Depth First Search

Depth First Search is a technique for visiting each each vertex of a graph, going as far as possible and then backtracking to visit vertices not yet reached.
We can use depth first search (or breadth first search) to create a spanning tree for a connected graph (a subgraph which is a tree and contains every vertex)

Breadth First Search

In breadth first search, instead of going as far as possible, we create a queue to store vertices and visit all the neighbors before moving on.

Applications of Trees

There are numerous important applications of trees, only three of which we will discuss today:

- Network optimization with minimum spanning trees
- Problem solving with backtracking in decision trees
- Data compression with prefix codes in Huffman coding trees

Depth First Search

As an example we can create a spanning tree T for a connected graph G with vertices $v_{1}, v_{2}, \ldots, v_{n}$.

1. Initialize T to have one vertex, v_{1}, and no edges
2. visit $\left(\mathrm{v}_{1}\right)$.

Here, visit is a recursive depth first search algorithm. visit(vertex v) \{
mark v visited
for each vertex w adjacent to v, not visited \{
add vertex w and edge $\{\mathrm{v}, \mathrm{w}\}$ to T ;
visit(w);
\}

Breadth First Search

// as an example, to create a spanning tree T.
Let $T=$ tree with only v_{1}, no edges;
Add v_{1} to queue Q
While Q is not empty \{
remove v from Q;
for each neighbor w of v
if w not visited
add w to Q;
add w and edge $\{v, w\}$ to T; mark w visited;
\} $\}$
\}
17 Nov 2015

CS 320

Spanning Trees

Definition: Let G be a connected simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G .

Note: A spanning tree of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a connected graph on V with a minimum number of edges (|V|-1).
Example: Since winters in Boston can be very cold, six universities in the Boston area decide to build a tunnel system that connects their libraries.

Spanning Trees

The complete graph including all possible tunnels:

The spanning trees of this graph connect all libraries with a minimum number of tunnels.

17 Nov 2015
CS 320

Spanning Trees

Example for a spanning tree:

Since there are 6 libraries, 5 tunnels are sufficient to connect all of them.

17 Nov 2015
CS 320

Spanning Trees

The complete graph with cost labels (in billion \$):

The least expensive tunnel system costs $\$ 18$ billion.
17 Nov 2015
CS 320
10

Spanning Trees

Prim's Algorithm:

- Begin by choosing any edge with smallest weight and putting it into the spanning tree,
- successively add to the tree edges of minimum weight that are incident to a vertex already in the tree and not forming a simple circuit with those edges already in the tree,
- stop when ($n-1$) edges have been added.

Spanning Trees

Kruskal's Algorithm:

Kruskal's algorithm is identical to Prim's algorithm, except that it does not demand new edges to be incident to a vertex already in the tree.
Both algorithms are guaranteed to produce a minimum spanning tree of a connected weighted graph. Kruskal's algorithm is $\mathrm{O}(\mathrm{e} \log \mathrm{e})$ while Prim's algorithm is $\mathrm{O}(\mathrm{e} \log \mathrm{v})$ Please look at the proof of Prim's algorithm on page 799 (6 $6^{\text {th }}$ edition: p .741).

17 Nov 2015
CS 320

Backtracking in Decision Trees

A decision tree is a rooted tree in which each internal vertex corresponds to a decision, with a subtree at these vertices for each possible outcome of the decision.

Decision trees can be used to model problems in which a series of decisions leads to a solution (compare with the "binary search tree" example).

The possible solutions of the problem correspond to the paths from the root to the leaves of the decision tree.

17 Nov 2015
CS 320
13

Backtracking in Decision Trees

Idea: Start at the root of the decision tree and move downwards, that is, make a sequence of decisions, until you either reach a solution or you enter a situation from where no solution can be reached by any further sequence of decisions.
In the latter case, backtrack to the parent of the current vertex and take a different path downwards from there. If all paths from this vertex have already been explored, backtrack to its parent.
Continue this procedure until you find a solution or establish that no solution exists (there are no more paths to try out).

17 Nov $2015 \quad$ CS 320 15

Backtracking in Decision Trees

There are problems that require us to perform an exhaustive search of all possible sequences of decisions in order to find the solution.

We can solve such problems by constructing the complete decision tree and then find a path from its root to a leaf that corresponds to a solution of the problem.
In many cases, the efficiency of this procedure can be dramatically increased by a technique called backtracking.

17 Nov 2015
CS 320
14

Backtracking in Decision Trees

Example: The n-queens problem
How can we place n queens on an $n \times n$ chessboard so that no two queens can capture each other?

A queen can move any number of squares horizontally, vertically, and diagonally.
Here, the possible target squares of the queen Q are marked with an x .

17 Nov 2015
CS 320

Cs 32
16

Backtracking in Decision Trees

Obviously, in any solution of the n-queens problem, there must be exactly one queen in each column of the board.

Therefore, we can describe the solution of this problem as a sequence of \mathbf{n} decisions:
Decision 1: Place a queen in the first column.
Decision 2: Place a queen in the second column.
:
Decision n: Place a queen in the n-th column.
We are now going to solve the 4-queens problem using the backtracking method.

[^0]CS 320

Backtracking in Decision Trees

We can also use backtracking to write "intelligent" programs that play games against a human opponent.
Just consider this extremely simple (and not very exciting) game:
At the beginning of the game, there are seven coins on a table. Player 1 makes the first move, then player 2 , then player 1 again, and so on. One move consists of removing 1, 2 , or 3 coins. The player who removes all remaining coins wins.

Backtracking in Decision Trees

So the computer will start the game by taking three coins and is guaranteed to win the game.

For more interesting games such as chess, it is impossible to check every possible sequence of moves. The computer player then only looks ahead a certain number of moves and estimates the chance of winning after each possible sequence.

Permutation Matrices

A permutation matrix is an n by n matrix with a single 1 in each row and column, 0 elsewhere.
If P is a permutation (bijection) on $\{1,2, . ., n\}$ let A_{P} be the permutation matrix with
$A_{i P(i)}=1, A_{i j}=0$ for $j \neq P(i)$
17 Nov 2015
CS 320 23

Permutation Matrices

Let $E_{u v}$ be the n by n matrix with 1 in the (u, v) position and 0 elsewhere.

* Note that $E_{u v} E_{r s}=E_{u s}$ if $v=r$, and is the n by n zero matrix otherwise.
Then $A_{P}=\Sigma_{i=1}{ }^{n} E_{i P(i)}$
If $Q=P^{-1}$ then you can check that $A_{Q}=\left(A_{P}\right)^{\top}$, the transpose of A_{P}.
17 Nov $2015 \quad$ CS 320

Permutation Matrices

Note also that
$A_{P}{ }^{\top} A_{P}=\Sigma_{i=1}{ }^{n} E_{P(i) i} \sum_{t=1}{ }^{n} E_{t P(t)}=$ $\sum_{i=1}{ }^{n} \sum_{t=1}{ }^{n} E_{P(i)} E_{t P(t)}=\sum_{t=1}{ }^{n} E_{P(t) P(t)}=I_{n}$, the n by n identity matrix, by *
Also, $\mathrm{E}_{\mathrm{ik}} \mathrm{A}_{\mathrm{P}}=\mathrm{E}_{\mathrm{ik}} \Sigma_{\mathrm{t}=1}{ }^{n} \mathrm{E}_{\mathrm{tP}(\mathrm{t})}=\mathrm{E}_{\mathrm{iP}(\mathrm{k})}$.
Right multiplying an m by n matrix B by A_{P} permutes the columns of B, moving the $k^{\text {th }}$ column to the $P(k)^{\text {th }}$ column

Isomorphisms of Graphs

Suppose G and H are graphs, each with n vertices. If G has vertices $g_{1}, \ldots g_{n}$ and H has vertices h_{1}, \ldots, h_{n} then a permutation P taking g_{i} to $h_{P(i)}$ will give an isomorphism of graphs if $A_{P}^{\top} M_{G} A_{P}=M_{H}$, where M_{S} is the adjacency matrix of graph S.

Permutation Matrices

Likewise $A_{P}{ }^{\top} E_{i k}=\Sigma_{t=1}{ }^{n} E_{P(t) t} E_{i k}=E_{P(i) k}$ so left multiplying an n by m matrix B by $A_{P}{ }^{\top}$ will permute the rows, moving the $i^{\text {th }}$ row to the $P(i)^{\text {th }}$ place.
If B is n by n then $A_{P}{ }^{\top} B A_{P}$ will be B with both rows and columns permuted by P : row $\mathrm{i} \rightarrow$ row $\mathrm{P}(\mathrm{i})$, column $\mathrm{j} \rightarrow$ column $\mathrm{P}(\mathrm{j})$

Example

The graphs G and H are clearly isomorphic, but can we tell that from their matrices?
G

H

Map vertices of G to those of H by $P(1)=4, P(2)=1, P(3)=3, P(4)=2$.
17 Nov 2015
CS 320
28

$$
\begin{aligned}
& M_{G} A_{P}=\begin{array}{|l|l|l|l|}
\hline 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 \\
\hline 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|}
\hline 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline 1
\end{array}=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 \\
\hline
\end{array} \\
& A_{P} M_{G} A_{P}=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array} \left\lvert\, \begin{array}{lllllll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 \\
\hline 1 & 1 & 0 & 0 \\
\hline
\end{array}=M_{H}\right.
\end{aligned}
$$

Isomorphisms of Graphs

Note that if F is an isomorphism from a graph G of n vertices $v_{1} \ldots v_{n}$ to a graph H of n vertices $w_{1} \ldots w_{n}$ then F defines a permutation of $\{1, \ldots, n\}$ and the adjacency matrices of G and H will be related by a permutation matrix.

Isomorphisms of Graphs

But not every permutation of the vertices will produce a graph isomorphism. The permutations producing a graph isomorphism F have to map the edges appropriately because (v, u) is an edge iff $(F(v), F(u))$ is an edge.

[^0]: 17 Nov 2015

