw $0xdd, $%ax # 8 bit address
inb $0xdd, %al # 8 bit address

* The “input” instruction — Indirect addressing
movw $0x3f8, %dx

inw (%dx), %ax # 16 bit address
inb (%dx), %al # 16 bit address

» Reads from an 1/O device to a register

Addressing 1/0 Devices

* The “output” instruction — direct addressing
outw %ax, SO0xdd # 8 bit address
outb %al, $0xdd # 8 bit address

* The “output” instruction — indirect addressing
movw $0x3f8, %dx
outw %ax, (%dx) # 16 bit address
outb %al, (%dx) # 16 bit address

« \Writes from a register to an 1/O device

Addressing 1/0 Devices

 |n some processor architectures (Motorola 68xxx and
Arduino ATMEGA), there are no M/10%# signal(s) In
the control bus or special in and out Instructions

e This 1s called using “memory mapped 1/0”

— 1/0O device registers are accessed in the same address space
as memory locations

— In assembly, use equivalent of “move” instructions to write
or read data to or from 1/O device registers like memory

— In C, dereference pointers to write or read data to or from
I/O device registers like memory

— COML1: base address i1s 0x3f8
— COM2: base address i1s 0x2f8

Ox3f8

Ox3fb

Ox3fc

Ox3fd

Ox3fe

Accessing the Serial Port

» PC specification allows up to four serial ports

Write
D7\D6 D5 D4 D3 D2 D1 DO
pLAg| Set| Stk | Evn| Par| # |Len |Len
Brk | Par | Par | Enb| Stop|Sel 1 |Sel 0
0 0 0 |Loop |Out2 [Outl [RTS |DTR

Read

D7|D6 D5 |D4 D3 D2 D1 DO

Same as Write

Same as Write
RX | TX |tHre| BRK|FRM [PAR |OVRN| Data
ERR |[EMP Int [ERR |[ERR |ERR | RDY
DCD| TE |DSR |CTS
DCDIRIIDSR |CTS CHG| RI [CHG|CHG

Accessing the Serial Port

 Don’t want to use hard coded numbers!
* Look at $pcinc/serial.h for symbolic constants

#define
#define
#define
#define

#define
#define
#define
#define
#define

COM1 BASE
COM2 BASE
UART TX
UART RX

UART LCR
UART MCR
UART LSR
UART MSR
UART SCR

O0x3f8
Ox2£f8
0 /*
0 /*
3 /%
4 /%
5 /*
6 /%
7 /%

send data */
recv data */

line control */
modem control */
line status */
modem status */
scratch */ 7

Parallel Serial Conversion

 UART performs double buffered, bidirectional,
parallel-to-serial / serial-to-parallel conversion:

Overrun Error «

Data Ready « Receive Holding Receive Shift
RXD
' (Serial)
Data Bus <
(Parallel)
TXD
(Serial)
ransmit Holding Transmit Shift
THRE Register Register

TX Empty «

UART Recelver Sampling

 Characters are sent/recelved asynchronously

—Clocks of receiver and transmitter are independent
and only nominally at the same rate (+/- 0.01%)

—Furthermore, the phases of the clocks relative to
each other are completely arbitrary

* Recelver strategy:
—Synch on initial edge then “center sample” bits

—Sample 16 times the baud rate, starting with the
eighth clock period after leading edge of start bit

UART Recelver Sampling

e “Ideal” Serial Data Waveform

Mark ldle

Start Bit

* What the Receiver “sees”

LSB Data

LSB Data

Late

|

Who knows? Wow!

» Therefore receiver “center samples” data bits
to get accurate indication of one or zero state

10

UART Recelver Sampling

e Recelver runs Its clock to check for one or zero
out RXD signal at 16 times bit rate:

state of In

Detect /'

Edge of

Start Bit H‘HH --------------- >
- e

Count 8 clock times to

get to center of start bit

Count 16 clock times to sample

_______________ >

e

|

/

Avoids “seeing” any
glitches between the
bit intervals

at center of each data bit interval

11

Strategies for 1/0O Driver Code

» Two Basic Strategies for 1/0O Driver Code
— Status Polling
— Interrupt Driven

» Status Polling
— Uses only the port addresses on the 1/O device
— Ties up the entire processor for the duration of 1/0

* Interrupt Driven
— Adds an interrupt line from 1/O device to processor
— Allows processor to do other work during 1/O

12

Status Polling

» Review the serial port detalils:
— Status and Control Registers

« We will look at assembly language driver to
send and receive data in “full duplex” mode

— Simplex — Broadcasting
(data going only one direction all the time)

— Half Duplex — Sending or receiving alternately
(data going only one direction at a time)

— Full Duplex — Sending and receiving at same time
(data going both directions simultaneously) 13

Initializing the UART

e Tutor does this for us on COM1: and COMZ2:

— Select speed, data bits, parity, and number of stop bits
— Turn on DTR and wait for DSR on

 Half duplex mode modem signal handshake:
— Transmit: Turn on RTS and wait for CTS on
— Receive: Turn off RTS and wait for DCD on
 Full duplex mode modem signal handshake:
— Turn on RTS and leave it on

— Transmit whenever CTS on
— Receive whenever DCD on

14

Status Polling

» Loop on send/receive data to/from COM2.
(Assume Tutor has initialized bit rate and line control)
1. Turn on DTR & RTS, wait for DSR, CTS, & DCD
2. Read data ready (DR)
3. If data is ready, read a byte of receive data
4. Read transmit holding register empty (THRE)
5. If THR is empty, write a byte of transmit data
6. Jump back to step 2

 Processor loop is much faster than byte transfer rate
 But, hard to do other work while looping on status

15

Status Polling Assembly Code

« Step 1a: Turnon DTR and RTS

movw SO0x2fc,

inb
orb
outb

(dx),
S0x03,

sal,

(

Sdx #
$al #
$al #
dx) #

modem control
get current
or on .2 1sbs

set control

16

Status Polling Assembly Code

 Step 1b: Wait for DSR, CTS, and DCD

%dx # modem status

movw SO0x2fe,

loopl:
inb (dx) ,
andb $0xb0,
xorb S0xb0,
Nz loopl

all 3 are on

o® o° o©°
» Q
N

Q
—

Nnow

H= FH= HF= FH

get current
get 3 signals
check all 3

some missing

17

Status Polling Assembly Code

« Step 2: Read Data Ready
« Step 3: If ready, read a byte from receive data

loopZ2:
movw $S0x2fd, %dx # line status
inb ($dx), %al # get data ready
andb S0x01, %al # look at dr
jz xmit # if recv data
movw SO0x2f8, %dx # i/0 data addr
inb (%$dx), %al # move rx to %al

movb %al, somewhere # save 1t somewhere

movw SO0x2fd, %dx # line status
18

Status Polling Assembly Code

« Step 4: Read transmit holding register empty
« Step 5: If empty, write a byte to transmit data

xmit:
inb (3dx), %al # get thre
andb $0x20, %al # look at thre
jz loop?2 # if tx hr empty

©)

movb somewhere, %al # get data to send
movw S0x2f8, %dx # 1/0 data addr
outb %al, (%5dx) # send 1t

jmp loop?2 # and loop

19

COM Port Driver in C - Recelve

#include <serial.h>

vold unsigned char pollgetc ()
{
/* polling loop, waiting for DR bit to go on */
while ((inpt(COM1 BASE + UART LSR) & UART LSR DR) == 0)

o
4

/* input character */
return inpt(COMl_BASE + UART RX);
}

20

COM Port Driver In C - Transmit

#include <serial.h>

vold pollputc (unsigned char ch)
{
/* polling loop, waiting for THRE bit to go on */
while ((inpt(COM1 BASE + UART LSR) & UART LSR THRE) ==

.
14

/* output character */
Outpt(COMl_BASE + UART TX, ch) ;
}

)

21

