Proving Theorems

Direct proof:

An implication $p \rightarrow q$ can be proved by showing that if p is true, then q is also true.

Example: Give a direct proof of the theorem
"If n is odd, then n^{2} is odd."
Idea: Assume that the hypothesis of this implication is true (n is odd). Then use rules of inference and known theorems to show that q must also be true (n^{2} is odd).

Proving Theorems

Indirect proof:

An implication $p \rightarrow q$ is equivalent to its contrapositive $\neg q \rightarrow \neg p$. Therefore, we can prove $p \rightarrow q$ by showing that whenever q is false, then p is also false.

Example: Give an indirect proof of the theorem "If $3 n+2$ is odd, then n is odd."

Idea: Assume that the conclusion of this implication is false (n is even). Then use rules of inference and known theorems to show that p must also be false ($3 n+2$ is even).

Proving Theorems
n is odd.
Then $\mathrm{n}=2 \mathrm{k}+1$, where k is an integer.
Consequently, $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}$.

$$
\begin{aligned}
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

Since n^{2} can be written in this form, it is odd.

Proving Theorems

Prove: If $3 n+2$ is odd, then n is odd.
Suppose n is even.
Then $n=2 k$, where k is an integer.
It follows that $3 n+2=3(2 k)+2$
$=6 k+2$

$$
=2(3 k+1)
$$

Therefore, $3 n+2$ is even.
We have shown that the contrapositive of the implication is true, so the implication itself is also true

10 Sept 2015
CS 320

Set Theory

Set: Collection of objects ("elements")
\(\left.\begin{array}{ll}a \in A \& " a is an element of A "

" a is a member of A "\end{array}\right]\)| $a \notin A$ | " a is not an element of A " |
| :--- | :--- |
| $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ | " A consists of $a_{1}, \ldots "$ |

Order of elements is meaningless
It does not matter how often the same element is listed.

10 Sept 2015
CS 320

Set Equality

Sets A and B are equal if and only if they contain exactly the same elements.
Examples:
$\begin{array}{rlrl}\cdot A & =\{9,2,7,-3\}, B=\{7,9,-3,2\}: & A & =B \\ \cdot A & =\{d o g, \text { cat, horse }\}, & \\ B & =\{c a t, \text { horse, squirrel, dog }: & & A \neq B \\ \cdot A & =\{\text { dog, cat, horse }\}, & & \\ B & =\{c a t, \text { horse, dog, dog }: & & A=B\end{array}$

10 Sept 2015
CS 320

Examples for Sets

$$
\begin{aligned}
& A=\varnothing \\
& A=\{z\} \text { "empty set/null set" } \\
& A= \text { Note: } z \in A, \text { but } z \neq\{z\} \\
& A==\{\{x, y\}\} \\
& \text { Note: }\{x, y\} \in A, \text { but }\{x, y\} \neq\{\{x, y\}\} \\
& A=\{x \mid P(x)\} \\
& \text { "set of all } x \text { such that } P(x) " \\
& A=\{x \mid x \in N \wedge x>7\}=\{8,9,10, \ldots\} \\
& \text { "set builder notation" }
\end{aligned}
$$

10 Sept 2015
CS 320
9

Examples for Sets

"Standard" Sets:
Natural numbers $\mathbf{N}=\{0,1,2,3, \ldots\}$
Integers $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
Positive Integers $\mathbf{Z}^{+}=\{1,2,3,4, \ldots\}$
Real Numbers $\mathbf{R}=\{47.3,-12, \pi, \ldots\}$
The description on the right is very misleading, since we can't actually list all elements of \mathbf{R} in a sequence.
Rational Numbers $\mathbf{Q}=\{1.5,2.6,-3.8,15, \ldots\}$ (correct definition will follow)
10 Sept $2015 \quad$ CS 320 CS 320

Examples for Sets

We are now able to define the set of rational numbers Q :
$\mathbf{Q}=\left\{a / b \mid a \in \mathbf{Z} \wedge b \in \mathbf{Z}^{+}\right\}$.
(We actually need equivalence classes of such pairs (a,b))
or $\mathbf{Q}=\{a / b \mid a \in \mathbf{Z} \wedge b \in \mathbf{Z} \wedge b \neq 0\}$
And how about the set of real numbers R ?
$\mathbf{R}=\{r \mid r$ is a real number $\}$
That is the best we can do without getting much more sophisticated. A real variables book such as "Principles of Mathematical Analysis" by Walter Rudin will have the details, but that isn't discrete math.

10 Sept 2015
CS 320
10

Subsets

Useful rules:
$A=B \Leftrightarrow(A \subseteq B) \wedge(B \subseteq A)$
$(A \subseteq B) \wedge(B \subseteq C) \Rightarrow A \subseteq C \quad$ (see Venn Diagram)

10 Sept 2015
CS 320
12

Subsets

Useful rules:
$\varnothing \subseteq A$ for any set A
$A \subseteq A$ for any set A
Proper subsets:
$A \subset B \quad$ "A is a proper subset of B "
$A \subset B \Leftrightarrow \forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)$
or
$A \subset B \Leftrightarrow \forall x(x \in A \rightarrow x \in B) \wedge \neg \forall x(x \in B \rightarrow x \in A)$

10 Sept 2015
CS 320 13

The Power Set

$\begin{array}{ll}2^{A} \text { or } P(A) & \text { "power set of } A " \\ 2^{A}=\{B \mid B \subseteq A\} & \text { (consists of all subsets of } A \text {) }\end{array}$
Examples:
$A=\{x, y, z\}$
$2^{A}=\{\varnothing,\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}\}$
$A=\varnothing$
$2^{A}=\{\varnothing\}$
Note: $|A|=0,\left|2^{\mathrm{A}}\right|=1$
10 Sept 2015
15

Cartesian Product

The ordered n-tuple $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$ is an ordered collection of objects.
Two ordered n-tuples ($a_{1}, a_{2}, a_{3}, \ldots, a_{n}$) and ($b_{1}, b_{2}, b_{3}, \ldots, b_{n}$) are equal if and only if they contain exactly the same elements in the same order, i.e. $a_{i}=b_{i}$ for $1 \leq i \leq n$.

The Cartesian product of two sets is defined as:
$A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$
Example: $A=\{x, y\}, B=\{a, b, c\}$
$A \times B=\{(x, a),(x, b),(x, c),(y, a),(y, b),(y, c)\}$
10 Sept 2015
CS 320

Cardinality of Sets

If a set S contains exactly n distinct elements, $n \in \mathbf{N}$, we call S a finite set with cardinality $n .|S|=n$.

Examples:
$A=\{$ Mercedes, $B M W$, Porsche $\}, \quad|A|=3$
$B=\{1,\{2,3\},\{4,5\}, 6\} \quad|B|=4$
$C=\varnothing \quad|C|=0$
$D=\{x \in \mathbf{N} \mid x \leq 7000\} \quad|D|=7001$
$E=\{x \in \mathbf{N} \mid x \geq 7000\} \quad E$ is infinite!

10 Sept 2015

The Power Set

Cardinality of power sets:
$\left|2^{A}\right|=2^{|A|}$
Imagine each element in A has an "on/off" switch
Each possible switch configuration in A corresponds to one element in 2^{A}, namely the set of all elements that are "on".

A	1	2	3	4	5	6	7	8
x								
y								
z								

- For 3 elements in A, there are
$2 \times 2 \times 2=8$ elements in 2^{A}, that is, 8 subsets of A .
10 Sept $2015 \quad$ CS 320
16

Cartesian Product

Note that:
$A \times \varnothing=\varnothing$
$\varnothing \times A=\varnothing$
For non-empty sets A and $B: A \neq B \Leftrightarrow A \times B \neq B \times A$
$|A \times B|=|A| \cdot|B|$

The Cartesian product of two or more sets is defined as:
$A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}\right.$ for $\left.1 \leq i \leq n\right\}$
10 Sept 2015
CS 320
18

Set Operations

Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$
Example: $A=\{a, b\}, B=\{b, c, d\}$

$$
A \cup B=\{a, b, c, d\}
$$

Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$
Example: $A=\{a, b\}, B=\{b, c, d\}$ $A \cap B=\{b\}$

Set Operations

Two sets are called disjoint if their intersection is empty, that is, they share no elements:
$\mathrm{A} \cap \mathrm{B}=\varnothing$
The difference between two sets A and B contains exactly those elements of A that are not in B :
$A-B=\{x \mid x \in A \wedge x \notin B\}$
Example: $A=\{a, b\}, B=\{b, c, d\}, A-B=\{a\}$

10 Sept 2015
CS 320
21

Set Operations

Table 1 in Section 2.2 (page 130) shows many useful set identities.
How can we prove $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?
Method I:

$$
\mathrm{x} \in \mathrm{~A} \cup(\mathrm{~B} \cap \mathrm{C})
$$

$x \in A \vee x \in(B \cap C)$
$x \in A \vee(x \in B \wedge x \in C)$
$(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$
(distributive law for logical expressions)
$x \in(A \cup B) \wedge x \in(A \cup C)$
$x \in(A \cup B) \cap(A \cup C)$
10 Sept 2015
CS 320
23

Arbitrary unions and intersections

If S is some index set, finite or infinite, we define
$U_{(i \in S)} A_{i}=\left\{x \mid x \in A_{j}\right.$ for some $\left.j \in S\right\}$ and
$\cap_{(i \in S)} A_{i}=\left\{x \mid x \in A_{j}\right.$ for all $\left.j \in S\right\}$.
$U_{i=1}{ }^{\infty} A_{i}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup \ldots$
$\cap_{i=1}^{\infty} A_{i}=A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap \ldots$
are special cases

10 Sept 2015

Set Operations

The complement of a set A contains exactly those elements in the universe of discourse that are not in A :
$-A=U-A$

Example: $\mathrm{U}=\mathbf{N}, \mathrm{B}=\{250,251,252, \ldots\}$

$$
-B=\{0,1,2, \ldots, 248,249\}
$$

Set Operations

Method II: Membership table
1 means " x is an element of this set"
0 means " x is not an element of this set"

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Set Operations
Roughly speaking, every logical expression can be
transformed into an equivalent expression in set
theory and vice versa.
10 Sept 2015

Exercises

Question 1:

Given a set $A=\{x, y, z\}$ and a set $B=\{1,2,3,4\}$, what is the value of $\left|2^{A} \times 2^{B}\right|$?

Question 2:

Is it true for all sets A and B that $(A \times B) \cap(B \times A)=\varnothing$? Or do A and B have to meet certain conditions?

Question 3:

For any two sets A and B, if $A-B=\varnothing$ and $B-A=\varnothing$, can we conclude that $\mathrm{A}=\mathrm{B}$? Why or why not?

$$
10 \text { Sept } 2015
$$

CS 320
26

Functions

A function f from a set A to a set B is an assignment of exactly one element of B to each element of A.
We write
$\mathrm{f}(\mathrm{a})=\mathrm{b}$
if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write
f: $A \rightarrow B$ and say "f maps A to B "
(note: Here, " \rightarrow " has nothing to do with if... then)

Functions

If $f: A \rightarrow B$, we say that A is the domain of f and B is the codomain of f.

If $f(a)=b$, we say that b is the image of a and a is the pre-image of b.

The range of $f: A \rightarrow B$ is the set of all images of elements of A.

We say that $f: A \rightarrow B$ maps A to B.

Functions

Let us take a look at the function $\mathrm{f}: \mathrm{P} \rightarrow \mathrm{C}$ with
$P=\{$ Linda, Max, Kathy, Peter $\}$
C $=$ \{Boston, New York, Hong Kong, Moscow\}
f(Linda) $=$ Moscow
f (Max) $=$ Boston
f(Kathy) = Hong Kong
$f($ Peter $)=$ New York
Here, the range of f is C.

Functions

Let us re-specify f as follows:
f(Linda) $=$ Moscow
$f($ Max $)=$ Boston
f(Kathy) = Hong Kong
$\mathrm{f}($ Peter $)=$ Boston
Is f still a function? yes
What is its range? \{Moscow, Boston, Hong Kong\}

10 Sept 2015

Functions

If the domain of our function f is large, it is convenient to specify f with a formula, e.g.:
$\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$
$f(x)=2 x$
This leads to:
$f(1)=2$
$f(3)=6$
$f(-3)=-6$

Functions

We already know that the range of a function $f: A \rightarrow B$ is the set of all images of elements $a \in A$.

If we only consider a subset $S \subseteq A$, the set of all images of elements $s \in S$ is called the image of S under f .

We denote the image of S by $f(S)$:
$f(S)=\{f(s) \mid s \in S\}$
10 Sept 2015 35

Functions

Other ways to represent f :

x	$f(x)$
Linda	Moscow
Max	Boston
Kathy	Hong Kong
Peter	Boston

10 Sept 2015
32

Functions

Let f_{1} and f_{2} be functions from A to \mathbf{R}.
Then the sum and the product of f_{1} and f_{2} are also functions from A to \mathbf{R} defined by:
$\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$
$\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)$

Example:

$f_{1}(x)=3 x, \quad f_{2}(x)=x+5$
$\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)=3 x+x+5=4 x+5$
$\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)=3 x(x+5)=3 x^{2}+15 x$
10 Sept 2015

Functions

Let us look at the following well-known function:
f(Linda) $=$ Moscow
$f($ Max $)=$ Boston
f (Kathy) $=$ Hong Kong
$f($ Peter $)=$ Boston
What is the image of $S=\{$ Linda, Max $\}$
$f(S)=\{$ Moscow, Boston $\}$
What is the image of $S=\{$ Max, Peter $\} ?$
$f(S)=\{$ Boston $\}$
10 Sept 2015
36

Properties of Functions

A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be one-to-one (or injective), if and only if

$$
\forall x, y \in A(f(x)=f(y) \rightarrow x=y)
$$

In other words: f is one-to-one (injective) if and only if it does not map two distinct elements of A onto the same element of B.

Properties of Functions

How can we prove that a function f is one-to-one? Whenever you want to prove something, first take a look at the relevant definition(s):
$\forall x, y \in A(f(x)=f(y) \rightarrow x=y)$
Example:
$\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
Disproof by counterexample:
$f(3)=f(-3)$, but $3 \neq-3$, so f is not one-to-one.

10 Sept 2015
39

Properties of Functions

And again...
f(Linda) $=$ Moscow
$\mathrm{f}($ Max $)=$ Boston
f (Kathy) $=$ Hong Kong
$\mathrm{f}($ Peter $)=$ Boston
$g($ Linda $)=$ Moscow
$\mathrm{g}(\mathrm{Max})=$ Boston
g(Kathy) = Hong Kong
$g($ Peter $)=$ New York
Is g one-to-one?
Yes, each element is assigned a
unique element of the image.

Is fone-to-one?
No, Max and Peter are mapped onto the same element of the image.

10 Sept 2015
38

Properties of Functions

... and yet another example:
$\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$
$\mathrm{f}(\mathrm{x})=3 \mathrm{x}$
One-to-one: $\forall x, y \in A(f(x)=f(y) \rightarrow x=y)$
To show: $f(x) \neq f(y)$ whenever $x \neq y$
$\mathrm{x} \neq \mathrm{y}$
$\Leftrightarrow 3 x \neq 3 y$
$\Leftrightarrow \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$,
so if $x \neq y$, then $f(x) \neq f(y)$, that is, f is one-to-one.
10 Sept 2015

The Growth of Functions: Ω

The growth of functions is bounded below using the Ω (capital Omega) notation.

Definition: Let f and g be functions from the integers or the real numbers to the real numbers. We say that $f(x)$ is $\Omega(g(x))$ if there are positive constants C and k such that
$|f(x)| \geq C|g(x)|$ for all $x>k$.
(f is bounded below by g , up to a constant multiple. f grows at least as fast as g)

The Growth of Functions: Θ

The growth of functions is also described using the \boldsymbol{O} (capital Theta) notation.

Definition: Let f and g be functions from the integers or the real numbers to the real numbers. We say that $f(x)$ is $\Theta(g(x))$ if there are positive constants $\mathrm{C}_{1}, \mathrm{C}_{2}$, and k such that
$\mathrm{C}_{1}|\mathrm{~g}(\mathrm{x})| \leq|\mathrm{f}(\mathrm{x})| \leq \mathrm{C}_{2}|\mathrm{~g}(\mathrm{x})|$ for all $\mathrm{x}>\mathrm{k}$.
(f is bounded above and below by constant multiples of g : f grows at the same rate as g)

10 Sept 2015
43

The Growth of Functions

When we analyze the growth of functions we generally consider $f(x)$ and $g(x)$ which are always positive.

In that case we can simplify the big-O requirement to $f(x) \leq C \cdot g(x)$ whenever $x>k$.

If we want to show that $f(x)$ is $O(g(x))$, we only need to find one pair (C, k) (which is never unique).

The Growth of Functions

Example:

Show that $f(x)=x^{2}+2 x+1$ is $O\left(x^{2}\right)$.
For $x>1$ we have:
$x^{2}+2 x+1 \leq x^{2}+2 x^{2}+x^{2}$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}+1 \leq 4 \mathrm{x}^{2}$
Therefore, for $\mathrm{C}=4$ and $\mathrm{k}=1$:
$f(x) \leq C x^{2}$ whenever $x>k$.
$\Rightarrow f(x)$ is $O\left(x^{2}\right)$.

10 Sept 2015

The Growth of Functions

Question: If $f(x)$ is $O\left(x^{2}\right)$, is it also $O\left(x^{3}\right)$?
Yes. x^{3} grows faster than x^{2}, so x^{3} grows also faster than $f(x)$.

Therefore, we always want to find the smallest simple function $g(x)$ for which $f(x)$ is $O(g(x))$.

The Growth of Functions

"Popular" functions $g(n)$ are
$n \log n, 1,2^{n}, n^{2}, n!, n, n^{3}, \log n$
Listed from slowest to fastest growth:

- 1
- $\log n$
- n
- $n \log n$
- n^{2}
- n^{3}
- 2^{n}
-n!

10 Sept 2015 48

The Growth of Functions

A problem that can be solved with polynomial worstcase complexity is called tractable.

Problems of higher complexity are called intractable.
Problems that no algorithm can solve are called unsolvable.

You will find out more about this in CS420.

Complexity Examples

What does the following algorithm compute?
procedure who_knows $\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integers)
$\mathrm{m}:=0$
for $\mathrm{i}:=1$ to $\mathrm{n}-1$

$$
\text { for } \mathrm{j}:=\mathrm{i}+1 \text { to } \mathrm{n}
$$

if $\left|a_{i}-a_{j}\right|>m$ then $m:=\left|a_{i}-a_{j}\right|$
\{ m is the maximum difference between any two numbers in the input sequence
Comparisons: $\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+1$

$$
=(n-1) n / 2=0.5 n^{2}-0.5 n
$$

Time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
10 Sept 2015 51

Useful Rules for Big-O

For any polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers, $f(x)$ is $O\left(x^{n}\right)$.

If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$, then $\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{x})$ is $\mathrm{O}\left(\max \left(\mathrm{g}_{1}(\mathrm{x}), \mathrm{g}_{2}(\mathrm{x})\right)\right)$

If $f_{1}(x)$ is $O(g(x))$ and $f_{2}(x)$ is $O(g(x))$, then $\left(f_{1}+f_{2}\right)(x)$ is $O(g(x))$.

If $\mathrm{f}_{1}(\mathrm{x})$ is $\mathrm{O}\left(\mathrm{g}_{1}(\mathrm{x})\right)$ and $\mathrm{f}_{2}(\mathrm{x})$ is $\mathrm{O}\left(\mathrm{g}_{2}(\mathrm{x})\right)$, then $\left(\mathrm{f}_{1} \mathrm{f}_{2}\right)(\mathrm{x})$ is $\mathrm{O}\left(\mathrm{g}_{1}(\mathrm{x}) \mathrm{g}_{2}(\mathrm{x})\right)$.

10 Sept 2015

Complexity Examples

Another algorithm solving the same problem:
procedure max_diff($a_{1}, a_{2}, \ldots, a_{n}$: integers)
$\min :=a_{1}$
$\max :=a_{1}$
for $i:=2$ to n
if $\mathrm{a}_{\mathrm{i}}<\min$ then min := a_{i}
else if $a_{i}>\max$ then max := a_{i}
$\mathrm{m}:=\max -\min$
Comparisons: no more than $2 \mathrm{n}-2$
Time complexity is $\mathrm{O}(\mathrm{n})$.

