Permutation Matrices

A permutation matrix is an n by n matrix with a single 1 in each row and column, 0 elsewhere.
If P is a permutation (bijection) on $\{1,2, . ., n\}$ let A_{P} be the permutation matrix with

$$
A_{i P(i)}=1, A_{i j}=0 \text { for } j \neq P(i)
$$

Permutation Matrices

Note also that
$A_{P}{ }^{\top} A_{P}=\Sigma_{i=1}{ }^{n} E_{P(i) i} \sum_{t=1}{ }^{n} E_{t P(t)}=$
$\Sigma_{i=1}{ }^{n} \sum_{t=1}{ }^{n} E_{P(i)} E_{t P(t)}=\sum_{t=1}{ }^{n} E_{P(t) P(t)}=I_{n}$, the n by n identity matrix, by *
Also, $E_{i k} A_{P}=E_{i k} \Sigma_{t=1}{ }^{n} E_{t P(t)}=E_{i P(k)}$.
Right multiplying an m by n matrix B by A_{p} permutes the columns of B, moving the $k^{\text {th }}$ column to the $P(k)^{\text {th }}$ column

19 Nov 2015
CS 320

Isomorphisms of Graphs

Suppose G and H are graphs, each with n vertices. If G has vertices $g_{1}, \ldots g_{n}$ and H has vertices h_{1}, \ldots, h_{n} then a permutation P taking g_{i} to $h_{P(i)}$ will give an isomorphism of graphs if $A_{P}{ }^{\top} M_{G} A_{P}=M_{H}$, where M_{S} is the adjacency matrix of graph S.

Permutation Matrices

Likewise $A_{P}{ }^{\top} E_{i k}=\Sigma_{t=1}{ }^{n} E_{P(t) t} E_{i k}=E_{P(i) k}$ so left multiplying an n by matrix B by $A_{P}{ }^{\top}$ will permute the rows, moving the $\mathrm{i}^{\text {th }}$ row to the $\mathrm{P}(\mathrm{i})^{\text {th }}$ place.
If B is n by n then $A_{P}{ }^{\top} B A_{p}$ will be B with both rows and columns permuted by P : row $\mathrm{i} \rightarrow$ row $\mathrm{P}(\mathrm{i})$, column $\mathrm{j} \rightarrow$ column $\mathrm{P}(\mathrm{j})$

Example

The graphs G and H are clearly isomorphic, but can we tell that from their matrices?
G

H

Map vertices of G to those of H by $P(1)=4, P(2)=1, P(3)=3, P(4)=2$.
19 Nov 2015
CS 320

$M_{G} A_{P}=$| 0 | 1 | 0 |
| :--- | :--- | :--- |
| 0 | 1 | 0 |
| 1 | 1 | 0 |
0	1	0	\quad	0	0	0	1	
1	0	0	0					
0	0	1	0					
0	1	0	0	$=$	1	1	0	0
:---	:---	:---	:---					
1	1	0	0					
1	0	0	1					
1	0	0	0					

$$
\text { S } 320
$$

8

Isomorphisms of Graphs

But not every permutation of the vertices will produce a graph isomorphism. The permutations producing a graph isomorphism F have to map the edges appropriately because (v, u) is an edge iff $(F(v), F(u))$ is an edge.

Boolean Algebra

Boolean algebra provides the operations and the rules for working with the set $\{\mathbf{0}, \mathbf{1}\}$.
These are the rules that underlie electronic circuits, and the methods we will discuss are fundamental to VLSI design.
We are going to focus on three operations:

- Boolean complementation,
- Boolean sum, and
- Boolean product

Boolean Operations

The complement is denoted by a bar (on the slides, we will use a minus sign). It is defined by
$-0=1$ and $-1=0$.
The Boolean sum, denoted by + or by OR, has the following values:
$1+1=1, \quad 1+0=1, \quad 0+1=1, \quad 0+0=0$
The Boolean product, denoted by • or by AND, has the following values:
$1 \cdot 1=1, \quad 1 \cdot 0=0, \quad 0 \cdot 1=0, \quad 0 \cdot 0=0$

19 Nov 2015
CS 320 13

Boolean Functions and Expressions

Definition: Let $B=\{0,1\}$. The variable x is called a Boolean variable if it assumes values only from B.
A function from B^{n}, the set
$\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in B, 1 \leq i \leq n\right\}$, to B is called a Boolean function of degree n.

Boolean functions can be represented using expressions made up from the variables and Boolean operations.

Boolean Functions and Expressions

For example, we can create Boolean expression in the variables x, y, and z using the "building blocks" $0,1, x, y$, and z, and the construction rules:
Since x and y are Boolean expressions, so is $x y$.
Since z is a Boolean expression, so is $(-z)$.
Since $x y$ and $(-z)$ are expressions, so is $x y+(-z)$.
... and so on... function. The values of this function are obtained by substituting 0 and 1 for the variables in the expression.

19 Nov 201
CS 320
15

19 Nov 2015
CS 320

Boolean Functions and Expressions

Example: Give a Boolean expression for the Boolean function $F(x, y)$ as defined by the following table:

x	y	$F(x, y)$
0	0	0
0	1	1
1	0	0
1	1	0

Possible solution: $F(x, y)=(-x) \cdot y$
Boolean Functions and Expressions

Another Example:

x	y	z	$F(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

19 Nov 2015
CS 320
18

Boolean Functions and Expressions

There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on minterms.

Definition: A literal is a Boolean variable or its complement. A minterm of the Boolean variables x_{1},
x_{2}, \ldots, x_{n} is a Boolean product $y_{1} y_{2} \ldots y_{n}$, where $y_{i}=x_{i}$ or $y_{i}=-x_{i}$.
Hence, a minterm is a product of n literals, with one literal for each variable.

Boolean Functions and Expressions

Definition: The Boolean functions F and G of n variables are equal if and only if $F\left(b_{1}, b_{2}, \ldots, b_{n}\right)=$ $G\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ whenever $b_{1}, b_{2}, \ldots, b_{n}$ belong to B.
Two different Boolean expressions that represent the same function are called equivalent.
For example, the Boolean expressions $x y, x y+0$, and $\mathrm{xy} \cdot 1$ are equivalent.

Boolean Functions and Expressions

The complement of the Boolean function F is the function -F, where $-F\left(b_{1}, b_{2}, \ldots, b_{n}\right)=$
$-\left(F\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right)$.
Let F and G be Boolean functions of degree n. The
Boolean sum F+G and Boolean product FG are then defined by
$(F+G)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=F\left(b_{1}, b_{2}, \ldots, b_{n}\right)+G\left(b_{1}, b_{2}, \ldots\right.$, b_{n})
$(F G)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=F\left(b_{1}, b_{2}, \ldots, b_{n}\right) G\left(b_{1}, b_{2}, \ldots, b_{n}\right)$

9 Nov 2015
CS 320
22

Boolean Functions and Expressions

Question: How many different Boolean functions of degree 1 are there?

Solution: There are four of them, $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$, and F_{4} :

x	F_{1}	F_{2}	F_{3}	F_{4}
0	0	0	1	1
1	0	1	0	1

Boolean Functions and Expressions

Question: How many different Boolean functions of degree 2 are there?

Solution: There are 16 of them, $F_{1}, F_{2}, \ldots, F_{16}$:

x	y	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$	$\mathrm{~F}_{9}$	$\mathrm{~F}_{10}$	$\mathrm{~F}_{11}$	$\mathrm{~F}_{12}$	$\mathrm{~F}_{13}$	$\mathrm{~F}_{14}$	$\mathrm{~F}_{15}$	F_{1}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Boolean Functions and Expressions

Question: How many different Boolean functions of degree n are there?

Solution:
There are 2^{n} different n -tuples of 0 s and 1 s .
A Boolean function is an assignment of 0 or 1 to each of these 2^{n} different n -tuples.
Therefore, there are $2^{2^{n}}$ different Boolean functions.
$--x=x$, law of double complement
$\mathrm{x}+\mathrm{x}=\mathrm{x}$,idempotent laws $x \cdot x=x$
$x+0=x$, identity laws $\mathrm{x} \cdot 1=\mathrm{x}$
$x+1=1$, domination laws $x \cdot 0=0$
$x+y=y+x$, commutative laws $x \cdot y=y \cdot x$

Boolean Identities

There are useful identities of Boolean expressions that can help us to transform an expression A into an equivalent expression B (see Table 5 on page 815 [$6{ }^{\text {th }}$ edition: page 753] in the textbook).

$$
\begin{aligned}
& x+(y+z)=(x+y)+z, ~ a s s o c i a t i v e ~ l a w s ~ \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x+y z=(x+y)(x+z) \text {, distributive laws } \\
& x \cdot(y+z)=(x \cdot y)+(x \cdot z) \\
&-(x y)=-x+-y, \text { De Morgan's laws } \\
&-(x+y)=(-x)(-y) \\
& x+x y=x, \text { Absorption laws } \\
& x(x+y)=x \\
& x+-x=1 \text {, unit property } \\
& x(-x)=0 \text {, zero property } \\
& \text { (1) }
\end{aligned}
$$

28

Duality

We can derive additional identities with the help of the dual of a Boolean expression.
The dual of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging 0 s and 1 s .

Duality

Examples:

The dual of $x(y+z)$ is $x+y z$.
The dual of $-x \cdot 1+(-y+z)$ is $(-x+0)((-y) z)$.
The dual is essentially the complement, but with any variable x replaced by -x. (exercise 29, p. 881)
The dual of a Boolean function F represented by a Boolean expression is the function represented by the dual of this expression.
This dual function, denoted by F^{d}, does not depend on the particular Boolean expression used to
represent F. (exercise 30, page 881 [6 ${ }^{\text {th }}$ ed. p.756])
CS 320

Duality

Therefore, an identity between functions represented by Boolean expressions remains valid when the duals of both sides of the identity are taken.

We can use this fact, called the duality principle, to derive new identities.

For example, consider the absorption law $x(x+y)=x$

By taking the duals of both sides of this identity, we obtain the equation $x+x y=x$, which is also an identity (and also called an absorption law).

Definition of a Boolean Algebra

Definition: A Boolean algebra is a set B with two binary operations \vee and \wedge, elements 0 and 1 , and a unary operation - such that the following properties hold for all x, y, and z in B :
$x \vee 0=x$ and $x \wedge 1=x \quad$ (identity laws)
$x \vee(-x)=1$ and $x \wedge(-x)=0 \quad$ (domination laws)
$(x \vee y) \vee z=x \vee(y \vee z)$ and
$(x \wedge y) \wedge z=x \wedge(y \wedge z)$ and (associative laws)
$x \vee y=y \vee x$ and $x \wedge y=y \wedge x$ (commutative laws)
$x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ and
$x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \quad$ (distributive laws)
19 Nov 2015
CS 320

Definition of a Boolean Algebra

All the properties of Boolean functions and expressions that we have discovered also apply to other mathematical structures such as propositions and sets and the operations defined on them.
If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.
For this purpose, we need an abstract definition of a Boolean algebra.

Boolean Algebras

Examples of Boolean Algebras are:

1. The algebra of all subsets of a set U, with $+=\cup, \cdot=\cap,-=$ complement, $0=\varnothing, 1=U$.
2. The algebra of propositions with symbols $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$, with $+=\vee, \cdot=\wedge,-=\neg, 0=\mathrm{F}$, $1=\mathrm{T}$.
3. If B_{1}, \ldots, B_{n} are Boolean Algebras, so is $B_{1} \times$..$\times B_{n}$, with operations defined coordinatewise.
