
12 Nov 2015

1

12 Nov 2015 CS 320 1

m-ary trees
Definition: A rooted tree is called an m-ary tree if
every internal vertex has no more than m children.
The tree is called a full m-ary tree if every internal
vertex has exactly m children.
An m-ary tree with m = 2 is called a binary tree.
Theorem 2: A tree with n vertices has (n – 1) edges.
Theorem 3: A full m-ary tree with i internal vertices
contains n = mi + 1 vertices.
We did these theorems from page 752 (p. 690, 6th ed.) last
time.

12 Nov 2015 CS 320 2

More m-ary trees
From Theorem 3: A full m-ary tree with i internal

vertices contains
n = mi + 1 vertices we immediately get:

Theorem 4 (p. 753; 691 6th ed.): A full m-ary tree with
1. n vertices has i = (n-1)/m internal vertices and l =

((m-1)n + 1)/m leaves.
2. i internal vertices has n = mi+1 vertices and

l = (m-1)i + 1 leaves.
3. l leaves has n = (ml-1)/(m-1) vertices and

i = (l-1)/(m-1) internal vertices.
This means that for a full m-ary tree any one of these

numbers determines the other two.

12 Nov 2015 CS 320 3

Proof: from Theorem 3, n = mi + 1.
For 1, solve for i, i = (n-1)/m,

l =n–i= n – (n-1)/m = ((m-1)n+1)/m
For 2, Th.3 gives the first part, and

l = n-i=(mi+1)-i = (m-1)i +1
For 3, solve the formula for l in terms

of n from part 1 for n in terms of l,
then subtract to get the formula for i.

12 Nov 2015 CS 320 4

Huffman Coding Trees

We usually encode strings by assigning fixed-length
codes to all characters in the alphabet (for example,
8-bit coding in ASCII).
However, if different characters occur with different
frequencies, we can save memory and reduce
transmittal time by using variable-length encoding.
The idea is to assign shorter codes to characters that
occur more often.

12 Nov 2015 CS 320 5

Huffman Coding Trees

We must be careful when assigning variable-length
codes.
For example, let us encode e with 0, a with 1, and t
with 01. How can we then encode the word tea?
The encoding is 0101.
Unfortunately, this encoding is ambiguous. It could
also stand for eat, eaea, or tt.
Of course this coding is unacceptable, because it
results in loss of information.

12 Nov 2015 CS 320 6

Huffman Coding Trees

To avoid such ambiguities, we can use prefix codes.
In a prefix code, the bit string for a character never
occurs as the prefix (first part) of the bit string for
another character.
For example, the encoding of e with 0, a with 10, and t
with 11 is a prefix code. How can we now encode the
word tea?
The encoding is 11010.
This bit string is unique, it can only encode the word
tea.

12 Nov 2015

2

12 Nov 2015 CS 320 7

Huffman Coding Trees

We can represent prefix codes using binary trees,
where the characters are the labels of the leaves in
the tree.
The edges of the tree are labeled so that an edge
leading to a left child is assigned a 0 and an edge
leading to a right child is assigned a 1.
The bit string used to encode a character is the
sequence of labels of the edges in the unique path
from the root to the leaf labeled with this character.

12 Nov 2015 CS 320 8

Huffman Coding Trees

The tree corresponding to our example:

0 1

0 1e

a t
In a tree, no leaf can be the ancestor of another leaf.
Therefore, no encoding of a character can be a prefix
of an encoding of another character (prefix code).

12 Nov 2015 CS 320 9

Huffman Coding Trees

To determine the optimal (shortest) encoding for a
given string, we first have to find the frequencies of
characters in that string.
Let us consider the following string:
eeadfeejjeggebeeggddehhhececddeciedee
It contains 1×a, 1×b, 3×c, 6×d, 15×e, 1×f, 4×g, 3×h,
1×i, and 2×j.
We can now use Huffman’s algorithm to build the
optimal coding tree.

12 Nov 2015 CS 320 10

Huffman Coding Trees
For an alphabet containing n letters, Huffman’s
algorithm starts with n vertices, one for each letter,
labeled with that letter and its frequency.
We then determine the two vertices with the lowest
frequencies and replace them with a tree whose root
is labeled with the sum of these two frequencies and
whose two children are the two vertices that we
replaced.
In the following steps, we determine the two lowest
frequencies among the single vertices and the roots
of trees that we already created.
This is repeated until we obtain a single tree.

12 Nov 2015 CS 320 11

Huffman Coding Trees

1 1 1 1 2 3 3 4 6 15
a b f i j c h g d e

12 Nov 2015 CS 320 12

Huffman Coding Trees

2 1 1 2 3 3 4 6 15
f i j c h g d e

1 1
a b

12 Nov 2015

3

12 Nov 2015 CS 320 13

Huffman Coding Trees

2 2 3 3 4 6 15
j c h g d e

1 1
a b

2

1 1
f i

12 Nov 2015 CS 320 14

Huffman Coding Trees

2

2

3 3 4 6 15

j

c h g d e
1 1
a b

2

1 1
f i

4

12 Nov 2015 CS 320 15

Huffman Coding Trees

2 23

3 4 6 15

jc

h g d e

1 1
a b

2

1 1
f i

45

12 Nov 2015 CS 320 16

Huffman Coding Trees

2 23

6 15

jc

d e

1 1
a b

2

1 1
f i

45

3 4
h g

7

12 Nov 2015 CS 320 17

Huffman Coding Trees

2 23

6 15

jc

d e

1 1
a b

2

1 1
f i

45 3 4
h g

79

12 Nov 2015 CS 320 18

Huffman Coding Trees

2 23

6

15

jc

d

e

1 1
a b

2

1 1
f i

45

3 4
h g

7

9 13

12 Nov 2015

4

12 Nov 2015 CS 320 19

Huffman Coding Trees

2 23

6

15

jc

d

e

1 1
a b

2

1 1
f i

45

3 4
h g

7

9 13

22

12 Nov 2015 CS 320 20

Huffman Coding Trees

2 23

6

15

jc

d

e

1 1
a b

2

1 1
f i

45

3 4
h g

7

9 13

22

37

12 Nov 2015 CS 320 21

Huffman Coding Trees
Finally, we convert the tree
into a prefix code tree:

0 1
0 1 e

0 1

0 1

0 1

0 1

0 1

0 1

0 1

d

ghj
if

c
ba

The variable-length
codes are:
a (freq. 1): 00000
b (freq. 1): 00001
c (freq. 3): 0001
d (freq. 6): 011
e (freq. 15): 1
f (freq. 1): 00100
g (freq. 4): 0101
h (freq. 3): 0100
i (freq. 1): 00101
j (freq. 2): 0011

12 Nov 2015 CS 320 22

Huffman Coding Trees

If we encode the original string
eeadfeejjeggebeeggddehhhececddeciedee
using a fixed-length code, we need four bits per
character (for ten different characters). Therefore, the
encoding of the entire string is 4⋅37 = 148 bits long.
With our variable-length code, we only need 1⋅5 +
1⋅5 + 3⋅4 + 6⋅3 + 15⋅1 + 1⋅5 + 4⋅4 + 3⋅4 + 1⋅5 + 2⋅4
= 101 bits.

12 Nov 2015 CS 320 23

Huffman Coding Trees

It can be shown that, for any given string, Huffman
coding trees always produce a variable-length code
with minimum description length for that string.

For more on Huffman’s algorithm, please take a look
at:

http://www.cs.duke.edu/csed/poop/huff/info/

12 Nov 2015 CS 320 24

Tree Universal Address System

In trees, the order of children from left to right is often
important and must be fixed.

In the Universal Address System each vertex has an
address like 2.3.4.1

• The root has address 0.
• The n children of the root are labeled 1 to n, left to

right.
• The m children of a vertex labeled A are labeled A.1,

A.2, …, A.m, left to right.
Thus 2.3.4 would be the fourth child of the third child of

the second child of the root (left to right in each
case).

12 Nov 2015

5

12 Nov 2015 CS 320 25

Object Identifiers

An example of this is the OID
system, object identifiers.

These are used as a universal
means of describing objects.

See
http://www.alvestrand.no/objectid/

12 Nov 2015 CS 320 26

Tree Traversal

There are several schemes for
systematically visiting all vertices of
a tree. See section 11.3.

Generally when we visit a vertex we
do something at the vertex, such as
computing something or outputting
some value.

12 Nov 2015 CS 320 27

Preorder Traversal

In preorder traversal of a tree,
1. We visit the root first.
2. Next we visit the subtrees (if any)

T1, T2, …, Tn left to right, visiting
each subtree in preorder.

12 Nov 2015 CS 320 28

Inorder Traversal

In inorder traversal of a tree,
1. We visit the left subtree T1 first, if it

exists, applying inorder traversal to it.
2. We visit the root next.
3. Next we visit the remaining subtrees

(if any) T2, …, Tn left to right, visiting
each subtree using inorder.

12 Nov 2015 CS 320 29

Postorder Traversal

In postorder traversal of a tree,
1. We visit the the subtrees (if any)

T1, T2, …, Tn left to right, visiting
each subtree in postorder.

2. Last, we visit the root.

12 Nov 2015 CS 320 30

Tree Traversals and
Arithmetic Expressions

Arithmetic expressions such as (x+y)*(yx -z) are
commonly stored in trees for evaluation.

The infix form (x+y)*((y*x) -z) would come from
an inorder traversal of the tree.

The prefix or Polish Notation form would be
*+xy-*yxz (preorder traversal of the tree).

The postfix or Reverse Polish Notation (RPN)
form would be xy+yx*z-* (postorder traversal)

The latter two forms don’t need parentheses,
though you have to know where the
numerical symbols start and end.

