Homework

« Reading

— Intel 8254 Programmable Interval Timer (PIT)
Data Sheet

* Machine Projects
— Continue on MP3

« Labs
— Continue in labs with your assigned section

Restrictions on ISR Code

Software that was executing never got a
chance to save any registers it was using!

ISR must save context (not use ANY registers
without pushing them on stack and popping
them off before returning from the interrupt)

ISR must finish its execution promptly

Two additional considerations:
— Interrupt windows / critical regions
— C keyword “volatile”

ISR and Background Code

ISR and background code design must be careful
interacting via shared memory to avoid “interrupt
windows”

With a multithreaded OS, this issue is called:

— “Thread Safety” or

— “Synchronized Access to Critical Regions”

Must be handled by design because problems are
very hard to detect — never mind fix - In testing

Causes problems that can not be reproduced

3

ISR and Background Code

 Note following sequence in background code:

inb (%dx), %al

orb $0x01, %al Interrupt Occurs Here!

outb %al, (%dx) “TSRreturns Here
 With this sequence In ISR code:

pushl Yeax

pushl %edx

inb (%dx), %al

orb $0x10, %al

outb %al, (Yodx)

popl %edx

popl %eax

Iret

ISR and Background Code

» |If a sequence of Instructions In background must
not be interrupted, that software must:

“inhibit” interrupts before starting (cli instruction)
“enable” interrupts after finishing (st1 instruction)
(sti and cli instructions set or clear IF in %eflags)

« Must not disable interrupts for very long!!

« This is commonly done in software that initializes
an 1/0O device to operate under interrupt control —
preventing an interrupt from occurring prematurely

5

ISR and Background Code

» Corrected seguence in background code:

cli # disable interrupts ~—

Inb (%dx), Yoal o

orb $0x01. %al IS_R can _not execute within
this section of code

outb %al, (Yodx)

sti # reenable interrupts -

» Now It does not conflict with this sequence In ISR:
Inb (%dx), Yoal
orb $0x10, %al
outb %al, (%dX)

iret

C Keyword “volatile”

« Asimilar issue that can arise in C coding for
embedded systems is that the compiler may
optimize code incorrectly if it is not warned that
a variable can change its value unexpectedly

A shared memory location or memory mapped
|/O register may change its value without any
compiler generated code causing the change

« Compiled code may read a value into a register
and fail to reread it later because 1t “thinks” that
it already has “cached” the value 1n the register

C Keyword “volatile”

 To prevent this, the programmer must warn the
compiler that this can happen using the keyword
“volatile” 1n the variable declaration
— Example for ISR/BG shared memory location:

volatile 1nt foobar;

— Example for pointer to memory mapped I/O register:
volatile unsigned char *port;

« Compiler generated code will always read current

value for a ““volatile” variable from memory
8

Programmable Interval Timer

« This Is just an overview — Read data sheet
« 8254 VLSI chip with three 16 bit counters

 Each counter:
— Is decremented based on its own input clock
— Is only decremented while its gate is active

— Generates its own output clock =
Input clock / count length

— Generates an interrupt when count value reaches zero
— Automatically reloads initial value when it reaches zero

PIT Device (Timer 0)

« Simplest device: always Is interrupting, every
time 1t down counts to zero

* Can’t disable interrupts in this device!
« Can mask them off in the PIC
 \We can control how often it interrupts

* Timer doesn’t keep track of interrupts in
progress—just keeps sending them in

 We don’t need to interact with 1t in the ISR (but
we do need to send an EOI to the PIC)

10

Use of PIT iIn MP3

We use PIT counter O with 18.2 Hz output to
generate an interrupt every 55 millisecs

MP3 gives you the boilerplate for the required
PIT driver code in tickpack.c.

You finish the hardware related lines of code:
— Init must set up and enable PIT interrupts

— ISR must invoke provided callback function
— Stop must disable PIT interrupts

Test with PC-Tutor and use as basis for MP5 y

Timer Interrupt Software

e Tniti1alization

— Disallow interrupts in CPU (c11)

« Unmask IRQO in the PIC by ensuring bit 0 is 0 in the Interrupt
Mask Register accessible via port 0x21

« Set up interrupt gate descriptor in IDT, using irqOinthand
« Set up timer downcount to determine tick interval

— Allow interrupts (st i)

e Shutdown

— Disallow interrupts (c11)

 Disallow timer interrupts by masking IRQO in the PIC by making
bit 0 be 1 in the Mask Register (port 0x21)

— Allow interrupts (st i)

12

Timer Interrupts:
Interrupt Handler (Two Parts)

« irg0inthand — the outer assembly language
Interrupt handler
—Save registers
—Calls C function irgOinthandc
—Restore registers
—Iret

« irg0inthandc - the C interrupt handler

—Issues EOI
—Calls the callback function, or whatever 1s wanted

13

PIT Characteristics

* PIT chip has four 1/O ports assigned to it:

—Timer 0 assigned
—Timer 1 assigned

A A

N

port 40 = 0100 0000
oort 41 = 0100 0001

—Timer 2 assigned

nort 42 = 0100 0010

—Control assigned port 43 = 0100 0011
—Chip selected by “chip select” and A-A,
—Other signals include read, write, and data

14

Control Word Format

Actually only a byte:

SC1|SCO|RW1|RWO| M2 | M1 | MO | BCD

SC1-SCO0 select which counter to write/read

RW1-RWO to latch value or select which byte of
count value

M2-MO determines which operating mode
BCD specifies whether binary or BCD count
Command formats found in datasheet

15

Custom C Library Symbolic Constants

» Refer to timer.h

#define TIMERO COUNT PORT 0X40
#define TIMER CNTRL PORT 0X43
/* bits 6-7: */

#fdefine TIMERO (0<<6)

#define TIMER1 (1<<6)
/* Bits 4-5 */

#define TIMER LATCH (0<<4)

#define TIMER SET ALL (3<<4)
/* Bits 1-3 */

#define TIMER MODE RATEGEN (2<<1)
/* Bit 0 */

#define TIMER BINARY COUNTER O

16

Custom C Library Symbolic Constants

e Bits to Initialize
TIMERO | TIMER_SET_ALL | TIMER_RATEGEN
| TIMER BINARY COUNTER

 Qutput to the timer 1/O port
outpt (TIMER CNTRL PORT, ..);

e Then load the downcount

outpt (TIMERO COUNT PORT, count & OxFF);
// LSByte

outpt (TIMERO COUNT PORT, count >> 8);
// MSByte

17

Custom C Library Functions

* The cpu.h library functions to enable/disable
all interrupts in the processor

/* do CLI instruction, clear I bit in EFLAGS,
to disable interrupts in CPU */

volid cli(void) ;

/* do STI instruction, set I bit in EFLAGS,
to enable interrupts in CPU */

volid sti(void);
« Samples for Usage

cli(); /* disable interrupts */
sti() /* enable interrupts */

18

Custom C Library Functions

* The pic.h library functions to enable/disable PIC

/* Command PIC to let signals for a specified IRQ get through to CPU.
Works for irgs 0-15, except 2, which is reserved for cascading to
the slave chip. */

void pic enable irg(int 1irq);

/* Command PIC to stop signals on line irqg from reaching CPU. */

void pic disable irqg(int irq);

« Examples of Usage for IRQO (PIT):

#define TIMERO IRQ O /* defined in timer.h */
pic enable 1rg(TIMERO IRQ);
pic disable irg(TIMERO IRQ);

19

Custom C Library Functions

» The cpu.h library function to set idt gate:

/* write the nth idt descriptor as an interrupt gate to inthand addr
We use an argument of type pointer to IntHandler here so we can
reestablish a saved interrupt-handler address (such a variable
would need type pointer-to-function, and would not match a

parameter type of IntHandler here--an obscure C gotcha. */

volid set intr gate(int n, IntHandler *inthand addr);

« Example of usage for IRQO (PIT) interrupt:

/* irg 0 maps to slot n = 0x20 in IDT for linux setup */
#define IRQ_TO INT_N_SHIFT 0x20 [* defined in pic.h */
set_intr_gate(TIMERO _IRQ+IRQ_TO INT_N_SHIFT, &irqOinthand);

20

