

Introduction to Number Theory

Number theory is about **integers** and their properties.

We will start with the basic principles of

- divisibility,
- greatest common divisors,
- · least common multiples, and
- modular arithmetic

and look at some relevant algorithms.

17 Sept 2015

Division

If a and b are integers with $a \neq 0$, we say that a *divides* b if there is an integer c so that b = ac.

When a divides b we say that a is a *factor* of b and that b is a *multiple* of a.

The notation **a** | **b** means that a divides b.

We write **a X b** when a does not divide b (see book for correct symbol).

17 Sept 2015

Divisibility Theorems (Th. 1, p. 238) For integers a, b, and c it is true that if a | b and a | c, then a | (b + c) Example: 3 | 6 and 3 | 9, so 3 | 15. if a | b, then a | bc for all integers c Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, ... if a | b and b | c, then a | c Example: 4 | 8 and 8 | 24, so 4 | 24.

2

17 Sept 2015

Corollary 1, p. 239

If a, b and c are integers such that a | b and a | c then a | mb+nc, where m and n are integers. Proof:

This follows directly from Theorem 1.

17 Sept 2015

The Division Algorithm (Th. 2, p 239) Let **a** be an integer and **d** a positive integer. Then there are unique integers **q** and **r**, with $0 \le r < d$, such that a = dq + r.

In the above equation,

- **d** is called the *divisor*,
- **a** is called the *dividend*,
- **q** is called the *quotient*, we say q = a div d, and
- r is called the *remainder*. We say r = a mod d (See Def. 2, page 239)

8

17 Sept 2015

7

The Division Algorithm

CS 320

11

Example:

When we divide 21 by 5, we have

21 = 5.4 + 1.

17 Sept 2015

- 21 is the dividend,
- 5 is the divisor,
- · 4 is called the quotient, and
- 1 is called the remainder.

Distribution Distribution Algorithm Given integers a, d>0, \exists unique q,r such that a = dq + r, and $0 \le r < d$. **Proof**. To see this consider the set of all multiples of d on the number line. Each integer a can be written uniquely as dq +r, where dq is a, or the multiple of d to the immediate left of a.

Greatest Common Divisors Using prime factorizations:

 $\begin{array}{l} a=p_{1}{}^{a_{1}} \ p_{2}{}^{a_{2}} \ldots \ p_{n}{}^{a_{n}}, \ b=p_{1}{}^{b_{1}} \ p_{2}{}^{b_{2}} \ldots \ p_{n}{}^{b_{n}}, \\ \text{where } p_{1} < p_{2} < \ldots < p_{n} \ \text{and} \ a_{i}, \ b_{i} \in \textbf{N} \ \text{for} \ 1 \leq i \leq n \end{array}$

 $gcd(a, b) = p_1^{min(a_1, b_1)} p_2^{min(a_2, b_2)} \dots p_n^{min(a_n, b_n)}$

Example:

 $a = 60 = 2^{2} 3^{1} 5^{1}$ $b = 54 = 2^{1} 3^{3} 5^{0}$ $gcd(a, b) = 2^{1} 3^{1} 5^{0} = 6$ 17 Sept 2015

CS 320

19

Cong	gruences		
Let a and b be integers a We say that a is congru m divides a – b.	and m be a positive ir Ient to b modulo m	nteger. if	Exar Is it t Yes, Is it t
We use the notation $\mathbf{a} = \mathbf{b} \pmod{\mathbf{m}}$ to indicate that a is congruent to b modulo m.		e that a	Yes, For It is
In other words (Th. 3, page 241): $a \equiv b \pmod{m}$ if and only if a mod m = b mod m .		d m.	The The only
17 Sept 2015	CS 320	27	17 5

Congruences

Theorem (Th. 5, p. 242): Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$. **Proof:** We know that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, implies that there are integers s and t with b = a + sm and d = c + tm. Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

The Euclidean Algorithm To summarize: 287 = 91.3 + 14, so gcd(287, 91) = gcd(91, 14) 91 = 14.6 + 7, gcd(91, 14) = gcd(14, 7) 14 = 7.2 + 0, $7 \mid 14$, so gcd(14, 7) = 7Thus gcd(287, 91) = 7.

Represen	ntations of Intege	ers
Let b be a positive int Then if n is a positive uniquely in the form:	teger greater than 1. integer, it can be ex	pressed
$n = a_k b^k + a_{k-1} b^{k-1} +$. + a ₁ b + a ₀ ,	
where k is a nonnegative integer, $a_0, a_1,, a_k$ are nonnegative integers less than b, and $a_k \neq 0$.		
Example for b=10: 859 = 8.10 ² + 5.10 ¹ +	9·10 ⁰	
17 Sept 2015	CS 320	39

Representatio	ons of Integers			
Example for b=2 (binary expansion): (10110) ₂ = $1 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^1 = (22)_{10}$				
Example for b=16 (hexad (we use letters A to F to in $(3A0F)_{16} = 3 \cdot 16^3 + 10 \cdot 16^2 \cdot 10^{-1}$	l ecimal expansion): dicate numbers 10 to 1 + 0·16 ¹ + 15·16 ⁰ = (148	5) 863) ₁₀		
17 Sept 2015	CS 320	40		

Representations of Integers
How can we construct the base b expansion of an integer n?
First, divide n by b to obtain a quotient q_0 and remainder a_0 , that is,
$n = bq_0 + a_0$, where $0 \le a_0 < b$.
The remainder a_0 is the rightmost digit in the base b expansion of n.
Next, divide q_0 by b to obtain:
$q_0 = bq_1 + a_1$, where $0 \le a_1 < b$.
a_1 is the second digit from the right in the base b expansion of n. Continue this process until you obtain a quotient equal to zero.
17 Sept 2015 CS 320 41

