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Depth First Search
Depth First Search is a technique for 

visiting each each vertex of a graph, 
going as far as possible and then 
backtracking to visit vertices not yet 
reached.  

We can use depth first search (or breadth 
first search) to create a spanning tree 
for a connected graph (a subgraph
which is a tree and contains every 
vertex)
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Depth First Search
As an example we can create a spanning tree T for a 

connected graph G with vertices v1, v2, …, vn.
1. Initialize T to have one vertex, v1, and no edges.
2. visit(v1).
Here, visit is a recursive depth first search algorithm.
visit(vertex v) {

mark v visited;
for each vertex w adjacent to v, not visited {

add vertex w and edge {v,w} to T;
visit(w);
}

}
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Breadth First Search

In breadth first search, instead of 
going as far as possible, we create 
a queue to store vertices and visit 
all the neighbors before moving on.
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Breadth First Search
// as an example, to create a spanning tree T.
Let T = tree with only v1, no edges;
Add v1 to queue Q;
While Q is not empty {

remove v from Q;
for each neighbor w of v {

if w not visited {
add w to Q;
add w and edge {v,w} to T;
mark w visited;

}
}  

} 
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Applications of Trees

There are numerous important applications of trees, 
only three of which we will discuss today:

• Network optimization with minimum spanning 
trees

• Problem solving with backtracking in decision 
trees

• Data compression with prefix codes in Huffman 
coding trees
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Spanning Trees

Definition: Let G be a connected simple graph. A 
spanning tree of G is a subgraph of G that is a tree 
containing every vertex of G.
Note: A spanning tree of G = (V, E) is a connected 
graph on V with a minimum number of edges 
(|V| - 1).
Example: Since winters in Boston can be very cold, 
six universities in the Boston area decide to build a 
tunnel system that connects their libraries.
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Spanning Trees
The complete graph including all possible tunnels:

Brandeis Harvard

MIT

TuftsBU

UMass
The spanning trees of this graph connect all libraries 
with a minimum number of tunnels. 
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Spanning Trees
Example for a spanning tree:

Brandeis Harvard

MIT

TuftsBU

UMass
Since there are 6 libraries, 5 tunnels are sufficient to 
connect all of them. 
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Spanning Trees

Now imagine that you are in charge of the tunnel 
project. How can you determine a tunnel system of 
minimal cost that connects all libraries?

Definition: A minimum spanning tree in a 
connected weighted graph is a spanning tree that has 
the smallest possible sum of weights of its edges.
How can we find a minimum spanning tree?
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Spanning Trees
The complete graph with cost labels (in billion $):

The least expensive tunnel system costs $18 billion. 
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Spanning Trees

Prim’s Algorithm:
• Begin by choosing any edge with smallest weight

and putting it into the spanning tree,
• successively add to the tree edges of minimum 

weight that are incident to a vertex already in 
the tree and not forming a simple circuit with 
those edges already in the tree,

• stop when (n – 1) edges have been added. 
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Spanning Trees

Kruskal’s Algorithm:
Kruskal’s algorithm is identical to Prim’s 
algorithm, except that it does not demand new 
edges to be incident to a vertex already in the 
tree.
Both algorithms are guaranteed to produce a 
minimum spanning tree of a connected 
weighted graph. Kruskal’s algorithm is 
O(e log e) while Prim’s algorithm is O(e log v)
Please look at the proof of Prim’s algorithm on page 
799  (6th edition: p. 741).
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Backtracking in Decision Trees
A decision tree is a rooted tree in which each 
internal vertex corresponds to a decision, with a 
subtree at these vertices for each possible outcome 
of the decision.
Decision trees can be used to model problems in 
which a series of decisions leads to a solution 
(compare with the “binary search tree” example).
The possible solutions of the problem correspond to 
the paths from the root to the leaves of the decision 
tree. 
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Backtracking in Decision Trees

There are problems that require us to perform an 
exhaustive search of all possible sequences of 
decisions in order to find the solution. 
We can solve such problems by constructing the 
complete decision tree and then find a path from its 
root to a leaf that corresponds to a solution of the 
problem.
In many cases, the efficiency of this procedure can be 
dramatically increased by a technique called 
backtracking. 
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Backtracking in Decision Trees
Idea: Start at the root of the decision tree and move 
downwards, that is, make a sequence of decisions, 
until you either reach a solution or you enter a 
situation from where no solution can be reached by 
any further sequence of decisions.
In the latter case, backtrack to the parent of the 
current vertex and take a different path downwards 
from there. If all paths from this vertex have already 
been explored, backtrack to its parent.
Continue this procedure until you find a solution or 
establish that no solution exists (there are no more 
paths to try out).  
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Backtracking in Decision Trees

Example: The n-queens problem
How can we place n queens on an n×n chessboard 
so that no two queens can capture each other?

QQ
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x
x
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x

x

xx

x

xx

x
x

x
xx

x
x
x
xx

x
x

x
x

x
x

A queen can move any 
number of squares 
horizontally, vertically, and 
diagonally.
Here, the possible target 
squares of the queen Q are 
marked with an x.
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Backtracking in Decision Trees
Obviously, in any solution of the n-queens problem, 
there must be exactly one queen in each column of 
the board. 
Therefore, we can describe the solution of this 
problem as a sequence of n decisions: 
Decision 1: Place a queen in the first column.
Decision 2: Place a queen in the second column....
Decision n: Place a queen in the n-th column.

We are now going to solve the 4-queens problem
using the backtracking method.
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Backtracking in Decision Trees
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Backtracking in Decision Trees

We can also use backtracking to write “intelligent” 
programs that play games against a human 
opponent.
Just consider this extremely simple (and not very 
exciting) game:
At the beginning of the game, there are seven coins 
on a table. Player 1 makes the first move, then player 
2, then player 1 again, and so on. One move consists 
of removing 1, 2, or 3 coins. The player who removes 
all remaining coins wins.
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Backtracking in Decision Trees
Let us assume that the computer has the first move. 
Then, the game can be described as a series of 
decisions, where the first decision is made by the 
computer, the second one by the human, the third 
one by the computer, and so on, until all coins are 
gone.
The computer wants to make decisions that 
guarantee its victory (in this simple game).
The underlying assumption is that the human always 
finds the optimal move.
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Backtracking
7

6

5

4

3 2 1
1 2 3

2 1

C C

1
4

2

C
3

3

5
2

C

H

C

H

C

1

3 2 1
1 2 3

2 1

H HH
3

1

1

4

3 2 1
1 2 3

2 1

H HH
3

4

3 2 1
1 2 3

2 1

C CC
3

17 Nov 2015 CS 320 22

Backtracking in Decision Trees

So the computer will start the game by taking three 
coins and is guaranteed to win the game.
For more interesting games such as chess, it is 
impossible to check every possible sequence of 
moves. The computer player then only looks ahead a 
certain number of moves and estimates the chance 
of winning after each possible sequence.
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Permutation Matrices

A permutation matrix is an n by n 
matrix with a single 1 in each row 
and column, 0 elsewhere.

If P is a permutation (bijection) on 
{1,2,..,n} let AP be the permutation 
matrix with 
AiP(i) = 1, Aij = 0 for j ≠ P(i)
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Permutation Matrices

Let Euv be the n by n matrix with 1 in 
the (u,v) position and 0 elsewhere.

* Note that EuvErs = Eus if v = r, and is 
the n by n zero matrix otherwise.

Then AP = Σi=1
n  EiP(i)

If Q = P-1 then you can check that 
AQ = (AP)T, the transpose of AP.
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Permutation Matrices

Note also that 
AP

T AP = Σi=1
nEP(i)iΣ t=1

nEtP(t) = 
Σi=1

nΣ t=1
nEP(i)iEtP(t) = Σ t=1

nEP(t)P(t) = In, the 
n by n identity matrix, by * 

Also,  Eik AP = Eik Σ t=1
nEtP(t) = EiP(k).

Right multiplying an m by n matrix B by AP
permutes the columns of B,  moving the 
kth column to the P(k)th column
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Permutation Matrices

Likewise AP
T Eik = Σ t=1

nEP(t)t Eik = EP(i)k
so left multiplying an n by m matrix B 

by AP
T will permute the rows, moving 

the ith row to the P(i)th place.
If B is n by n then AP

T B AP will be B with 
both rows and columns permuted by P: 
row i → row P(i), column j → column P(j)
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Isomorphisms of Graphs

Suppose G and H are graphs, each 
with n vertices.  If G has vertices 
g1,…gn and H has vertices h1,…,hn
then a permutation P taking gi to 
hP(i) will give an isomorphism of 
graphs if AP

T MG AP = MH, where 
MS is the adjacency matrix of graph 
S.
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Example
The graphs G and H are clearly isomorphic,
but can we tell that from their matrices?

4 1

32

1 2

34

G H

Map vertices of G to those of H by 
P(1) = 4, P(2) = 1, P(3) = 3, P(4) = 2.
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0 1 0 1
0 1 0 1
1 1 0 0
0 1 0 0

1 1 0 0
1 0 0 0
1 0 0 1
1 1 0 0

MG= MH =

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

AP =
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MGAP = 
0 1 0 1
0 1 0 1
1 1 0 0
0 1 0 0

1 1 0 0
1 0 0 0
1 0 0 1
1 1 0 0

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

=

1 1 0 0
1 1 0 0
1 0 0 1
1 0 0 0

1 1 0 0
1 1 0 0
1 0 0 1
1 0 0 0

AP
TMGAP = = = MH
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Isomorphisms of Graphs

Note that if F is an isomorphism from 
a graph G of n vertices v1…vn to a 
graph H of n vertices w1…wn then F 
defines a permutation of {1,…,n} 
and the adjacency matrices of G 
and H will be related by a 
permutation matrix.
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Isomorphisms of Graphs

But not every permutation of the 
vertices will produce a graph 
isomorphism. The permutations 
producing a graph isomorphism F 
have to map the edges 
appropriately because (v,u) is an 
edge iff (F(v), F(u)) is an edge.


