
1

Homework / Exam

• Reading

– PAL, pp 216-227

• Homework

– mp2 due before class number 12

• Exam #1

– Class 13 (three sessions from today)

– Open book / Open notes

– Practice exam posted on web site now

2

Using C Structs in Assembly Code

• How do we access a C structure such as:

 #define NAMELEN 20

 struct teststruct {

 int x,

 int y;

 char name[NAMELEN];

}t;

t.x = 2;

t.y = 5;

strncpy(t.name, “wilson”, NAMELEN);

trystruct(&t); /* pass to asm via pointer*/

3

Using C Structs in Assembly Code

• Assembly code would look like:
 movl 4(%esp),%edx # ptr to t

 movl (%edx),%eax # x itself

 movl 4(%edx),%ebx # y itself

 movb 8(%edx),%cl # 1st string char

0xfffffc

&t

0xfffff8 0xfffff4

%esp

Return %eip

t.x ‘w’ ‘i’ ‘l’ ‘s’ ‘o’ ‘n’ ‘\0’ t.y

0x0200e0 0x0200e4 0x0200e8 . . .

. . .

Stack

struct teststruct

4

Using C Structs in Assembly Code

• However, we would normally have a pointer to string:
 #define NAMELEN 20

 char array [NAMELEN];

 struct teststruct {

 int x,

 int y;

 char *name;

}t;

t.x = 2;

t.y = 5;

t.name = array;

strncpy(array, “wilson”, NAMELEN);

trystruct(&t); /* pass to asm via pointer*/

5

Using C Structs in Assembly Code

• Assembly code would look like:
 movl 4(%esp),%edx # ptr to t

 movl (%edx),%eax # x itself

 movl 4(%edx),%ebx # y itself

 movl 8(%edx),%edx # ptr to string

 movb (%edx),%cl # first string char

0xfffffc

&t

0xfffff8 0xfffff4

%esp

Return %eip

t.x

‘w’ ‘i’ ‘l’ ‘s’ ‘o’ ‘n’ ‘\0’

t.y

0x0200e0 0x0200e4 0x0200e8 . . .

. . .

Stack

struct teststruct

t.name

0x020158 . . .

Introduction to Shift Instructions

• We can shift the bits in a byte, word, or long

word by a variable number of positions

• These are the machine level instructions used to

implement the C language operators << and >>

– SAL / SHL are the left shift instructions for signed

or unsigned data (arithmetic or logical left shift)

– SAR is the right shift instruction for signed data

(arithmetic right shift)

– SHR is the right shift instruction for unsigned data

(logical right shift)

6

Introduction to Shift Instructions

• The SAL / SHL Instruction (Signed / Unsigned)

• The SAR Instruction (Signed)

• The SHR Instruction (Unsigned)

7

0

CF

CF

0 CF

Introduction to Shift Instructions

• The target of the shifting can be a register or

memory location (byte, word, or long word)

• The count for the number of bits to shift can be

specified with immediate data (constant) or the

%cl register (variable)

• Examples:
sall $4, %eax # logical left shift of %eax by 4 bits

sarb %cl, label # arithmetic right shift of memory byte

 # by a variable value stored in the %cl

8

Introduction to Shift Instructions

• Multiplication by 2N can be done via left shift

sall $4, %eax # %eax times 24

• Can combine left shifts and addition

• Division by 2N can be done via right shift

sarb %cl, label # memory byte / 2%cl

• Can combine right shifts and subtraction

9

10

Introduction to Multiply and Divide

• Unsigned Multiply and Divide

– mul

– div

• Signed Multiply and Divide

– imul

– idiv

• We won’t do much with these because of the

complexity involved - especially for divide

11

Introduction to Multiply and Divide

• Multiply always operates with %al, %ax, or %eax

• Result needs more bits than either operand

• Syntax:

mulb %bl

 %ax  %al * %bl

mulw %bx

 %dx, %ax  %ax * %bx

mull %ebx

 %edx, %eax  %eax * %ebx

12

Introduction to Multiply and Divide

• Register Pictures (Byte)

 (Word)

%bl

%ax
*

%bx

%dx, %ax
*

13

Example – For/While Loop and mul

• C code for n = 5! (done as a for loop)

unsigned int i, n;

n = 1;

for (i = 1; i <= 5; i++)

 n *= i;

• C code for n = 5! (done as a while loop)

unsigned int i, n;

n = i = 1;

while (i <= 5)

 n *= i++;

14

Example – For/While Loop and mul

• Assembly code for n = 5! (byte * byte = word)
 movb $1, %bl # i = 1

 movb %bl, %al # n = i = 1

loop: cmpb $5, %bl # while (%bl <= 5)

 ja exit # %bl > 5 now

 mulb %bl # %ax = %al * %bl

 incb %bl # incr %bl

 jmp loop # and loop

exit: # 5! in %ax

• Note: No difference between for and while in assy

15

Example – For/While Loop and mul

• Assembly code for n = 5! (word * word = long)
 movw $1, %bx # i = 1

 movw %bx, %ax # n = i = 1

loop: cmpw $5, %bx # while (%bx <= 5)

 ja exit # %bx > 5 now

 mulw %bx # %ax = %ax * %bx

 # %dx = 0 now

 incw %bx # incr %bx

 jmp loop # and loop

exit: # 5! in %eax

16

Recursive Factorial

• Main program to call recursive factorial subr

 .text

 pushl $5

 call factorial

 addl $4, %esp

 ret

17

Recursive Factorial

factorial: # works up to 16 bit results

 movl 4(%esp), %eax

 cmpl $1, %eax

 jna return

 decl %eax

 pushl %eax

 call factorial

 addl $4, %esp

 movw 4(%esp), %bx

 mulw %bx # 16 lsbs go to %ax

return: # ignore msbs in %dx

 ret

 .end

18

Recursive Factorial

• Stack Operations (while calling)

• Stack Operations (while returning)

%esp

at main

value

5

%eip

(main)

1st Call

value

4

%eip

(fact)

value

3

%eip

(fact)

value

2

%eip

(fact)

value

1

%eip

(fact)

Decr &

2nd Call

Decr &

3rd Call

Decr &

4th Call

Decr &

5th Call

arg ==1 so

1st Return

Multiply &

2nd Return

Multiply &

3rd Return

Multiply &

4th Return

Multiply &

5th Return

%eax = 1 %eax = 2 %eax = 6 %eax = 24 %eax = 120

