Closures of Relations

Let us finally solve Example III by finding the transitive closure of the relation $R=\{(1,3),(1,4),(2$, $1),(3,2)\}$ on the set $A=\{1,2,3,4\}$.
R can be represented by the following matrix M_{R} :

$$
M_{R}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Closures of Relations

Solution: The transitive closure of the relation $R=\{(1$, $3),(1,4),(2,1),(3,2)\}$ on the $\operatorname{set} A=\{1,2,3,4\}$ is given by the relation
$\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)$,
$(3,1),(3,2),(3,3),(3,4)\}$

Proof: We'll use induction.
Base case: $k=0 . W_{0}=W_{R}$ because there can be no interior vertices, so just a single edge.
Induction step: If true for k-1, show $\mathrm{W}_{\mathrm{ij}}^{[k]}=\mathrm{w}_{\mathrm{ij}}^{[k-1]} \vee\left(\mathrm{W}_{\mathrm{ik}}{ }^{[k-1]} \wedge \mathrm{W}_{\mathrm{k}}{ }^{[k-1]}\right)$
because there is a path from v_{i} to v_{j} using interior vertices from $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ iff

- There is a path without v_{k} as an interior vertex (so $\mathrm{w}_{\mathrm{ij}}{ }^{[k-1]}=1$) or
- There is path with v_{k} as an interior vertex, in which case both $w_{i k}{ }^{[k-1]}$ and $w_{k j}{ }^{[k-1]}$ are 1. (there must be a k-1path from v_{i} to v_{k} and from v_{k} to v_{j})

Warshall's Algorithm

A more efficient way of computing the transitive closure of a relation with digraph on vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$:
Theorem (p. 606). Let $W_{k}=\left(w_{i j}[k]\right)$ be the 0,1 matrix $w_{i j}[\mathrm{k}]=1$ iff there is a path from v_{i} to v_{i} with any interior vertices in the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}\right\}$. Then $W_{i j}^{[k]}=W_{i j}^{[k-1]} \vee\left(W_{i k}{ }^{[k-1]} \wedge W_{k j}^{[k-1]}\right)$ $\mathrm{W}_{0}=\mathrm{W}_{\mathrm{R}}, \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{R}^{*}}$.
27. Oct 2015

Using Warshall's Algorithm

As shown in the book, the formula giving Warshall's Algorithm easily translates to computer code.
If you do it by hand, just note that in $\mathrm{w}_{\mathrm{ij}}[\mathrm{k}]=$ $W_{i j}^{[k-1]} \vee\left(W_{i k}{ }^{[k-1]} \wedge W_{k j}[k-1]\right)$ you go from W_{k-1} to W_{k} by looking at the matrix for W_{k-1}. If you can go from v_{i} to v_{k} in W_{k-1} then in W_{k} you can add an entry ij if v_{k} goes to v_{j} in $\mathrm{W}_{\mathrm{k}-1}$. (this is easier than it sounds)

