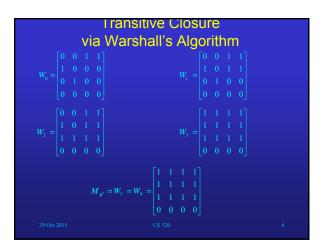
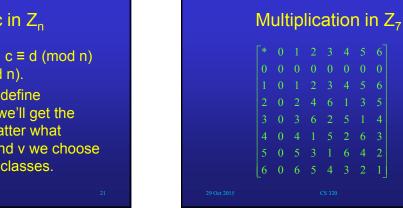


Proof: We'll use induction. Base case: k=0. W₀ = W_R because there can be no interior vertices, so just a single edge. Induction step: If true for k-1, show w_{ij}[k] = w_{ij}[k-1] ∨ (w_{ik}[k-1] ∧ w_{kj}[k-1]) because there is a path from v_i to v₁ using interior vertices from {v₁, v₂,...,v_k} iff There is a path without v_k as an interior vertex (so w_{ij}^[k-1] = 1) or There is path with v_k as an interior vertex, in which case both w_{ik}^[k-1] and w_{kj}^[k-1] are 1. (there must be a k-1path from v_i to v_k and from v_k to v_j)

Using Warshall's Algorithm As shown in the book, the formula giving Warshall's Algorithm easily translates to computer code. If you do it by hand, just note that in $w_{ji}^{[K]} = w_{ji}^{[K-1]} \cdot (w_{jk}^{[K-1]} \cdot w_{kj}^{[K-1]})$ you go from W_{k-1} by by looking at the matrix for W_{k-1} . If you can go from v_i to v_k in W_{k-1} then in W_k by looking at the matrix for W_{k-1} . If you can go from v_i to v_k in W_{k-1} then in W_k you can add an entry if v_k goes to v_j in W_{k-1} . (this is easier than it sounds)





Arithmetic in Z_n

- If a ≡ b (mod n) and c ≡ d (mod n) then a*c ≡ b*d (mod n).
- This shows we can define

 [u] * [v] = [u*v] and we'll get the same answer no matter what representatives u and v we choose for the equivalence classes.