
Intel Instruction Set (gas)

• These slides provide the gas format for a subset

of the Intel processor instruction set, including:

– Operation Mnemonic

– Name of Operation

– Syntax

– Operation

– Legal Operands

– Examples

– Description

– Effect on Flag Bits

Gas Addressing Mode Syntax
• In this document, we use the gas syntax

for each of these addressing modes:

– Register reg %eax

– Immediate data idata $0x1234

– Direct (memory) mem label (in source)

– Register Indirect mem (%eax)

– Register Indirect mem disp(%eax)
 with fixed displacement

– Offset (for jcc/jmp) mem label (in source)

– Port (for in/out) idata $0x12
 (%dx) (%dx)

ADD
Integer Addition

Syntax:

addb src, dest

addw src, dest

addl src, dest

Operation:

dest  dest + src

Description

This instruction adds the contents of the dest and src operands and stores the

result in the location specified by dest. The operands must be of the same size.

If the operands are signed integers, the OF flag indicates an invalid result. If the

operands are unsigned, the CF flag indicates a carry out of the destination. If the

operands are unpacked BCD digits, the AF flag indicates a decimal carry.

Flags

Legal Operands

src dest

idata, reg

idata, mem

reg, reg

mem, reg

reg, mem

OF DF IF TF ZF AF PF CF SF

x - - - x x - x - x - x

Examples:

addl $10, %eax

addb $10, label

addw %bx, %ax

addl label, %eax

addl %eax, label

AND
Boolean AND

Syntax:

andb src, dest

andw src, dest

andl src, dest

Operation:

dest  dest & src

Description

This instruction performs a bit by bit AND operation on the dest and src operands

and stores the result in the dest operand. The AND operation is defined as:

 AND 0 1

 0 0 0

 1 0 1

Flags

Legal Operands

src dest

idata, reg

idata, mem

reg, reg

mem, reg

reg, mem

OF DF IF TF ZF AF PF CF SF

0 - - - x x - ? - x - 0

Examples:

andl $10, %eax

andb $10, label

andw %bx, %ax

andl label, %eax

andl %eax, label

CALL
Near Procedure Call

Syntax:

call dest

Operation:

push %eip

%eip  dest

Description

This instruction pushes the address of the next instruction (EIP) onto the stack.

The instruction pointer is then set to the value of the operand.

If the operand is an offset, the operand value is a memory addres relative to the

current value of %eip. If the operand is a memory address or a register, the

subroutine address is taken indirectly from the operand.

Flags

Legal Operands

dest

offset %eip  %eip + offset

mem %eip  contents of mem

reg %eip  contents of reg

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

call label

call (%eax)

call %eax

CLI
Clear Interrupt Enable Flag

Syntax:

cli

Operation:

IF = 0

Description

This instruction clears the interrupt enable flag (IF) and disables the processing of

interrupts. This instruction is used to prevent interrupts during short sequences of

code that could fail if an interrupt were allowed to occur in the middle of the code

sequence. The IF should not be turned off for “long” periods of time as this could

prevent the processing of critical I/O operations such as causing incoming data to

be overrun before the processor can execute the ISR code required to process it.

Flags

Legal Operands

none

OF DF IF TF ZF AF PF CF SF

- - 0 - - - - - - - - -

Examples:

cli

CMP
Compare Integers

Syntax:

cmpb op1, op2

cmpw op1, op2

cmpl op1, op2

Operation:

NULL  op2 – op1

Description

This instruction subtracts the contents of the src operands from the dest operand and

discards the result. Only the eflags register is affected as follows:

 Condition Signed Compare Unsigned Compare

 op1 < op2 ZF == 0 && SF == OF CF == 0 && ZF == 0

 op1 <= op2 SF == OF CF == 0

 op1 == op2 ZF == 1 ZF == 1

 op1 >= op2 ZF ==1 || SF != OF CF == 1 || ZF == 1

 op1 > op2 SF != OF CF ==1

Flags

Legal Operands

op1 op2

idata, reg

idata, mem

reg, reg

mem, reg

reg, mem

OF DF IF TF ZF AF PF CF SF

x - - - x x - x - x - x

Examples:

cmpl $10, %eax

cmpb $10, label

cmpw %bx, %ax

cmpl label, %eax

cmpl %eax, label

DEC
Decrement

Syntax:

decb op1

decw op1

decl op1

Operation:

op1  op1 - 1

Description

This instruction subtracts the value 1 from op1. This instruction is often used to

decrement indexes and therefore does not affect the carry flag (CF). In all other

respects, it is equivalent to the instruction:

 subb $1, op1

Flags

Legal Operands

op1

reg

mem

OF DF IF TF ZF AF PF CF SF

x - - - x x - x - x - -

Examples:

decl %eax

decl label

IN
Input from I/O Port

Syntax:

inb port, %al

inw port, %ax

inl port, %eax

Operation:

reg  src (port)

Description

This instruction reads a byte, word, or long word into the specified accumulator

from the designated I/O port. If you use an immediate data value in the instruction,

you can address only the first 256 ports. If the port is specified in the %dx register,

you can access any of the 65536 ports.

Flags

Legal Operands

port

idata (one byte)

(%dx)

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

inw $0x72, %ax

inb (%dx), %al

INC
Increment

Syntax:

incb op1

incw op1

incl op1

Operation:

op1  op1 + 1

Description

This instruction adds the value 1 to op1. This instruction is often used to

increment indexes and therefore does not affect the carry flag (CF). In other

respects, it is equivalent to the instruction:

 addb $1, op1

Flags

Legal Operands

op1

reg

mem

OF DF IF TF ZF AF PF CF SF

x - - - x x - x - x - -

Examples:

incl %eax

incl label

INT
Software Interrupt

Syntax:

int vector

Operation:

push %eflags

push %cs

push %eip

TF  0

if (IDT(vector).type = INTERRUPT_GATE) IF  0

%eip  destination (IDT(vector))

Description

This instruction is used as a system call. The int 3 instruction is usually encoded

as a single byte 0xcc and used as a breakpoint instruction for debuggers.

Flags

Legal Operands

vector

idata

OF DF IF TF ZF AF PF CF SF

- - x 0 - - - - - - - -

Examples:

int $3

IRET
Interrupt Return

Syntax:

iret

Operation:

(if check as option for task return is omitted here)

pop %eip

pop %cs

pop %eflags

Description

This instruction signals a return from an interrupt. NOTE: All of the pops shown

are executed before the processor starts execution at the restored value of %eip.

The three pops are handled as an “atomic” operation, i.e. executed as a single unit.

Flags

Legal Operands

none

OF DF IF TF ZF AF PF CF SF

x x x x x x - x - x - x

Examples:

iret

Jcc
Jump if Condition

Syntax:

jcc offset

Operation:

if (cc) %eip  %eip + sign_extend (offset)

Description

This instruction executes a conditional jump. It does not change the state of the flags.

It executes the jump based on the value(s) of the flag bits as follows:

 After cmp_ x, y

ja jump above CF == 0 && ZF == 0 unsigned y > x

jae jump above or equal CF == 0 unsigned y >= x

jb jump below CF == 1 unsigned y < x

jbe jump below or equal CF == 1 || ZF == 1 unsigned y <= x

jc jump if carry CF == 1

jcxz jump if %cx == 0

jecxz jump if %ecx == 0

Legal Operands

offset

mem

Examples:

jne label

Jcc (Continued)
Jump if Condition

Description (Continued)

 After cmp_ x, y

je jump equal ZF == 1 y == x

jg jump greater SF == OF && ZF = 0 signed y > x

jge jump greater or equal SF == OF signed y >= x

jl jump less SF != OF signed y < x

jle jump less or equal SF != OF || ZF == 1 signed y <= x

jna jump not above (same as jbe)

jnae jump not above or equal (same as jb)

jnb jump not below (same as jae)

jnbe jump not below or equal (same as ja)

jnc jump no carry CF == 0

jne jump not equal ZF == 0 y != x

jng jump not greater (same as jle)

jnge jump not greater or equal (same as jl)

jnl jump not less (same as jge)

jnle jump not less or equal (same as jg)

Jcc (Continued)
Jump if Condition

Description (Continued)

jno jump no overflow OF == 0

jnp jump no parity PF == 0

jns jump no sign SF == 0

jnz jump not zero ZF == 0

jo jump if overflow OF == 1

jp jump if parity PF == 1

jpe jump if parity even PF == 1

jpo jump if parity odd PF == 0

js jump if sign SF == 1

jz jump if zero ZF == 1

Flags
OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

JMP
Jump

Syntax:

jmp dest

Operation:

%eip  dest

Description

This instruction executes an unconditional jump. It doesn’t change the state of the flags.

Flags
OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Legal Operands

dest

offset %eip  %eip + offset

mem %eip  contents of mem

reg %eip  contents of reg

Examples:

jmp label

jmp (%eax)

jmp %eax

LEA
Load Effective Address

Syntax:

lea src, dest

Operation:

dest  address (src)

Description

This instruction loads the address specified by the memory operand into the destination

register. No memory access cycle takes place. It doesn’t change the state of the flags.

Flags

Legal Operands

src dest

mem, reg

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

lea label, %eax

LOOPcc
Decrement %ecx and Branch

Syntax:

loop offset

loopz offset

loopnz offset

loope offset

loopne offset

Operation:

%ecx  %ecx - 1

if (cc & (%ecx != 0)) %eip  %eip + offset

Description

These instructions support a decrement and branch operation. For all variants other

than LOOP, the decrement and branch is combined with a test on the ZF bit. A loop

counter is assumed in the register %ecx.

Flags

Legal Operands

Offset

mem

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

loop label

MOV
Move Data

Syntax:

movb src, dest

movw src, dest

movl src, dest

Operation:

dest  src

Description

This instruction copies the contents of the src operand into dest.

Flags
OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Legal Operands

src dest

idata, reg

idata, mem

reg, reg

mem, reg

reg, mem

Examples:

movl $10, %eax

movb $10, label

movw %bx, %ax

movl label, %eax

movl %eax, label

NEG
Not

Syntax:

negb op1

negw op1

negl op1

Operation:

op1  - op1

Description

This instruction performs a two’s complement on the operand.

Flags

Legal Operands

op1

reg

mem

OF DF IF TF ZF AF PF CF SF

x - - - x x - x - x - x

Examples:

negl %eax

negl label

NOP
No Operation

Syntax:

nop

Operation:

(nothing)

Description

This instruction does nothing except take time to be executed. Hence, it is used in

timing loops or where the execution of the next instruction needs to be delayed for

some reason, e.g. giving enough time for a hardware register to be ready.

Flags

Legal Operands

none

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

nop

NOT
Not

Syntax:

notb op1

notw op1

notl op1

Operation:

op1  ~ op1

Description

This instruction performs a logical NOT or one’s complement on the operand.

The flags are unaffected.

Flags

Legal Operands

op1

reg

mem

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

notl %eax

notl label

OR
Boolean OR

Syntax:

orb src, dest

orw src, dest

orl src, dest

Operation:

dest  dest | src

Description

This instruction performs a bit by bit OR operation on the dest and src operands

and stores the result in the dest operand. The OR operation is defined as:

 OR 0 1

 0 0 1

 1 1 1

Flags

Legal Operands

src dest

idata, reg

idata, mem

reg, reg

mem, reg

reg, mem

OF DF IF TF ZF AF PF CF SF

0 - - - x x - ? - x - 0

Examples:

orl $10, %eax

orb $10, label

orw %bx, %ax

orl label, %eax

orl %eax, label

OUT
Output to I/O Port

Syntax:

outb %al, port

outw %ax, port

outl %eax, port

Operation:

dest (port)  reg

Description

This instruction writes a byte, word, or long word from the specified accumulator

to the designated I/O port. If you use an immediate data value in the instruction,

you can address only the first 256 ports. If the port is specified in the %dx register,

you can access any of the 65536 ports.

Flags

Legal Operands

port

idata (one byte)

(%dx)

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

outb %al, $0x72

outw %ax, (%dx)

POP
Pop Value off Stack

Syntax:

popw dest

popl dest

Operation:

dest  contents of mem at %esp

%esp  %esp + (w)? 2 : 4

Description

This instruction pops the current value at the top of the stack (lowest memory address),

stores it in the dest operand, and increments the stack pointer by the size of the value.

popl is always preferred to keep the stack pointer aligned on long word boundaries, i.e.

addresses with the two LSBs = 0.

Flags

Legal Operands

dest

reg

mem

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

popl %eax

popw label

PUSH
Push Value onto Stack

Syntax:

pushw src

pushl src

Operation:

%esp  %esp - (w)? 2 : 4

contents of mem at %esp  src

Description

This instruction decrements the stack pointer by the size of the value, and stores the

value of the src operand onto the top of the stack (lowest memory address).

pushl is always preferred to keep the stack pointer aligned on long word boundaries, i.e.

addresses with the two LSBs = 0.

Flags

Legal Operands

src

idata

reg

mem

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

pushw $7

pushl %eax

pushw label

RET
Near Return from Subroutine

Syntax:

ret count

Operation:

%eip  pop (%esp)

%esp  %esp + count

Description

This instruction restores the instruction pointer to the value it held before the previous

call instruction. The value of the EIP that had been saved on the stack is popped. If the

count operand is present, the count value is added to %esp, removing arguments that

were pushed onto the stack for the subroutine call.

Flags

Legal Operands

count

(none)

idata

OF DF IF TF ZF AF PF CF SF

- - - - - - - - - - - -

Examples:

ret

ret $4

SAL / SHL
Shift Arithmetic Left / Shift Logical Left

Syntax:

salb count, dest

salw count, dest

sall count, dest

Operation:

dest  dest << count

Description

This instruction shifts the dest operand count bits to the left and fills the LSBs with

zeros. It updates the flag bits appropriately. (Arithmetic and logical are the same.)

Flags

Legal Operands

count dest

idata reg

idata mem

%cl reg

%cl mem

OF DF IF TF ZF AF PF CF SF

x - - - x x - - - x - x

CF 0

Examples:

salw $4, %ax

salb $4, label

shll %cl, %eax

shlw %cl, label

SAR
Shift Arithmetic Right

Syntax:

sarb count, dest

sarw count, dest

sarl count, dest

Operation:

dest  dest >> count

(with sign bit extension)

Description

This instruction shifts the dest operand count bits to the right and fills the MSBs with

copies of the sign bit. It updates the flag bits appropriately. (Preserves sign.)

Flags
OF DF IF TF ZF AF PF CF SF

x - - - x x - - - x - x

Legal Operands

count dest

idata reg

idata mem

%cl reg

%cl mem

CF

Examples:

sarw $4, %ax

sarb $4, label

sarl %cl, %eax

sarw %cl, label

SHR
Shift Logical Right

Syntax:

shrb count, dest

shrw count, dest

shrl count, dest

Operation:

dest  dest >> count

(without sign bit extension)

Description

This instruction shifts the dest operand count bits to the right and fills the MSBs with

zeros. It updates the flag bits appropriately. (Does not preserve sign.)

Flags
OF DF IF TF ZF AF PF CF SF

x - - - x x - - - x - x

Legal Operands

count dest

idata reg

idata mem

%cl reg

%cl mem

0 CF

Examples:

shrw $4, %ax

shrb $4, label

shrl %cl, %eax

shrw %cl, label

STI
Set Interrupt Enable Flag

Syntax:

sti

Operation:

IF = 1

Description

This instruction sets the interrupt enable flag (IF) and enables the processing of

interrupts. This instruction is used when the code is ready to process interrupts.

Flags

Legal Operands

none

OF DF IF TF ZF AF PF CF SF

- - 1 - - - - - - - - -

Examples:

sti

SUB
Integer Subtraction

Syntax:

subb src, dest

subw src, dest

subl src, dest

Operation:

dest  dest - src

Description

This instruction subtracts the contents of the src operand from the dest operand and

stores the result in the location specified by dest. The operands must be of the same

size. If the operands are signed integers, the OF flag indicates an invalid result. If

the operands are unsigned, the CF flag indicates a borrow into the destination. If

the operands are unpacked BCD digits, the AF flag indicates a decimal borrow.

Flags

Legal Operands

src dest

idata, reg

idata, mem

reg, reg

mem, reg

reg, mem

OF DF IF TF ZF AF PF CF SF

x - - - x x - x - x - x

Examples:

subl $10, %eax

subb $10, label

subw %bx, %ax

subl label, %eax

subl %eax, label

TEST
Logical Compare

Syntax:

testb src, dest

testw src, dest

testl src, dest

Operation:

NULL  dest & src

Description

This instruction ANDs the contents of the src operand with the dest operand and

discards the result. It sets the flags.

Flags

Legal Operands

src dest

idata, reg

reg, reg

mem, reg

OF DF IF TF ZF AF PF CF SF

0 - - - x x - ? - x - 0

Examples:

testl $10, %eax

testw %bx, %ax

testl label, %eax

XOR
Boolean XOR

Syntax:

xorb src, dest

xorw src, dest

xorl src, dest

Operation:

dest  dest ^ src

Description

This instruction performs a bit by bit XOR operation on the dest and src operands

and stores the result in the dest operand. The XOR operation is defined as:

 XOR 0 1

 0 0 1

 1 1 0

Flags

Legal Operands

src dest

idata, reg

idata, mem

reg, reg

mem, reg

reg, mem

OF DF IF TF ZF AF PF CF SF

0 - - - x x - ? - x - 0

Examples:

xorl $10, %eax

xorb $10, label

xorw %bx, %ax

xorl label, %eax

xorl %eax, label

