

Representations of Integers

Example for b=2 (binary expansion):

 $(10110)_2 = 1 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^1 = (22)_{10}$

Example for b=16 (hexadecimal expansion):

(we use letters A to F to indicate numbers 10 to 15) $(3A0F)_{16} = 3.16^3 + 10.16^2 + 0.16^1 + 15.16^0 = (14863)_{10}$

22 Sept 2015

CS 320

5

Representations of IntegersHow can we construct the base b expansion of an
integer n?First, divide n by b to obtain a quotient q_0 and
remainder a_0 , that is,
 $n = bq_0 + a_0$, where $0 \le a_0 < b$.The remainder a_0 is the rightmost digit in the base b
expansion of n.Next, divide q_0 by b to obtain:
 $q_0 = bq_1 + a_1$, where $0 \le a_1 < b$.a_1 is the second digit from the right in the base b
expansion of n. Continue this process until you obtain
a quotient equal to zero.

Addition of Integers
Let $a = (a_{n-1}a_{n-2}a_1a_0)_2$, $b = (b_{n-1}b_{n-2}b_1b_0)_2$. How can we algorithmically add these two binary numbers? First, add their rightmost bits: $a_0 + b_0 = c_0.2 + s_0$, where s_0 is the rightmost bit in the binary expansion of $a + b$, and c_0 is the carry .
Then, add the next pair of bits and the carry: $a_1 + b_1 + c_0 = c_1 \cdot 2 + s_1$, where s_1 is the next bit in the binary expansion of a + b, and c_1 is the carry. 22 Sept 2015 CS 320 10

