
1

Homework

• Reading

– Review previous material on “interrupts”

• Machine Projects

– MP4 Due today

– Starting on MP5 (Due at start of Class 28)

• Labs

– Continue in labs with your assigned section

2

Discussion of MP4

• What did you learn?

• Did anyone do the optional software UART?

• Let’s look at the code for it as an exercise

3

Introduction to MP5

• Adding new code to provided tutor “cmds.c”

• Writing a COM1 port driver for Tutor to use

– Started and stopped by the application (Tutor)

• Tutor cycles driver through this sequence:

– Receives and buffers user entered data

(with full duplex echo back to COM1 port)

– Returns to callback function with receive data buffer

– Transmits buffer of application data (prompt)

– Returns to callback function when done

4

SAPC as Host to a User on COM1

Application

Process

(Tutor)

COM1 COM2

SAPC

Receive

Character

Buffer

(user data)

Transmit

Character

Buffer

(Prompt:)

Driver

Code

Calls

Call-

backs

Second

Window

First

Window

SYSADMIN

Controls SAPC

with Tutor and

verifies data in

from the user

on COM1 port

User on COM1

Sees prompts

and enters data

as if on a host

connection

5

What Code is Needed?

• In cmds.c:

– The spi command function has been written for you

– Write two call back functions

• one for processing last interrupt in transmission and re-
starting receiver interrupts

• one for processing last interrupt in receiving and re-starting
transmitter interrupts

• In comintspack:

– Write init and shutdown for COM1 interrupts

– Write an interrupt handler for IRQ4 (must handle
either a transmit or a receive interrupt each call)

6

What’s in cmds.c

• New PC-tutor command

spi <on|off>

• Descriptions

spi on calls init_comints to enable COM1 in

transmit mode with transmit call back function (to

print prompt first)

spi off calls shutdown_comints to disable

both transmit and receive interrupts

7

What’s in cmds.c

• Receive callback function (process_input)

– Process input completion (print buffer on COM2)

– Disable input receiving via shutdown_comints()

– Enable output transmission via init_comints()

• Transmit callback function (process_output)

– Disable output transmission via shutdown_comints()

– Enable input receiving via init_comints()

• These cause alternate COM1 transmit and receive

8

What’s in comintspack.h?

• API symbolic constants
/* mode values */

#define TRANSMIT 0

#define RECEIVE 1

• API function prototypes
void init_comints (int mode,

void (*callback)(char *),

char *buffer,

int size);

void shutdown_comints (void);

• You do NOT modify this file. Use it as-is!

9

What’s in comintspack.c?

• Initialize COM1 port (init_comints)

– Save callback function, buffer, and size in static memory

– Clear out any characters already received

– Set the interrupt gate

– Enable the PIC for the IRQ4

– For RX mode, enable RX interrupts in the UART’s IER

– For TX mode, enable TX interrupts in the UART’s IER

• This function is called with interrupts disabled

10

What’s in comintspack.c?

• Shut down COM1 port (shutdown_comints)

– Disable the PIC for the COM IRQ

– Disable both interrupts in the UART’s IER

• This function is called with interrupts disabled

11

What’s In comintspack.c?

• Interrupt Handler (irq4inthandc)

– Acknowledge the PIC interrupt

– For Receive

• Input the character from COM1

• Echo the character to COM1

• Add to accumulated data in the application buffer

• On end of line, call callback function passing buffer

– For Transmit

• Get the next outgoing character from application buffer

• If not end of string (‘\0’), output the character

• Otherwise output CR and call callback function

12

Comintspack Ladder Diagram

spi on
init_comints (tx mode)

static

storage

Int

irq4inthandc

Int

API

Write

TUTOR COMINTSPACK

UART

Sysadmin User

COM2 COM1

Read

Read
Confirm

Prompt Character to user

Last Prompt Character to user

Transmit callback function

init_comints (rx mode)

shutdown_comints ()

Write

* * *

13

Comintspack Ladder Diagram

static

storageInt

API

UART

Read

Read

User enters Character

User enters last character (CR)

ET CETERA

Echo of character back

Echo of last character back

Receive callback functionPrint line

Write

Write

Read

init_comints (tx mode)

shutdown_comints ()

Write

Int

Sysadmin User

COM2 COM1
TUTOR COMINTSPACK

Int
ReadPrompt Character to user

* * *

14

UART Interrupts

• The UART is a real interrupt driven I/O device

• At system reset, all interrupt are disabled

• The UART has four conditions for interrupting

• We’ll use two alternately - the receiver “data

ready” and transmitter “THR empty” interrupts

• We program the UART to enable them via the

COM1 Interrupt Enable Register (IER = 0x3f9)

15

UART Interrupts

• The UART interrupts each time it receives a char or the
THR goes empty (depending on the interrupt enabled)

• COM1 is connected to pin IR4 on the PIC, its IRQ is 4.

• The nn code generated by the PIC for COM1 is 0x24,
so its interrupt gate descriptor is IDT[0x24]

• ISR must send an EOI command to the PIC

• The ISR must read the received char or write the THR
to cause the UART to remove its interrupt

• The UART hardware detects the inb or outb for the
character and completes its interrupt-in-progress

16

UART Interrupts

• Two Parts of the Interrupt Handler

•irq4inthand – the outer assembly language
interrupt handler

– Save registers

– Call C function irq4inthandc

– Restore registers

– iret

•irq4inthandc - the C interrupt handler

– Does the work described earlier

17

Demonstration of Both Windows

PC-tutor> spi on

comints for COM1 on

PC-tutor> see me type data^M^M

timeon 5 I can still enter a PC-tutor cmd

timer on

PC-tutor> (1) Timer is operating independently

more data1^M^M of the COM1 port with interrupts

(2)

(3)

more data2^M^M

timeoff Another PC-tutor command

timer off

PC-tutor> spi off

comints for COM1 off

PC-tutor> q

Exception 3 at EIP=00100110: Breakpoint

~q

Quit handler:

killing process 12521 Leaving board #7

COM2COM1

Prompt:

see me type data

Prompt:

more data1

Prompt:

more data2

Prompt:

~q

Quit handler:

killing process 12932 Leaving board #-1

