Random Variables

- In some experiments, we would like to assign a numerical value to each possible outcome in order to facilitate a mathematical analysis of the experiment.
-For this purpose, we introduce random variables.
-Definition: A random variable is a function from the sample space of an experiment to the set of real numbers. That is, a random variable assigns a real number to each possible outcome.
-Note: Random variables are functions, not variables, and they are not random, but map random results from experiments onto real numbers in a well-defined manner.

Oct 8, 2015
CS 320 1

Random Variables	
-A(rock, rock) = •0	
-A(rock, paper) = •-1	
- $\mathrm{A}($ rock, scissors $)=$ •1	
-A(paper, rock) = •1	
-A(paper, paper) = •0	
-A(paper, scissors) = •-1	
-A(scissors, rock) = •-1	
$\bullet \mathrm{A}($ scissors, paper) $=$ •1	
$\bullet \mathrm{A}($ scissors, scissors) $=\quad \bullet 0$	
Oct 82015 Cs 320	3

Expected Values

-No, we cannot, since it is possible that some outcomes are more likely than others.
-For example, assume the possible outcomes of an experiment are 1 and 2 with probabilities of 0.1 and 0.9 , respectively.
-Is the average value $1.5 ?$
-No, since 2 is much more likely to occur than 1 , the average must be larger than 1.5 .

Oct 8, 2015
CS 320

Random Variables

-Example:

- Let X be the result of a rock-paper-scissors game. -If player A chooses symbol a and player B chooses symbol b, then
$\cdot X(a, b)=1$, if player A wins,
- $\quad=0$, if A and B choose the same symbol,
- $\quad=-1$, if player B wins.

Expected Values

-Once we have defined a random variable for our experiment, we can statistically analyze the outcomes of the experiment.
-For example, we can ask: What is the average value (called the expected value) of a random variable when the experiment is carried out a large number of times?
-Can we just calculate the arithmetic mean across all possible values of the random variable?

Oct 8, 2015
CS 320

Expected Values

-Instead, we have to calculate the weighted sum of all possible outcomes, that is, each value of the random variable has to be multiplied with its probability before being added to the sum.
-In our example, the average value is given by $0.1 \cdot 1+0.9 \cdot 2=0.1+1.8=1.9$.
-Definition: The expected value (or expectation) of the random variable $\mathrm{X}(\mathrm{s})$ on the sample space S is equal to:
$\cdot E(x)=\sum_{s \in S} p(s) X(s)$.
Oct 8, 2015
CS 320

Expected Values

-Example: Let X be the random variable equal to the sum of the numbers that appear when a pair of dice is rolled.
-There are $\mathbf{3 6}$ outcomes (= pairs of numbers from 1 to 6).
-The range of X is $\{2,3,4,5,6,7,8,9,10,11,12\}$.
-Are the 36 outcomes equally likely?

- Yes, if the dice are not biased.
-Are the 11 values of X equally likely to occur?
-No, the probabilities vary across values.
Oct 8, 2015
CS 320 7

Expected Values

$\cdot P(X=2)=1 / 36$
$\cdot P(X=3)=2 / 36=1 / 18$
$\cdot P(X=4)=3 / 36=1 / 12$

- $P(X=5)=4 / 36=1 / 9$
- $P(X=6)=5 / 36$
$\cdot P(X=7)=6 / 36=1 / 6$
- $P(X=8)=5 / 36$
$\cdot P(X=9)=4 / 36=1 / 9$
$\cdot P(X=10)=3 / 36=1 / 12$
$\cdot P(X=11)=2 / 36=1 / 18$
- $P(X=12)=1 / 36$

Oct 8, 2015
CS 320

Expected Values

$$
\begin{aligned}
\cdot E(X)= & 2 \cdot(1 / 36)+3 \cdot(1 / 18)+4 \cdot(1 / 12)+5 \cdot(1 / 9)+ \\
& 6 \cdot(5 / 36)+7 \cdot(1 / 6)+8 \cdot(5 / 36)+9 \cdot(1 / 9)+ \\
& 10 \cdot(1 / 12)+11 \cdot(1 / 18)+12 \cdot(1 / 36) \\
\cdot & E(X)=7
\end{aligned}
$$

-This means that if we roll the dice many times, sum all the numbers that appear and divide the sum by the number of trials, we expect to find a value of 7 .

Oct 8, 2015
CS 320
${ }^{9}$

(proof of Theorem 3)

- $E(X+Y)=\sum_{s \in S} p(s)\{X+Y\}(s)$ (def. of $\left.E(X)\right)$
$=\sum_{\mathrm{s} \in \mathrm{S}} \mathrm{p}(\mathrm{s})(\mathrm{X}(\mathrm{s})+\mathrm{Y}(\mathrm{s}))$
$=\sum_{\mathrm{s} \in \mathrm{S}} \mathrm{s}(\mathrm{s}) \mathrm{X}(\mathrm{s})+\sum_{\mathrm{s} \in \mathrm{S}} \mathrm{P}(\mathrm{s}) \mathrm{Y}(\mathrm{s})$
$=E(X)+E(Y)$
- $\mathrm{E}(\mathrm{aX}+\mathrm{b})=\Sigma_{\mathrm{s} \in \mathrm{S}} \mathrm{P}(\mathrm{s})(\mathrm{aX}(\mathrm{s})+\mathrm{b})$
$=\sum_{\mathrm{s} \in \mathrm{S}} \mathrm{p}(\mathrm{s}) \mathrm{aX}(\mathrm{s})+\sum_{\mathrm{s} \in \mathrm{s}} \mathrm{p}(\mathrm{s}) \mathrm{b}$
$=\mathrm{a} \sum_{\mathrm{s} \in \mathrm{S}} \mathrm{p}(\mathrm{s}) \mathrm{X}(\mathrm{s})+\mathrm{b} \sum_{\mathrm{s} \in \mathrm{s}} \mathrm{p}(\mathrm{s})$
$=a E(X)+b$. (a and b real numbers)
Oct 8, 2015
CS 320

Expected Values

-Knowing this theorem, we could now solve the previous example much more easily:
-Let X_{1} and X_{2} be the numbers appearing on the first and the second die, respectively.
-For each die, there is an equal probability for each of the six numbers to appear. Therefore, $E\left(X_{1}\right)=$ $E\left(X_{2}\right)=(1+2+3+4+5+6) / 6=7 / 2$.
-We now know that
$\mathrm{E}\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)=\mathrm{E}\left(\mathrm{X}_{1}\right)+\mathrm{E}\left(\mathrm{X}_{2}\right)=7$.
Oct 8, 2015
CS 320
12

Expected Values

-We can use our knowledge about expected values to compute the average-case complexity of an algorithm.
-Let the sample space be the set of all possible inputs $a_{1}, a_{2}, \ldots, a_{n}$, and the random variable X assign to each a_{i} the number of operations that the algorithm executes for that input.
-For each input a_{j}, the probability that this input occurs is given by $p\left(a_{j}\right)$.
-The algorithm's average-case complexity then is:
$\cdot E(X)=\sum_{j=1, \ldots, n} p\left(a_{j}\right) X\left(a_{j}\right)$

Oct 8, 2015
CS 320
13

Expected Values

-However, in order to conduct such an average-case analysis, you would need to find out:

- the number of steps that the algorithms takes for any (!) possible input, and
- the probability for each of these inputs to occur.
-For most algorithms, this would be a highly complex task, so we will stick with the worst-case analysis.
-On page 483 in the textbook (page 481 in the $6^{\text {th }}$ Edition), an average-case analysis of the linear search algorithm is shown.

Oct 8, 2015
CS 320
14

Binomial Distribution

- Note that X is Binomial (n, p) if X counts the number of successes in n independent trials of an event with probability p of success and q of failure on any trial.

Expectation

- We defined $E(X)=\sum_{s \in s} p(s) X(s)$.
- But also, $E(X)=\sum_{r \in X(s)} r P(X=r)$.
- In the first sum, we sum over all outcomes s the value of X at s weighted by the prob. of s.
- In the second sum we sum over all values X takes on, grouping all outcomes s such that $X(s)=r$ in the event $X=r$.
- $P(X=r)$ is the prob. of that set of outcomes, and r is $X(s)$ for each s in the event $X=r$.
Oct 8, 2015
CS 320

An Expectation example

- Roll a die. $S=\{1,2,3,4,5,6\}$ (the outcomes)
- Define the random variable X by $X(1)=X(2)$ $=X(3)=1, X(4)=X(5)=6, X(6)=18$.
- $E(x)=\sum_{s \in S} p(s) X(s)=\sum_{s=1}{ }^{6}(1 / 6) X(s)$
- $=(1 / 6)^{*} 1+(1 / 6)^{*} 1+(1 / 6)^{*} 1+(1 / 6)^{*} 6+$ $(1 / 6)^{*} 6+(1 / 6)^{*} 18$
- = (3/6)* $1+(2 / 6)^{*} 6+(1 / 6)^{*} 18=5.5$
- Note: the last sum is just $\sum_{r \in X(S)} r P(X=r)$.

Oct 8, 2015
CS 320
19

Independent Random Variables

-Definition: The random variables X and Y on a sample space S are independent if
$\cdot p(X(s)=u \wedge Y(s)=v)=p(X(s)=u) \cdot p(Y(s)=v)$.

- In other words, X and Y are independent if the probability that $\mathrm{X}(\mathrm{s})=\mathrm{u} \wedge \mathrm{Y}(\mathrm{s})=\mathrm{v}$ equals the product of the probability that $\mathrm{X}(\mathrm{s})=\mathrm{u}$ and the probability that $Y(s)=v$ for all real numbers u and v.
-This means that the events " $X(s)=u$ " and " $Y(s)=v$ " are independent for every u and v.

Oct 8,2015

Independent Random Variables

-Theorem: If X and Y are independent random variables on a sample space S, then $E(X Y)=E(X) E(Y)$.
-Note:
$\cdot E(X+Y)=E(X)+E(Y)$ is true for any X and Y, but $\cdot E(X Y)=E(X) E(Y)$ needs X and Y to be independent.
-How come?

Oct 8,2015
CS 320
22

Independent Random Variables

-Example: Let X and Y be random variables on the sample space, and each of them assumes the values 1 and 3 with equal probability.
-Then $E(X)=E(Y)=2$

- If X and Y are independent, we have:
$\cdot E(X+Y)=1 / 4 \cdot(1+1)+1 / 4 \cdot(1+3)+$

$$
1 / 4 \cdot(3+1)+1 / 4 \cdot(3+3)=4=E(X)+E(Y)
$$

- $E(X Y)=1 / 4 \cdot(1 \cdot 1)+1 / 4 \cdot(1 \cdot 3)+$

$$
1 / 4 \cdot(3 \cdot 1)+1 / 4 \cdot(3 \cdot 3)=4=E(X) \cdot E(Y)
$$

Oct 8, 2015

Independent Random Variables

-Let us now assume that X and Y are correlated in such a way that $Y=1$ whenever $X=1$, and $Y=3$ whenever $X=3$.
$\cdot E(X+Y)=1 / 2 \cdot(1+1)+1 / 2 \cdot(3+3)$
$=4=E(X)+E(Y)=2+2$

- $E(X Y)=1 / 2 \cdot(1 \cdot 1)+1 / 2 \cdot(3 \cdot 3)$
$=5 \neq \mathrm{E}(\mathrm{X}) \cdot \mathrm{E}(\mathrm{Y})=2 \cdot 2$
- So, we can guarantee the average value of $X Y$ to be the average value of X * the average value of Y if X and Y are independent

$$
\text { Oct } 8.2015
$$

Variance

-Definition: Let X be a random variable on a sample space S. The variance of X, denoted by $V(X)$, is
$\cdot \mathrm{V}(\mathrm{X})=\sum_{\mathrm{s} \in \mathrm{S}}(\mathrm{X}(\mathrm{s})-\mathrm{E}(\mathrm{X}))^{2} \mathrm{p}(\mathrm{s})$.
-The standard deviation of X, denoted by $\sigma(X)$, is defined to be the square root of $V(X)$.

- A large variance means the distribution is spread out, a small variance means it is more localized.

Oct 8, 2015
CS 320
27

Variance

-The expected value of a random variable is an important parameter for the description of a random distribution.
-It does not tell us, however, anything about how widely distributed the values are.
-This is described, at least in part, by the variance of a random variable.

Oct 8,2015

Variance

-Useful rules:
-If X is a random variable on a sample space S, then $V(X)=E\left(X^{2}\right)-E(X)^{2} . \quad V(a X)=a^{2} V(X)$
-If X and Y are two independent random variables on a sample space S , then $\mathrm{V}(\mathrm{X}+\mathrm{Y})=\mathrm{V}(\mathrm{X})+\mathrm{V}(\mathrm{Y})$.
-Furthermore, if $X_{i}, i=1,2, \ldots, n$, with a positive integer n, are pairwise independent random variables on S, then
$\mathrm{V}\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}\right)=\mathrm{V}\left(\mathrm{X}_{1}\right)+\mathrm{V}\left(\mathrm{X}_{2}\right)+\ldots+\mathrm{V}\left(\mathrm{X}_{\mathrm{n}}\right)$.
-Proofs coming up, and in the textbook on page 489 ($6^{\text {th }}$ edition 436,437).

Oct 8, 2015
CS 320
28

- Proof (a): $V(X)=\sum_{s \in S}(X(s)-E(X))^{2} p(s)$
$=\sum_{\mathrm{s} \in \mathrm{s}}\left(\mathrm{X}(\mathrm{s})^{2}-2 \mathrm{E}(\mathrm{X}) \mathrm{X}(\mathrm{s})+\mathrm{E}(\mathrm{X})^{2}\right) \mathrm{p}(\mathrm{s})$
$=\sum_{s \in S} X(s)^{2} p(s)-2 E(X) \sum_{s \in S} X(s) p(s)$
$+\mathrm{E}(\mathrm{X})^{2} \sum_{\mathrm{s} \in \mathrm{S}} \mathrm{p}(\mathrm{s})$
$=E\left(X^{2}\right)-2 E(X) E(X)+E(X)^{2}$
$=E\left(X^{2}\right)-E(X)^{2}$

Oct 8, 2015
CS 320

Variance

- Theorem (p 489)

If X and Y are independent random variables on a sample space S, then
$V(X+Y)=V(X)+V(Y)$.

- Generalizing, for independent rv's $X_{1}, \ldots, X_{n,} \quad V\left(\sum_{j=1}{ }^{n} X_{j}\right)=\sum_{j=i}{ }^{n} V\left(X_{j}\right)$

Variance

- So:

- If X is a random variable on a sample space $S, V(X)=E\left(X^{2}\right)-E(X)^{2} . \quad V(a X)=a^{2} V(X)$
- If X and Y are two independent random variables on a sample space S, then $V(X+Y)$ $=\mathrm{V}(\mathrm{X})+\mathrm{V}(\mathrm{Y})$.
- Thus, if X and Y are independent and have the same variance, then $V(X+Y)=2 V(X)$
- Now, if $X=Y$, then X and Y are far from independent, and $V(X+Y)=V(2 X)=4 V(X)$

Geometric Distribution

- Def. A r.v. X has the geometric distribution with parameter p if $P(X=k)=(1-p)^{k-1} p, k=1,2,3,4, \ldots$
- Example: X could be the number of times you have to flip a coin before getting an H, if $P(H)=p$ on any flip.
- Note: the geometric distribution has infinitely many values, but is discrete.
- Theorem. If X is geometric with parameter p, then $E(X)=1 / p, \quad V(X)=(1-p) / p^{2}$

Oct 8, 2015
CS 320

- Proof: recall that if X and Y are independent random variables then $E(X Y)=E(X) E(Y)$.
- Thus, $V(X+Y)=E\left((X+Y)^{2}\right)-E(X+Y)^{2}$
- $=E\left(X^{2}+2 X Y+Y^{2}\right)-(E(X)+E(Y))^{2}$
- $=E\left(X^{2}\right)+2 E(X) E(Y)+E\left(Y^{2}\right)+$ $-E(X)^{2}-2 E(X) E(Y)-E(y)^{2}$
- $=E\left(X^{2}\right)-E(X)^{2}+E\left(Y^{2}\right)-E(y)^{2}$
- $=V(X)+V(Y)$

Binomial Distribution

- Theorem: If X is binomial (n, p) then $E(X)=n p$ $V(X)=n p q$
- Proof: We proved $\mathrm{E}(\mathrm{X})=n p$ earlier.
- If $X_{i}=1$ if the $i^{\text {th }}$ trial is a success and 0 otherwise then $E\left(X_{i}\right)=p$, independent $R V$ s.
- $V\left(X_{i}\right)=E\left(X_{i}^{2}\right)-p^{2}=p-p^{2}=p(1-p)=p q$.
- But $X=\Sigma_{i=1}{ }^{n} X_{i}$, so $V(X)=\Sigma_{i=1}{ }^{n} V\left(X_{i}\right)=n p q$

Oct 8, 2015
CS 320

$$
34
$$

Geometric Distribution

- let $f(x)=\Sigma_{n=0}{ }^{n} x^{n}=(1-x)^{-1}$. Then:
- 1. $f^{\prime}(x)=\sum_{n=1}^{\infty} n x^{n-1}=(1-x)^{-2}$, and

- $E(X)=\sum_{n=1}^{\infty} n P(X=n)=\sum_{n=1}^{\infty} n(1-p)^{n-1} p$
$=p(1-(1-p))^{-2}=1 / p$, using 1 .
- $V(X)=\Sigma_{n=1}^{\infty}\left(n-p^{-1}\right)^{2} P(X=n)$
$=\sum_{n=1}^{\infty}\left(n-p^{-1}\right)^{2}(1-p)^{n-1} p$
$=\sum_{n=1}^{n=1}\left(n^{2}-2 n p^{-1}+p^{-2}\right)(1-p)^{n-1} p$
$=\sum_{n=1}^{n=1}\left(n(n-1)+n-2 n p^{-1}+p^{-2}\right)(1-p)^{n-1} p$
$=\sum_{n=1}^{n=1}\left(n(n-1)+n\left(1-2 p^{-1}\right)+p^{-2}\right)(1-p)^{n-1} p$
$=(1-p) p \sum_{n=2}{ }^{\infty} n(n-1)(1-p)^{n-2}+\left(1-2 p^{-1}\right) p \sum_{n=1}^{\infty} n(1-p)^{n-1}+$

$=(1-p) p 2 p^{-3}+(p-2) p^{-2}+p^{-2}$, using $2,1, \&$ sum of all probs. $=\mathrm{p}^{-2}(1-\mathrm{p})$

Oct 8, 2015
CS 320

