Summations

What does \sum^{n} stand for?

It represents the sum $a_{m}+a_{m+1}+a_{m+2}+\ldots+a_{n}$.

The variable j is called the index of summation, running from its lower limit m to its upper limit n. We could as well have used any other letter to denote this index.

Summations

It is said that Friedrich Gauss came up with the following formula:

$$
\sum_{j=1}^{n} j=\frac{n(n+1)}{2}
$$

When you have such a formula, the result of any summation can be calculated much more easily, for example:

$$
\sum_{j=1}^{100} j=\frac{100(100+1)}{2}=\frac{10100}{2}=5050
$$

Summations

How can we express the sum of the first 1000
terms of the sequence $\left\{a_{n}\right\}$ with $a_{n}=n^{2}$ for
$n=1,2,3, \ldots$?
We write it as $\sum_{j=1}^{1000} j^{2}$.
What is the value of $\sum_{j=1}^{6} j$?
It is $1+2+3+4+5+6=21$.
What is the value of $\sum_{j=1}^{100} j$?
It is so much work to calculate this..
15 Sept 2015

Double Summations

Corresponding to nested loops in C or Java, there is also double (or triple etc.) summation:

$$
\begin{aligned}
& \text { Example: } \\
& \sum_{i=1}^{5} \sum_{j=1}^{2} i j \\
& =\sum_{i=1}^{5}(i+2 i) \\
& =\sum_{i=1}^{5} 3 i \\
& =3+6+9+12+15=45 \\
& \\
& \\
& \\
&
\end{aligned}
$$

