Proving Theorems

Direct proof:

An implication $p \rightarrow q$ can be proved by showing that if p is true, then q is also true.

Example: Give a direct proof of the theorem "If n is odd, then n^2 is odd."

Idea: Assume that the hypothesis of this implication is true (n is odd). Then use rules of inference and known theorems to show that q must also be true (n^2 is odd).

CS 320

1

10 Sept 2015

Proving Theorems

n is odd.

Then n = 2k + 1, where k is an integer.

```
Consequently, n^2 = (2k + 1)^2.
= 4k^2 + 4k + 1
= 2(2k^2 + 2k) + 1
```

Since n^2 can be written in this form, it is odd.

CS 320

10 Sept 2015

Proving Theorems				
Indirect proof:				
An implication $p \rightarrow q$ is equivalent to its contra - positive $\neg q \rightarrow \neg p$. Therefore, we can prove $p \rightarrow q$ b showing that whenever q is false, then p is also false	oy se.			
Example: Give an indirect proof of the theorem "If 3n + 2 is odd, then n is odd."				
Idea: Assume that the conclusion of this implication is false (n is even). Then use rules of inference and known theorems to show that p must also be false $(3n + 2 \text{ is even})$.				
10 Sept 2015 CS 320 3				

Set Theory						
Set: Collection of obje	ects ("elements")					
a∈A	"a is an element of A" "a is a member of A"					
a∉A	"a is not an element of A"					
A = { $a_1, a_2,, a_n$ }	"A consists of a ₁ ,"					
Order of elements is r	neaningless					
It does not matter how often the same element is listed.						
10 Sept 2015	CS 320	6				

Set Equality

Sets A and B are equal if and only if they contain exactly the same elements.

Examples:

- A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B
- A = {dog, cat, horse}, B = {cat, horse, squirrel, dog} : $A \neq B$
- A = {dog, cat, horse}, B = {cat, horse, dog, dog} : A = B
- 10 Sept 2015
- .
- CS 320

7

Sub	sets	
A ⊆ B "A is a subse	et of B"	
$A \subseteq B$ if and only if every el an element of B.	ement of A is als	0
Some people use $A \subset B$ to matrix	ean "A is a subset o	of B".
We can completely formalize	this:	
$A \subseteq B \Leftrightarrow \forall x \ (x \in A \to x \in B)$))	
Examples:		
A = {3, 9}, B = {5, 9, 1, 3}	, A <u>⊂</u> B?	true
A = {3, 3, 3, 9}, B = {5, 9,	1, 3}, A <u>⊂</u> B ?	true
A = {1, 2, 3}, B = {2, 3, 4},	A⊆B?	false
10 Sept 2015 CS	320	11

	Subsets	
Useful rules: Ø <u>⊂</u> A for any set A A <u>⊂</u> A for any set A		
Proper subsets: $A \subset B$ "A is a prop $A \subset B \Leftrightarrow \forall x (x \in A - a)$ or $A \subset B \Leftrightarrow \forall x (x \in A - a)$	ber subset of B" → x∈B) ∧ ∃x (x∈E → x∈B) ∧ ¬∀x (x	3 ∧ x∉A) ∈B → x∈A)
10 Sept 2015	CS 320	13

Cardina	lity of Sets
If a set S contains exac we call S a finite set wit	tly n distinct elements, n∈ N , h cardinality n. S = n.
Examples: A = {Mercedes, BMW, F	Porsche}, A = 3
B = {1, {2, 3}, {4, 5}, 6}	B = 4
C = Ø	C = 0
D = { $x \in N \mid x \le 7000$ }	D = 7001
E = { $x \in N \mid x \ge 7000$ }	E is infinite!
10 Sept 2015	CS 320 14

	The Power Set	
2 ^A or P(A) 2 ^A = {B B ⊆ A}	"power set of A" (consists of all subsets of A)	
Examples:		
$ A = \{x, y, z\} \\ 2^A = \{\emptyset, \{x\}, \{y\}, \cdot \} $	{z}, {x, y}, {x, z}, {y, z}, {x, y, z}}	
A = ∅		
2 ^A = {∅}		
Note: $ A = 0$, $ 2'$	^A = 1	
10 Sept 2015	CS 320	15

Cardinality of power sets:											
← Im:		- <u>-</u>	ما م	mon	t in A	hae	an "	on/of	f" cw	itch	
	oh na			vitob	oonfi	auro	tion i	n A c	orro	anondo	to on
Ear	un pu	ont i		ncn		yura	uon i st of .		one	sponus	
6	eiem	entil	1 2^	, nan	iery t	ne se	el OT a	anel	emer	its that	are
Γ	Δ.	4	2	2	4	E	6	7	0	1	
[А	1	2	3	4	5	6	7	8]	
[A x	1 x	2 x	3 x	4 x	5 x	6 x	7 x	8 x		
	A x y	1 x y	2 x y	3 x y	4 x y	5 x y	6 x y	7 x y	8 x y	_	
-	A x y z	1 x y z	2 x y z	3 x y z	4 x y z	5 x y z	6 x y z	7 x y z	8 x y z	-	
•	A x y z	1 x y z 3 ele	2 x y z	3 x y z nts i	4 x y z n A.	5 x y z ther	6 x y z e ar	7 x y z	8 x y z		
•	A x y z For 2	1 x y 3 ele	2 x y z eme	3 x y z nts i	4 x y z n A,	5 x y z ther	6 x y z rear	7 x y z re	8 x y z		ts of A

Cartesian Product	
The ordered <i>n</i> -tuple $(a_1, a_2, a_3,, a_n)$ is an ordered collection of objects.	ł
Two ordered n-tuples $(a_1, a_2, a_3,, a_n)$ and $(b_1, b_2, b_3,, b_n)$ are equal if and only if they contain exactly the same elements in the same order, i.e. $a_i = b_i$ for $1 \le i \le n$.	
The Cartesian product of two sets is defined as: $A \times B = \{(a, b) \mid a \in A \land b \in B\}$ Example: $A = \{x, y\}, B = \{a, b, c\}$ $A \times B = \{(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)\}$	
10 Sept 2015 CS 320 17	

Cartesian Product
Note that:
$A \times \emptyset = \emptyset$
$\varnothing \times A = \varnothing$
For non-empty sets A and B: $A \neq B \Leftrightarrow A \times B \neq B \times A$
$ A \times B = A \cdot B $
The Cartesian product of two or more sets is defined as:
$A_1 \! \times \! A_2 \! \times \! \ldots \! \times \! A_n \texttt{=} \{(a_1, a_2, \ldots, a_n) \mid a_i \! \in \! A_i \text{ for } 1 \leq i \leq n\}$
10 Sept 2015 CS 320 18

Set Op Table 1 in Section 2.2 (pag set identities. How can we prove $A \cup (B \cap$	perations ge 130) shows many usa hC) = (A∪B)∩(A∪C)?	eful
$\begin{array}{l} \text{Method I:} \\ x \in A \cup (B \cap C) \\ x \in A \lor x \in (B \cap C) \\ x \in A \lor (x \in B \land x \in C) \\ (x \in A \lor x \in B) \land (x \in A \lor x \in C) \\ (distributive law for logic \\ x \in (A \cup B) \land x \in (A \cup C) \\ x \in (A \cup B) \cap (A \cup C) \end{array}$	C) cal expressions)	
10 Sept 2015 C	CS 320	23

Set Operations									
Me	Method II: Membership table								
1 ı 0 ı	1 means "x is an element of this set" 0 means "x is not an element of this set"								
	А	В	С	B∩C	A∪(B∩C)	A∪B	A∪C	(A∪B) ∩(A∪C)	
	0	0	0	0	0	0	0	0	
	0	0	1	0	0	0	1	0	
	0	1	0	0	0	1	0	0	
	0	1	1	1	1	1	1	1	
	1	0	0	0	1	1	1	1	
	1	0	1	0	1	1	1	1	
	1	1	0	0	1	1	1	1	
	1	1	1	1	1	1	1	1	
10 Sept 2015 CS 320							24		

Exercises Set Operations Question 1: Given a set $A = \{x, y, z\}$ and a set $B = \{1, 2, 3, 4\}$, Roughly speaking, every logical expression can be what is the value of $|2^A \times 2^B|$? transformed into an equivalent expression in set theory and vice versa. Question 2: Is it true for all sets A and B that $(A \times B) \cap (B \times A) = \emptyset$? Or do A and B have to meet certain conditions? Question 3: For any two sets A and B, if $A - B = \emptyset$ and $B - A = \emptyset$, can we conclude that A = B? Why or why not? 10 Sept 2015 CS 320 CS 320 10 Sept 2015 25

Functions

If f:A \rightarrow B, we say that A is the *domain* of f and B is the codomain of f.

If f(a) = b, we say that b is the *image* of a and a is the pre-image of b.

The range of f:A \rightarrow B is the set of all images of elements of A.

We say that $f:A \rightarrow B$ maps A to B.

10 Sept 2015

29

Functions

Let us take a look at the function $f{:}\mathsf{P}{\rightarrow}\mathsf{C}$ with P = {Linda, Max, Kathy, Peter} C = {Boston, New York, Hong Kong, Moscow}

f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = New York

Here, the range of f is C.

10 Sept 2015

30

Functions	
If the domain of our function f is large, it is convenient to specify f with a formula, e.g.:	
$f: \mathbf{R} \rightarrow \mathbf{R}$ $f(x) = 2x$	
This leads to: f(1) = 2 f(3) = 6 f(-3) = -6	
10 Sept 2015 3	3

Functions

Let f_1 and f_2 be functions from A to **R**. Then the *sum* and the *product* of f_1 and f_2 are also functions from A to **R** defined by: $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $(f_1f_2)(x) = f_1(x) f_2(x)$ Example:

 $\begin{array}{l} f_1(x) = 3x, \ f_2(x) = x + 5 \\ (f_1 + f_2)(x) = \ f_1(x) + f_2(x) = 3x + x + 5 = 4x + 5 \\ (f_1f_2)(x) = \ f_1(x) \ f_2(x) = 3x \ (x + 5) = 3x^2 + 15x \\ \end{array}$

Functions

We already know that the *range* of a function $f:A \rightarrow B$ is the set of all images of elements $a \in A$.

If we only consider a subset $S \subseteq A$, the set of all images of elements $s \in S$ is called the *image* of S under f.

35

We denote the image of S by f(S):

 $f(S) = \{f(s) \mid s \! \in \! S\}$

10 Sept 2015

Functions Let us look at the following well-known function: f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = BostonWhat is the image of S = {Linda, Max} ? $f(S) = \{Moscow, Boston\}$ What is the image of S = {Max, Peter} ? $f(S) = \{Boston\}$ 10 Sept2015

Properties of Functions

A function f:A \rightarrow B is said to be *one-to-one* (or *injective*), if and only if

 $\forall x, y \in A (f(x) = f(y) \rightarrow x = y)$

In other words: f is one-to-one (injective) if and only if it does not map two distinct elements of A onto the same element of B.

10 Sept 2015

Properties of Functions

g(Linda) = Moscow g(Max) = Boston

g(Peter) = New York Is g one-to-one?

g(Kathy) = Hong Kong

Yes, each element is assigned a unique element of the image.

38

And again... f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston Is f one-to-one?

No, Max and Peter are mapped onto the same element of the image.

10 Sept 2015

37

The Growth of Functions: Big O

The growth of functions is usually described (for upper bounds) by using the **big-O notation**.

Definition: Let f and g be functions from the integers or the real numbers to the real numbers. We say that f(x) is O(g(x)) if there are constants C and k such that

 $|f(x)| \le C|g(x)|$ for all x > k.

(f is bounded above by g, up to a constant multiple. f grows no faster than g)

10 Sept 2015

41

The Growth of Functions: Ω

The growth of functions is bounded below using the Ω (capital Omega) notation.

Definition: Let f and g be functions from the integers or the real numbers to the real numbers. We say that f(x) is $\Omega(g(x))$ if there are positive constants C and k such that

 $|f(x)| \ge C|g(x)|$ for all x > k.

(f is bounded below by g, up to a constant multiple. f grows at least as fast as g) $% \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) = \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) \right) \left(f_{i}^{2} \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) \left(f_{i}^{2} \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) \left(f_{i}^{2} \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) \right) \left(f_{i}^{2} \left(f_{i}^{2} \left(f_{i}^{2} \left(f_{i}^{2} \right) \right) \right) \left(f_{i}^{2} \left(f_{i}^{$

10 Sept 2015

The Growth of Functions: $\boldsymbol{\Theta}$

The growth of functions is also described using the **O** (capital Theta) notation.

Definition: Let f and g be functions from the integers or the real numbers to the real numbers. We say that f(x) is $\Theta(g(x))$ if there are positive constants C_1 , C_2 , and k such that

 $C_1|g(x)| \le |f(x)| \le C_2|g(x)|$ for all x > k.

(f is bounded above and below by constant multiples of g: f grows at the same rate as g)

10 Sept 2015

The Growth of Functions

When we analyze the growth of functions we generally consider f(x) and g(x) which are always positive.

In that case we can simplify the big-O requirement to

 $f(x) \leq C {\cdot} g(x) \ \text{ whenever } x > k.$

If we want to show that f(x) is O(g(x)), we only need to find **one** pair (C, k) (which is never unique).

10 Sept 2015

43

47

The Growth of Functions	
The idea behind the big-O notation is to establish a upper bound for the growth of a function $f(x)$ for large x.	n
This bound is specified by a function $g(x)$ that is usually much simpler than $f(x)$.	
We accept the constant C in the requirement	
$f(x) \leq C \cdot g(x) \ \text{ whenever } x > k,$	
because C does not grow with x.	
We are only interested in large x, so it is OK if	
$f(x) > C \cdot g(x)$ for $x \le k$.	
10 Sept 2015 45	

The Growth of FunctionsExample:Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.For x > 1 we have: $x^2 + 2x + 1 \le x^2 + 2x^2 + x^2$ $\Rightarrow x^2 + 2x + 1 \le 4x^2$ Therefore, for C = 4 and k = 1: $f(x) \le Cx^2$ whenever x > k. $\Rightarrow f(x)$ is $O(x^2)$.

The Growth of Functions

Question: If f(x) is $O(x^2)$, is it also $O(x^3)$?

Yes. x^3 grows faster than x^2 , so x^3 grows also faster than f(x).

Therefore, we always want to find the **smallest** simple function g(x) for which f(x) is O(g(x)).

10 Sept 2015

The Growth of Functions "Popular" functions g(n) are n log n, 1, 2ⁿ, n², n!, n, n³, log n Listed from slowest to fastest growth: • 1 • log n • n • n log n • n² • n³ • 2ⁿ • n!

The Growth of Functions

A problem that can be solved with polynomial worstcase complexity is called *tractable*.

Problems of higher complexity are called *intractable*.

Problems that no algorithm can solve are called *unsolvable*.

You will find out more about this in CS420.

10 Sept 2015

Useful Rules for Big-O

For any **polynomial** $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$, where a_0, a_1, \ldots, a_n are real numbers, f(x) is $O(x^n)$.

If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(max(g_1(x), g_2(x)))$

If $f_1(x)$ is O(g(x)) and $f_2(x)$ is O(g(x)), then $(f_1 + f_2)(x)$ is O(g(x)).

If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1f_2)(x)$ is $O(g_1(x) g_2(x))$.

10 Sept 2015

49

Complexity Examples	
Another algorithm solving the same problem: procedure max_diff($a_1, a_2,, a_n$: integers) min := a_1 max := a_1 for i := 2 to n if $a_i < \min$ then min := a_i else if $a_i > \max$ then max := a_i m := max - min Comparisons: no more than 2n - 2	
Time complexity is O(n).	
10 Sept 2015	52