
1

Homework

• Reading (linked from my web page)

– S and S Extracts

– National Semiconductor UART Data Sheet

• Machine Projects

– mp2 due at start of class 12

• Labs

– Continue labs in your assigned section

2

Addressing I/O Devices

• Intel I/O devices have addresses assigned in

an “orthogonal” space from memory addresses

– Remember the M/IO# signal that is used with the

address bus to select memory versus I/O devices?

• Use I/O instructions for I/O device addresses

inw inb

outw outb

3

Addressing I/O Devices

• The “input” instruction – direct addressing
inw $0xdd, %ax # 8 bit address

inb $0xdd, %al # 8 bit address

• The “input” instruction – indirect addressing
movw $0x3f8, %dx

inw (%dx), %ax # 16 bit address

inb (%dx), %al # 16 bit address

• Reads from an I/O device to a register

4

Addressing I/O Devices

• The “output” instruction – direct addressing
outw %ax, $0xdd # 8 bit address

outb %al, $0xdd # 8 bit address

• The “output” instruction – indirect addressing
movw $0x3f8, %dx

outw %ax, (%dx) # 16 bit address

outb %al, (%dx) # 16 bit address

• Writes from a register to an I/O device

5

Addressing I/O Devices

• In some processor architectures (Motorola 68xxx and

Arduino ATMEGA), there are no M/IO# signal(s) in

the control bus or special in and out instructions

• This is called using “memory mapped I/O”

– I/O device registers are accessed in the same address space

as memory locations

– In assembly, use equivalent of “move” instructions to write

or read data to or from I/O device registers like memory

– In C, dereference pointers to write or read data to or from

I/O device registers like memory

6

Accessing the Serial Port

• PC specification allows up to four serial ports

– COM1: base address is 0x3f8

– COM2: base address is 0x2f8

0x3f8

0x3fc

0x3fb

Write Read

D7D6 D5 D4 D3 D2 D1 D0 D7D6 D5 D4 D3 D2 D1 D0

DLAB Set

Brk

Evn

Par

Par

Enb

#

Stop

Loop Out2 Out1 RTS DTR

Len

Sel 1

Len

Sel 0

0x3fd

0x3fe

Same as Write

Same as Write

- - -

- - -

0 0

Stk

Par

DCD RI DSR CTS
DCD

CHG

DSR

CHG

CTS

CHG

TE

RI

RX

ERR

TX

EMP
THRE BRK

Int

FRM

ERR

PAR

ERR

OVRN

ERR

Data

RDY

0

7

Accessing the Serial Port

• Don’t want to use hard coded numbers!

• Look at $pcinc/serial.h for symbolic constants

#define COM1_BASE 0x3f8

#define COM2_BASE 0x2f8

#define UART_TX 0 /* send data */

#define UART_RX 0 /* recv data */

. . .

#define UART_LCR 3 /* line control */

#define UART_MCR 4 /* modem control */

#define UART_LSR 5 /* line status */

#define UART_MSR 6 /* modem status */

#define UART_SCR 7 /* scratch */

8

Parallel Serial Conversion

• UART performs double buffered, bidirectional,

parallel-to-serial / serial-to-parallel conversion:

Transmit Holding

Register

Transmit Shift

Register

TXD

(Serial)

THRE

TX Empty

Data Bus

(Parallel)

RXD

(Serial)

Data Ready Receive Shift

Register

Receive Holding

Register

Overrun Error

9

UART Receiver Sampling

• Characters are sent/received asynchronously

– Clocks of receiver and transmitter are independent

and only nominally at the same rate (+/- 0.01%)

– Furthermore, the phases of the clocks relative to

each other are completely arbitrary

• Receiver strategy:

– Synch on initial edge then “center sample” bits

– Sample 16 times the baud rate, starting with the

eighth clock period after leading edge of start bit

10

UART Receiver Sampling

• “Ideal” Serial Data Waveform

• What the Receiver “sees”

• Therefore receiver “center samples” data bits
to get accurate indication of one or zero state

Mark Idle Start Bit LSB Data LSB Data . . .

Late Early Who knows? Wow!

11

UART Receiver Sampling

• Receiver runs its clock to check for one or zero

state of input RXD signal at 16 times bit rate:

Detect

Edge of

Start Bit

Count 8 clock times to

get to center of start bit

Count 16 clock times to sample

at center of each data bit interval

Avoids “seeing” any

glitches between the

bit intervals

12

Strategies for I/O Driver Code

• Two Basic Strategies for I/O Driver Code

– Status Polling

– Interrupt Driven

• Status Polling

– Uses only the port addresses on the I/O device

– Ties up the entire processor for the duration of I/O

• Interrupt Driven

– Adds an interrupt line from I/O device to processor

– Allows processor to do other work during I/O

13

Status Polling

• Review the serial port details:

– Status and Control Registers

• We will look at assembly language driver to

send and receive data in “full duplex” mode

– Simplex – Broadcasting

(data going only one direction all the time)

– Half Duplex – Sending or receiving alternately

(data going only one direction at a time)

– Full Duplex – Sending and receiving at same time

(data going both directions simultaneously)

14

Initializing the UART

• Tutor does this for us on COM1: and COM2:

– Select speed, data bits, parity, and number of stop bits

– Turn on DTR and wait for DSR on

• Half duplex mode modem signal handshake:

– Transmit: Turn on RTS and wait for CTS on

– Receive: Turn off RTS and wait for DCD on

• Full duplex mode modem signal handshake:

– Turn on RTS and leave it on

– Transmit whenever CTS on

– Receive whenever DCD on

15

Status Polling

• Loop on send/receive data to/from COM2:

(Assume Tutor has initialized bit rate and line control)

1. Turn on DTR & RTS, wait for DSR, CTS, & DCD

2. Read data ready (DR)

3. If data is ready, read a byte of receive data

4. Read transmit holding register empty (THRE)

5. If THR is empty, write a byte of transmit data

6. Jump back to step 2

• Processor loop is much faster than byte transfer rate

• But, hard to do other work while looping on status

16

Status Polling Assembly Code

• Step 1a: Turn on DTR and RTS

movw $0x2fc, %dx # modem control

inb (%dx), %al # get current

orb $0x03, %al # or on 2 lsbs

outb %al, (%dx) # set control

17

Status Polling Assembly Code

• Step 1b: Wait for DSR, CTS, and DCD

movw $0x2fe, %dx # modem status

loop1:

inb (%dx), %al # get current

andb $0xb0, %al # get 3 signals

xorb $0xb0, %al # check all 3

jnz loop1 # some missing

all 3 are on now

18

Status Polling Assembly Code

• Step 2: Read Data Ready

• Step 3: If ready, read a byte from receive data

loop2:

movw $0x2fd, %dx # line status

inb (%dx), %al # get data ready

andb $0x01, %al # look at dr

jz xmit # if recv data

movw $0x2f8, %dx # i/o data addr

inb (%dx), %al # move rx to %al

movb %al, somewhere # save it somewhere

movw $0x2fd, %dx # line status

19

Status Polling Assembly Code
• Step 4: Read transmit holding register empty

• Step 5: If empty, write a byte to transmit data

xmit:

inb (%dx), %al # get thre

andb $0x20, %al # look at thre

jz loop2 # if tx hr empty

movb somewhere, %al # get data to send

movw $0x2f8, %dx # i/o data addr

outb %al, (%dx) # send it

jmp loop2 # and loop

20

COM Port Driver in C - Receive

#include <serial.h>

void unsigned char pollgetc()

{

/* polling loop, waiting for DR bit to go on */

while ((inpt(COM1_BASE + UART_LSR) & UART_LSR_DR) == 0)

;

/* input character */

return inpt(COM1_BASE + UART_RX);

}

21

COM Port Driver in C - Transmit

#include <serial.h>

void pollputc(unsigned char ch)

{

/* polling loop, waiting for THRE bit to go on */

while ((inpt(COM1_BASE + UART_LSR) & UART_LSR_THRE) == 0)

;

/* output character */

outpt(COM1_BASE + UART_TX, ch);

}

