Warshall's Algorithm

A more efficient way of computing the transitive closure of a relation with digraph on vertices $\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$:
Theorem (p. 606). Let $W_{k}=\left(w_{i j}^{[k]}\right)$ be the 0,1 matrix $w_{i j}^{[k]}=1$ iff there is a path from v_{i} to v_{i} with any interior vertices in the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}\right\}$. Then $W_{i j}^{[k]}=W_{i j}^{[k-1]} \vee\left(W_{i k}^{[k-1]} \wedge W_{k j}^{[k-1]}\right)$ $\mathrm{W}_{0}=\mathrm{W}_{\mathrm{R}}, \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{R}^{*}}$.

29 Oct 2015

Using Warshall's Algorithm

As shown in the book, the formula giving Warshall's Algorithm easily translates to computer code.
If you do it by hand, just note that in $\mathrm{w}_{\mathrm{ij}}^{[\mathrm{k}]}=$ $W_{i j}^{[k-1]} \vee\left(W_{i k}{ }^{[k-1]} \wedge W_{k j}^{[k-1]}\right)$ you go from W_{k-1} to W_{k} by looking at the matrix for W_{k-1}. If you can go from v_{i} to v_{k} in W_{k-1} then in W_{k} you can add an entry ij if v_{k} goes to v_{j} in $\mathrm{W}_{\mathrm{k}-1}$. (this is easier than it sounds)

Proof: We'll use induction.
Base case: $\mathrm{k}=0 . \mathrm{W}_{0}=\mathrm{W}_{\mathrm{R}}$ because there can be no interior vertices, so just a single edge.
Induction step: If true for $\mathrm{k}-1$, show $w_{i j}^{[k]}=w_{i j}^{[k-1]} \vee\left(w_{i k}{ }^{[k-1]} \wedge w_{k j}^{[k-1]}\right)$
because there is a path from v_{i} to $v_{j} u s i n g$ interior vertices from $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ iff

- There is a path without v_{k} as an interior vertex (so $\mathrm{w}_{\mathrm{i}]}^{[k-1]}=1$) or
- There is path with v_{k} as an interior vertex, in which case both $w_{i k}[k-1]$ and $w_{k j}^{[k-1]}$ are 1 . (there must be a $k-1$ path from v_{i} to v_{k} and from v_{k} to v_{j})

Multiplication in Z_{7}

29 Oct 2015

