Homework

* Reading
— None (Finish all previous reading assignments)

* Machine Projects
— Continue with MP5

* Labs
— Finish lab reports by deadline posted in lab

Pentium Reset / Boot

* Reset
— Held asserted until power supply voltages stabilize
— Starts processor in “real mode” for 1 Meg address space
— Forces %cs = 0xf0O00 and %elp = OxfffO
— First instruction is fetched from address OxffffO

* %cs (offset) Ox f 0 0 0
* %eip Ox - f f f 0
« Address: Ox f f f f 0

— Address decoding logic will enable ROM BIOS device
when processor fetches this address and the control bus
lines indicate “instruction fetch”

Pentium Reset / Boot

e Boot

— BIOS loads an OS (or a debug monitor like
Tutor) into RAM from ROM or other non-volatile
media such as a hard drive

— Tutor/OS changes the addressing mode from
“real mode” to “protected mode” which supports
a flat 32 bit address space

— Tutor/OS starts executing, interacts with the
user, and controls running of user programs

Embedded System Reset / Boot

* An embedded system resets on power up

 Embedded systems may operate unattended
by an operator, so a system failure could go
unnoticed until some catastrophe occurs

» Other possible causes for system resets:
— Hardware diagnostics (detects a hardware fault)
— Software integrity checks (detects corrupt data)
— A watchdog timer (detects an infinite loop)
— Remote monitoring system (detects no respons:e)

Operating System Support

* We have been running our embedded
system projects under Tutor
— Tutor is only a single user debug monitor
— A real operating system such as Linux can

support multiple users simultaneously

« Some key processor features are required
to support multiple simultaneous users and
prevent interference between them:
— Kernel / User Modes of Operation
— Memory Protection 5

Processor Modes

 Most CPU’s can execute code in two modes:
— Kernel Mode (also called supervisor mode)
— User Mode (also called application mode)

 In kernel mode, all privileged instructions are
allowed including ones suchas sti, cli,

lidt, c¢puid, 1in, out, etc.

* In user mode, those instructions are prohibited
or may only be partially available based on the
OS configuration

6

Processor Modes with Tutor

The processor boots in kernel mode

Tutor Initializes itself in kernel mode and
never switches the processor to user mode

When we start a program with go 100100,
It IS running In kernel mode

Hence, our code can execute all instructions
and can make normal calls to functions such
as our C library inpt () /outpt () or our

callback functions in MP3 and MP5

Processor Modes with an OS

The processor boots in kernel mode

The operating system initializes itself and
later provides Its services In kernel mode

Only “trusted” code executes in kernel mode

When the operating system starts “untrusted”
code (i.e. user programs), it changes the
processor mode from kernel to user mode

Execution of a prohibited instruction causes
an exception to a kernel mode OS service

Processor Modes with an OS

* In user mode, there are only two ways to
resume kernel mode operation
— A hardware interrupt or exception occurs
— Code makes a “system call” to an OS service

using an instruction such as int $n

* Hence, ISR/Exception handling code and
OS service functions run in kernel mode
and must be trusted

Processor Modes with an OS

Compiled C code makes normal calls to and
expects normal returns from library functions
which do not change the processor mode

Hence, many C library functions take the

parameters passed to them and reformat
them into an OS system call, e.g. int $n

That switches the processor to kernel mode

The system service returns via iret and the
library code is running in user mode again
10

Memory Protection

 Some “hacks” attempt to run user code in
kernel mode to violate system security

* If code running in user mode can overwrite
trusted kernel mode code, the system Is not
secure

* Processor memory protection features are
one way that an OS can prevent corruption
of its trusted code that runs in kernel mode

11

Memory Protection with Tutor

» Tutor does not utilize memory protection

 With Tutor, we could overwrite our own code
or the Tutor code itself In memory

* That allowed us to run experiments that
would not have been possible with an OS

12

Memory Protection with an OS

« With an OS, the critical memory areas for
the OS are set up with memory protection

 These memory areas can be accessed
only in kernel mode - not in user mode

* A user code attempt to access a prohibited
location causes an exception to a kernel
mode OS service

13

The “Downside” of an OS

OS processor mode and memory protection
sound great! Let’'s always use them. Hmm.

So what'’s the possible downside?
Performance!

Using these features causes the OS to have
a long context switching time between tasks

This may make it impossible to meet the
real-time constraints of an embedded system

14

The “Downside” of an OS

* There are versions of “embedded Linux”,
Android, and commercial products such as
Vxworks or Windows CE, that are intended for
use on embedded systems

* They are used In high-end embedded systems
such as cell phones or gaming consoles

* These devices are expensive enough to absorb
the high costs of processor, memory, etc.

15

The “Downside” of an OS

 Some embedded system software may need to
run “raw” on low-end and low-cost hardware
without any OS or with only a minimal OS
— Processor limitations
— Memory size limitations
— Hard real-time constraints
— Costs for licenses or vendor support for an OS

* Think about the diving computer in lecture one,
Arduino boards, appliances, control systems,
alarm systems, smart thermostats, etc. 6

CISC / RISC Architectures

« Complex Instruction Set Computers
— This Is the traditional processor architecture

— Complex instructions:
« Can be of varying length (1 — 8 or more bytes)
* Need to be decoded before they can be executed
« Execution may include many steps

— We have been studying the 1386 processor
which is based on a CISC architecture

17

CISC / RISC Architectures

* Reduced Instruction Set Computers
— A more recently introduced architecture (1980’s)

— RISC processors have simpler instruction sets:
* Instructions are all the same length (typically 32 bits)
« An instruction word doesn’t need to be decoded
* Instructions do only one simple thing very fast
« More instructions are needed to perform any given task

— The AtMega328P used on our Arduino boards
and the Advanced RISC Machines ARM family of
processors are good examples

18

VLIW Architectures

* Very Long Instruction Word Computers
— Another recently introduced architecture (1980’s)

— Processors have a Very Long Instruction Word:

* Instructions are all the same length (up to 1024 bits)

« Have a different instruction field for each functional unit
— The processor executes multiple instructions in

parallel per clock cycle without elaborate HW to
keep track of dependencies — so faster

— The compiler must keep track of dependencies
when it generates the code

— The HP/Intel Itanium processor that we cover next
time Iis a good example of this architecture

19

VLIW Architectures

« Example layout of a VLIW processor:
— If a functional unit can’'t be used, “nop” is coded

Very Long Instruction Word (Six Parallel Instructions)

Field A | Field B | Field C | Field D |Field E |Field F

I A Y T

Functional | Functional | Functional | Functional |Functional |Functional
Unit Unit Unit Unit Unit Unit
A B C D E F

S D S R

Registers, Memory, and 1/O Ports
20

