Boolean Algebra

Boolean algebra provides the operations and the rules for working with the set $\{\mathbf{0}, \mathbf{1}\}$.
These are the rules that underlie electronic circuits, and the methods we will discuss are fundamental to VLSI design.
We are going to focus on three operations:

- Boolean complementation,
- Boolean sum, and
- Boolean product

24 Nov 2015
CS 320
1

Boolean Functions and Expressions

Definition: Let $B=\{0,1\}$. The variable x is called a Boolean variable if it assumes values only from B.
A function from B^{n}, the set
$\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in B, 1 \leq i \leq n\right\}$, to B is called a
Boolean function of degree n.
Boolean functions can be represented using expressions made up from the variables and Boolean operations.

24 Nov 2015
CS 320
24 Nov 2015

Boolean Operations

The complement is denoted by a bar (on the slides, we may use a minus sign). It is defined by $\overline{0}=1$ and $\overline{1}=0 \quad$ (or $-0=1$ and $-1=0$)
The Boolean sum, denoted by + or by OR, has the following values:
$1+1=1, \quad 1+0=1, \quad 0+1=1, \quad 0+0=0$
The Boolean product, denoted by • or by AND, has the following values:

$$
1 \cdot 1=1, \quad 1 \cdot 0=0, \quad 0 \cdot 1=0, \quad 0 \cdot 0=0
$$

24 Nov 2015
CS 320

Boolean Functions and Expressions

The Boolean expressions in the variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$, x_{n} are defined recursively as follows:

- $0,1, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are Boolean expressions.
- If E_{1} and E_{2} are Boolean expressions, then ($-E_{1}$), $\left(E_{1} E_{2}\right)$, and $\left(E_{1}+E_{2}\right)$ are Boolean expressions.

Each Boolean expression represents a Boolean function. The values of this function are obtained by substituting 0 and 1 for the variables in the expression.

CS 320

Boolean Functions and Expressions

Example: Give a Boolean expression for the Boolean function $F(x, y)$ as defined by the following table:

x	y	$F(x, y)$
0	0	0
0	1	1
1	0	0
1	1	0

Possible solution: $F(x, y)=(\bar{x}) \cdot y$
24 Nov 2015
CS 320

Boolean Functions and Expressions

There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on minterms.

Definition: A literal is a Boolean variable or its complement. A minterm of the Boolean variables x_{1}, x_{2}, \ldots, x_{n} is a Boolean product $y_{1} y_{2} \ldots y_{n}$, where $y_{i}=x_{i}$ or $y_{i}=\bar{x}_{i}$.

Hence, a minterm is a product of n literals, with one literal for each variable.

24 Nov 2015
Definition: The Boolean functions F and G of n variables are equal if and only if $F\left(b_{1}, b_{2}, \ldots, b_{n}\right)=$ $G\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ whenever $b_{1}, b_{2}, \ldots, b_{n}$ belong to B.
Two different Boolean expressions that represent the same function are called equivalent.

For example, the Boolean expressions $x y, x y+0$, and $\mathrm{xy} \cdot 1$ are equivalent.

Boolean Functions and Expressions

Boolean Functions and Expressions

The complement of the Boolean function F is the function F, where $F\left(b_{1}, b_{2}, \ldots, b_{n}\right)=$ $\bar{F}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
Let F and G be Boolean functions of degree n. The Boolean sum F+G and Boolean product FG are then defined by
$(F+G)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=F\left(b_{1}, b_{2}, \ldots, b_{n}\right)+G\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
$(F G)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=F\left(b_{1}, b_{2}, \ldots, b_{n}\right) G\left(b_{1}, b_{2}, \ldots, b_{n}\right)$

Boolean Functions and Expressions

Question: How many different Boolean functions of degree n are there?

Solution:

There are 2^{n} different n -tuples of 0 s and 1 s .
A Boolean function is an assignment of 0 or 1 to each of these 2^{n} different n-tuples.
Therefore, there are $2^{2^{n}}$ different Boolean functions.

$$
\begin{aligned}
& \overline{\bar{x}}=--x=x \text {, law of double complement } \\
& x+x=x \text {, idempotent laws } \\
& x \cdot x=x \\
& x+0=x \text {, identity laws } \\
& x \cdot 1=x \\
& x+1=1, \text { domination laws } \\
& x \cdot 0=0 \\
& x+y=y+x, \text { commutative laws } \\
& x \cdot y=y \cdot x
\end{aligned}
$$

$$
\begin{aligned}
& x+(y+z)=(x+y)+z \text {, associative laws } \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x+y z=(x+y)(x+z) \text {, distributive laws } \\
& x \cdot(y+z)=(x \cdot y)+(x \cdot z) \\
& \overline{(x y)}=\bar{x}+\bar{y} \text {, De Morgan's laws } \\
& \overline{(x+y)}=(\bar{x})(\bar{y}) \\
& x+x y=x \text {, Absorption laws } \\
& x(x+y)=x \\
& x+\bar{x}=1 \text {, unit property } \\
& x \bar{x}=0 \text {, zero property } \\
& 24 \text { Nov } 2015 \\
& \text { CS } 320
\end{aligned}
$$

Duality

We can derive additional identities with the help of the dual of a Boolean expression.
The dual of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging 0 s and 1 s .

Duality

Therefore, an identity between functions represented by Boolean expressions remains valid when the duals of both sides of the identity are taken.
We can use this fact, called the duality principle, to derive new identities.

For example, consider the absorption law $x(x+y)=x$.

By taking the duals of both sides of this identity, we obtain the equation $x+x y=x$, which is also an identity (and also called an absorption law).

Duality

Examples:

The dual of $x(y+z)$ is $x+y z$.
The dual of $\bar{x} \cdot 1+(\bar{y}+z)$ is $\quad(\bar{x}+0)((\bar{y}) z)$.
The dual is essentially the complement, but with any variable x replaced by $\overline{\mathrm{x}}$. (exercise 29, p. 881)
The dual of a Boolean function F represented by a Boolean expression is the function represented by the dual of this expression.
This dual function, denoted by F^{d}, does not depend on the particular Boolean expression used to
represent F. (exercise 30 , page 881 [6 $6^{\text {th }}$ ed. p.756])
24 Nov 2015
CS 320
16

Definition of a Boolean Algebra

All the properties of Boolean functions and expressions that we have discovered also apply to other mathematical structures such as propositions and sets and the operations defined on them.
If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.
For this purpose, we need an abstract definition of a Boolean algebra.

Definition of a Boolean Algebra

Definition: A Boolean algebra is a set B with two binary operations \vee and \wedge, elements 0 and 1 , and a unary operation - such that the following properties hold for all x, y, and z in B :
$x \vee 0=x$ and $x \wedge 1=x \quad$ (identity laws)
$x \vee \bar{x}=1$ and $x \wedge \bar{x}=0$ (domination laws)
$(x \vee y) \vee z=x \vee(y \vee z)$ and
$(x \wedge y) \wedge z=x \wedge(y \wedge z)$ and (associative laws)
$x \vee y=y \vee x$ and $x \wedge y=y \wedge x$ (commutative laws)
$x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ and
$x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \quad$ (distributive laws)
24 Nov 2015
CS 320

Boolean Algebras

Examples of Boolean Algebras are:

1. The algebra of all subsets of a set U, with $+=\cup,=\cap,-=$ complement, $0=\varnothing, 1=U$.
2. The algebra of propositions with symbols $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$, with $+=\vee, \cdot=\wedge,-=\neg, 0=\mathrm{F}$, $1=T$.
3. If B_{1}, \ldots, B_{n} are Boolean Algebras, so is $B_{1} \times \ldots \times B_{n}$, with operations defined coordinate-wise.

Logic Gates

Example: How can we build a circuit that computes the function $x y+\bar{x} y$?

Multi switch light circuit

This is because if both x and y are "on" (1) or "off" (0) $x y+\bar{x} \bar{y}$) will be 1 , and otherwise will be 0 .
We can generalize this method. For three switches the Boolean expression $x y z+x y z+\overline{x y z}+\overline{x y z}$ will work.
Can you draw circuits implementing these expressions? (see pp. 825, 826 [6 $6^{\text {th }}$ ed. pp. 763, 764])

24 Nov 2015
CS 320

Adding binary integers

If we add two one bit integers x and y we get a sum for that bit position plus a carry bit.
If we don't consider a carry bit from a lower bit addition we get what's called a half adder.
If we do consider an input carry bit we have a full adder. (see p. 827, $6^{\text {th }}$ ed.765)

Full Adder

If we add a carry bit c_{0} from the previous order bit sum our result for this bit would be 1 if one or three of c_{0}, x, y are 1 , and 0 otherwise.
This means $x y c_{0}+x \bar{y} \bar{c}_{0}+\overline{x y c_{0}}+\overline{x y} c_{0}$ would work, with carry bit $\mathrm{xyc}_{0}+\mathrm{xyC}_{0}+x \overline{y c}_{0}+\overline{\mathrm{x}} \mathrm{yc}_{0}$
See p. 827 to check your implementation.
24 Nov 2015
CS 320

Half Adder

Given input bits x and y, the result bit will be $x+y$ unless both x and y are 1 , in which case the result is 0 .
This means that we can express the result bit as $(x+y)(x y)$, or $(x+y)(\bar{x}+\bar{y})$.
The carry bit will be $x y$ (we carry if both x and y are 1)

24 Nov 2015
CS 320

