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Homework

• Reading

– Review previous material on “interrupts”

• Machine Projects

– MP4 Due today

– Starting on MP5 (Due at start of Class 28)

• Labs

– Continue in labs with your assigned section
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Discussion of MP4

• What did you learn?

• Did anyone do the optional software UART?

• Let’s look at the code for it as an exercise
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Introduction to MP5

• Adding new code to provided tutor “cmds.c”

• Writing a COM1 port driver for Tutor to use

– Started and stopped by the application (Tutor)

• Tutor cycles driver through this sequence:

– Receives and buffers user entered data

(with full duplex echo back to COM1 port)

– Returns to callback function with receive data buffer

– Transmits buffer of application data (prompt)

– Returns to callback function when done
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SAPC as Host to a User on COM1 
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What Code is Needed?

• In cmds.c:

– The spi command function has been written for you

– Write two call back functions

• one for processing last interrupt in transmission and re-
starting receiver interrupts

• one for processing last interrupt in receiving and re-starting 
transmitter interrupts

• In comintspack:

– Write init and shutdown for COM1 interrupts

– Write an interrupt handler for IRQ4 (must handle 
either a transmit or a receive interrupt each call)
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What’s in cmds.c

• New PC-tutor command

spi <on|off>

• Descriptions

spi on calls init_comints to enable COM1 in 

transmit mode with transmit call back function (to 

print prompt first)

spi off calls shutdown_comints to disable 

both transmit and receive interrupts



7

What’s in cmds.c

• Receive callback function (process_input)

– Process input completion (print buffer on COM2)

– Disable input receiving via shutdown_comints()

– Enable output transmission via init_comints()

• Transmit callback function (process_output)

– Disable output transmission via shutdown_comints()

– Enable input receiving via init_comints()

• These cause alternate COM1 transmit and receive
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What’s in comintspack.h?

• API symbolic constants
/* mode values */

#define TRANSMIT 0

#define RECEIVE 1

• API function prototypes
void init_comints (int mode,

void (*callback)(char *), 

char *buffer,

int size);

void shutdown_comints (void);

• You do NOT modify this file. Use it as-is!
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What’s in comintspack.c?

• Initialize COM1 port (init_comints)

– Save callback function, buffer, and size in static memory

– Clear out any characters already received

– Set the interrupt gate

– Enable the PIC for the IRQ4

– For RX mode, enable RX interrupts in the UART’s IER

– For TX mode, enable TX interrupts in the UART’s IER

• This function is called with interrupts disabled
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What’s in comintspack.c?

• Shut down COM1 port (shutdown_comints)

– Disable the PIC for the COM IRQ

– Disable both interrupts in the UART’s IER

• This function is called with interrupts disabled
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What’s In comintspack.c?

• Interrupt Handler (irq4inthandc)

– Acknowledge the PIC interrupt

– For Receive

• Input the character from COM1

• Echo the character to COM1

• Add to accumulated data in the application buffer

• On end of line, call callback function passing buffer

– For Transmit

• Get the next outgoing character from application buffer

• If not end of string (‘\0’), output the character

• Otherwise output CR and call callback function
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Comintspack Ladder Diagram
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Comintspack Ladder Diagram
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UART Interrupts

• The UART is a real interrupt driven I/O device

• At system reset, all interrupt are disabled

• The UART has four conditions for interrupting

• We’ll use two alternately - the receiver “data 

ready” and transmitter “THR empty” interrupts

• We program the UART to enable them via the 

COM1 Interrupt Enable Register (IER = 0x3f9)
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UART Interrupts

• The UART interrupts each time it receives a char or the 
THR goes empty (depending on the interrupt enabled)

• COM1 is connected to pin IR4 on the PIC, its IRQ is 4.  

• The nn code generated by the PIC for COM1 is 0x24, 
so its interrupt gate descriptor is IDT[0x24]

• ISR must send an EOI command to the PIC

• The ISR must read the received char or write the THR 
to cause the UART to remove its interrupt 

• The UART hardware detects the inb or outb for the 
character and completes its interrupt-in-progress



16

UART Interrupts

• Two Parts of the Interrupt Handler

•irq4inthand – the outer assembly language 
interrupt handler

– Save registers

– Call C function irq4inthandc

– Restore registers

– iret

•irq4inthandc - the C interrupt handler

– Does the work described earlier



17

Demonstration of Both Windows

PC-tutor> spi on

comints for COM1 on

PC-tutor> see me type data^M^M

timeon 5            I can still enter a PC-tutor cmd

timer on

PC-tutor> (1)       Timer is operating independently

more data1^M^M      of the COM1 port with interrupts

(2)

(3)

more data2^M^M

timeoff             Another PC-tutor command

timer off

PC-tutor> spi off

comints for COM1 off

PC-tutor> q

Exception 3 at EIP=00100110: Breakpoint

~q

Quit handler:

killing process 12521 Leaving board #7

COM2COM1

Prompt: 

see me type data

Prompt: 

more data1

Prompt: 

more data2

Prompt:

~q 

Quit handler: 

killing process 12932 Leaving board #-1


