

Proof: We'll use induction.

- Base case: k=0. $W_0 = W_R$ because there can be no interior vertices, so just a single edge. Induction step: If true for k-1, show

- There is a path without v_k as an interior vertex (so $w_i^{[k-1]} = 1$) or
- There is path with v_k as an interior vertex, in which case both $w_{ik}^{[k-1]}$ and $w_{ki}^{[k-1]}$ are 1. (there must be a k-1path from v_i to v_k and from v_k to v_j)

Using Warshall's Algorithm

- As shown in the book, the formula giving Warshall's Algorithm easily translates to computer code.
- If you do it by hand, just note that in $w_{ii}^{[k]} =$ $w_{ij}^{[k-1]} \vee (w_{ik}^{[k-1]} \wedge w_{kj}^{[k-1]})$ you go from W_{k-1} to W_k by looking at the matrix for W_{k-1} . If you can go from v_i to v_k in W_{k-1} then in W_k you can add an entry ij if v_k goes to v_j in W_{k-1} . (this is easier than it sounds)

