

Boolean Operations

The **complement** is denoted by a bar (on the slides, we will use a minus sign). It is defined by

-0 = 1 and -1 = 0.

The **Boolean sum**, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0

The **Boolean product**, denoted by \cdot or by AND, has the following values:

CS 320

13

 $1 \cdot 1 = 1$, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

19 Nov 2015

Boolean Functi	ons and Expressions	S	
The Boolean expressi x _n are defined recursive	ons in the variables x_1, x_2 ely as follows:	,,	
• 0, 1, x ₁ , x ₂ ,, x _n are	Boolean expressions.		
• If E_1 and E_2 are Boole (E_1E_2), and ($E_1 + E_2$)	an expressions, then (-E ₁ are Boolean expressions.),	
Each Boolean expression represents a Boolean function. The values of this function are obtained by substituting 0 and 1 for the variables in the expression.			
19 Nov 2015	CS 320	15	

Boolean Functions and Expressions

There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on **minterms**.

Definition: A **literal** is a Boolean variable or its complement. A **minterm** of the Boolean variables x_1 , x_2 , ..., x_n is a Boolean product $y_1y_2...y_n$, where $y_i = x_i$ or $y_i = -x_i$.

Hence, a minterm is a product of n literals, with one literal for each variable.

19 Nov 2015

CS 320

19

Boolean Function	ons and Expression	S		
Definition: The Boolean functions F and G of n variables are equal if and only if $F(b_1, b_2,, b_n) = G(b_1, b_2,, b_n)$ whenever $b_1, b_2,, b_n$ belong to B.				
Two different Boolean expressions that represent the same function are called equivalent .				
For example, the Boolean expressions xy, xy + 0, and xy-1 are equivalent.				
19 Nov 2015	CS 320	21		

Boolean Functions and Expressions				
The complement of the Boolean function F is the function $-F$, where $-F(b_1, b_2,, b_n) = -(F(b_1, b_2,, b_n))$.				
Let F and G be Boolean functions of degree n. The Boolean sum F+G and Boolean product FG are then defined by				
$(F + G)(b_1, b_2,, b_n) = F(b_1, b_2,, b_n) + G(b_1, b_2,, b_n)$				
$(FG)(b_1, b_2,, b_n) = F(b_1, b_2,, b_n) G(b_1, b_2,, b_n)$				
19 Nov 2015 CS 320 22				

Boolean Functions and Expressions

Question: How many different Boolean functions of degree 1 are there?

Solution: There are four of them, F_1 , F_2 , F_3 , and F_4 :

	х	F ₁	F_2	F ₃	F_4	
	0	0	0	1	1	
	1	0	1	0	1	
19 Nov 20	15		CS 320			23

Boolean Identities

There are useful identities of Boolean expressions that can help us to transform an expression A into an equivalent expression B (see Table 5 on page 815 [6th edition: page 753] in the textbook).

CS 320

26

19 Nov 2015

19 Nov 2015

--x = x, law of double complement x+x = x,idempotent laws x·x = x x+0 = x, identity laws x·1 = x x+1 = 1, domination laws x·0 = 0 x+y = y+x, commutative laws x·y = y·x x = x = x = x x+(y+z) = (x+y)+z, associative laws $x\cdot(y\cdot z) = (x\cdot y)\cdot z$ x+yz = (x+y)(x+z), distributive laws $x\cdot(y+z) = (x\cdot y)+(x\cdot z)$ -(xy) = -x + -y, De Morgan's laws -(x+y) = (-x)(-y) x+xy = x, Absorption laws x(x+y) = x x+-x = 1, unit property x(-x) = 0, zero property

Examples: The dual of x(y + z) is x + yz. The dual of $-x \cdot 1 + (-y + z)$ is (-x + 0)((-y)z). The dual is essentially the complement, but with any variable x replaced by -x. (exercise 29, p. 881) The **dual of a Boolean function F** represented by a Boolean expression is the function represented by the dual of this expression. This dual function, denoted by F^d, **does not depend** on the particular Boolean expression used to represent F. (exercise 30, page 881 [6th ed. p.756])

CS 320

Duality

30

Duality

Therefore, an identity between functions represented by Boolean expressions **remains valid** when the duals of both sides of the identity are taken.

We can use this fact, called the **duality principle**, to derive new identities.

For example, consider the absorption law x(x + y) = x.

By taking the duals of both sides of this identity, we obtain the equation x + xy = x, which is also an identity (and also called an absorption law).

19 Nov 2015

CS 320

31

Definition of a Boolean Algebra

All the properties of Boolean functions and expressions that we have discovered also apply to **other mathematical structures** such as propositions and sets and the operations defined on them.

If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.

For this purpose, we need an **abstract definition** of a Boolean algebra.

19 Nov 2015

CS 320

32

Definition of a Boolean Algebra

Definition: A Boolean algebra is a set B with two binary operations \lor and \land , elements 0 and 1, and a unary operation – such that the following properties hold for all x, y, and z in B:

$x \lor 0 = x$ and $x \land 1 = x$	(identity laws)			
$x \lor (-x) = 1$ and $x \land (-x) = 0$	(domination laws)			
$\begin{array}{ll} (x \lor y) \lor z = x \lor (y \lor z) & \text{and} \\ (x \land y) \land z = x \land (y \land z) & \text{and} \end{array}$	(associative laws)			
$x \lor y = y \lor x$ and $x \land y = y \land$	x (commutative laws)			
$\begin{array}{l} x \lor (y \land z) = (x \lor y) \land (x \lor z) \text{ and} \\ x \land (y \lor z) = (x \land y) \lor (x \land z) (\text{distributive laws}) \end{array}$				
19 Nov 2015 CS 320	33			

	Boolean Algebras	
Exai 1. 2.	mples of Boolean Algebras are: The algebra of all subsets of a set U, with $+ = \bigcirc, \cdot = \bigcirc, - =$ complement, $0 = \emptyset$, $1 = U$ The algebra of propositions with symbols $p_1, p_2,, p_{n_i}$ with $+ = \lor, \cdot = \land, - = \neg, 0 = F$, 1 = T.	J.
3. 19 Nov 2	If B_1, \ldots, B_n are Boolean Algebras, so is B_1 $\ldots \times B_n$, with operations defined coordinate- wise.	× 34