Arithmetic Modulo m

Definitions: Let \mathbf{Z}_{m} be the set of nonnegative integers less than m :
$\{0,1, \ldots ., m-1\}$
The operation ${ }^{2}$ is defined as $a+_{m} b=(a+b) \bmod m$. This is addition modulo m.
The operation \cdot_{m} is defined as $a{ }_{m} b=(a+b) \bmod m$. This is multiplication modulo m.
Using these operations is said to be doing arithmetic modulo m.
Example: Find $7{ }^{+11} 9$ and $7{ }_{11} 9$.
Solution: Using the definitions above:
$-7+119=(7+9) \bmod 11=16 \bmod 11=5$
$-7 \cdot 9=(7 \cdot 9) \bmod 11=63 \bmod 11=8$

22 Sept 2015
CS 320

Arithmetic Modulo m

The operations $+_{m}$ and $\cdot m$ satisfy many of the same properties as ordinary addition and multiplication

- Closure: If a and b belong to \mathbf{Z}_{m}, then $a+{ }_{m} b$ and $a \cdot{ }_{m} b$ belong to \mathbf{Z}_{m}
- Associativity: If a, b, and c belong to \mathbf{Z}_{m}, then
$\left(a+_{m} b\right)+_{m} c=a+_{m}\left(b+_{m} c\right)$ and $\left(a \cdot{ }_{m} b\right) \cdot{ }_{m} c=a \cdot{ }_{m}\left(b \cdot_{m} c\right)$.
- Commutativity: If a and b belong to \mathbf{Z}_{m}, then
$a+_{m} b=b+_{m} a$ and $a \cdot m b=b \cdot_{m} a$.
- Identity elements: The elements 0 and 1 are identity elements for addition and multiplication modulo m, respectively.
- If a belongs to \mathbf{Z}_{m}, then $a+_{m} 0=a$ and $a \cdot{ }_{m} 1=a$.

Representations of Integers

Let b be a positive integer greater than 1 .
Then if n is a positive integer, it can be expressed uniquely in the form:
$n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}$,
where k is a nonnegative integer,
$a_{0}, a_{1}, \ldots, a_{k}$ are nonnegative integers less than b, and $a_{k} \neq 0$.

Example for $\mathrm{b}=10$:
$859=8 \cdot 10^{2}+5 \cdot 10^{1}+9 \cdot 10^{0}$
22 Sept 2015
CS 320

Representations of Integers

How can we construct the base b expansion of an integer n ?
First, divide n by b to obtain a quotient q_{0} and remainder a_{0}, that is,
$\mathrm{n}=\mathrm{bq}_{\mathrm{o}}+\mathrm{a}_{0}$, where $0 \leq \mathrm{a}_{0}<\mathrm{b}$.
The remainder a_{0} is the rightmost digit in the base b expansion of n.
Next, divide q_{0} by b to obtain:
$\mathrm{q}_{0}=\mathrm{bq}_{1}+\mathrm{a}_{1}$, where $0 \leq \mathrm{a}_{1}<\mathrm{b}$.
a_{1} is the second digit from the right in the base b expansion of n. Continue this process until you obtain a quotient equal to zero.

$$
22 \text { Sept } 2015 \quad \text { CS } 320
$$

\quad Representations of Integers
Example:
What is the base 8 expansion of $(12345)_{10} ?$
First, divide 12345 by $8:$
$12345=8 \cdot 1543+1$
$1543=8 \cdot 192+7$
$192=8 \cdot 24+0$
$24=8 \cdot 3+0$
$3=8.0+3$
The result is: $(12345)_{10}=(30071)_{8}$.
22 sept2015

Addition of Integers

Continue this process until you obtain $\mathrm{c}_{\mathrm{n}-1}$.
The leading bit of the sum is $\mathrm{s}_{\mathrm{n}}=\mathrm{c}_{\mathrm{n}-1}$.
The result is:
$a+b=\left(s_{n} s_{n-1} \cdots s_{1} s_{0}\right)_{2}$

22 Sept 2015
CS 320

Representations of Integers

procedure base_b_expansion(n , b : positive integers)
$\mathrm{q}:=\mathrm{n}$
k:= 0
while $q \neq 0$
begin
$a_{k}:=q \bmod b$
$q:=\lfloor q / b\rfloor$
$\mathrm{k}:=\mathrm{k}+1$
end
$\left\{\right.$ the base b expansion of n is $\left(a_{k-1} \ldots a_{1} a_{0}\right)_{b}$ \}

22 Sept 2015
CS 320

Addition of Integers

Let $a=\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right)_{2}, b=\left(b_{n-1} b_{n-2} \ldots b_{1} b_{0}\right)_{2}$.
How can we algorithmically add these two binary numbers?
First, add their rightmost bits:
$\mathrm{a}_{0}+\mathrm{b}_{0}=\mathrm{c}_{0} \cdot 2+\mathrm{s}_{0}$,
where s_{0} is the rightmost bit in the binary expansion of $a+b$, and c_{0} is the carry.
Then, add the next pair of bits and the carry:
$\mathrm{a}_{1}+\mathrm{b}_{1}+\mathrm{c}_{0}=\mathrm{c}_{1} \cdot 2+\mathrm{s}_{1}$,
where s_{1} is the next bit in the binary expansion of a +
b, and c_{1} is the carry.
22 Sept $2015 \quad$ CS $320 \quad 10$

Addition of Integers

Example:

Add $\mathrm{a}=(1110)_{2}$ and $\mathrm{b}=(1011)_{2}$.
$a_{0}+b_{0}=0+1=0 \cdot 2+1$, so that $c_{0}=0$ and $s_{0}=1$.
$a_{1}+b_{1}+c_{0}=1+1+0=1 \cdot 2+0$, so $c_{1}=1$ and $s_{1}=0$.
$a_{2}+b_{2}+c_{1}=1+0+1=1 \cdot 2+0$, so $c_{2}=1$ and $s_{2}=0$.
$a_{3}+b_{3}+c_{2}=1+1+1=1.2+1$, so $c_{3}=1$ and $s_{3}=1$.
$\mathrm{s}_{4}=\mathrm{c}_{3}=1$.
Therefore, $\mathrm{s}=\mathrm{a}+\mathrm{b}=(11001)_{2}$.

22 Sept 2015
CS 320
12

Addition of Integers

procedure add(a, b: positive integers)
$/ / a_{i}, b_{i}$ are the bits of a and b.
$\mathrm{c}:=0$
for $\mathrm{j}:=0$ to $\mathrm{n}-1$
begin
$\mathrm{d}:=\left\lfloor\left(\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}+\mathrm{c}\right) / 2\right\rfloor / /$ gives the high bit of sum
$s_{j}:=a_{j}+b_{j}+c-2 d / /$ gives the low bit of sum
$\mathrm{c}:=\mathrm{d}$
end
$\mathrm{s}_{\mathrm{n}}:=\mathrm{c}$
\{the binary expansion of the sum is $\left(\mathrm{s}_{\mathrm{n}} \mathrm{s}_{\mathrm{n}-1} \ldots \mathrm{~s}_{1} \mathrm{~s}_{0}\right)_{2}$ \}

22 Sept 2015
CS 320

Multiplication of Integers

procedure multiply(a , b : positive integers)
$/ / a_{i}, b_{i}$ are the bits of a and b.
for $j:=0$ to $n-1$
begin
if $b_{j}=1$ then $c_{j}:=a$ shifted left j places else $c_{j}:=0 / / c_{j}$ are the partial products
end
$\mathrm{p}:=0$
for $\mathrm{i}:=0$ to $\mathrm{n}-1$

$$
p:=p+c_{j}
$$

$\{p$ is the value of the product as an integer. Note that we haven't computed bits for $p\}$

22 Sept 2015

Section Summary

Integer Representations

- Base b Expansions
- Binary Expansions
- Octal Expansions
- Hexadecimal Expansions

Base Conversion Algorithm
Algorithms for Integer Operations
22 Sept 2015
16

Representations of Integers

In the modern world, we use decimal, or base 10, notation to represent integers. For example when we write 965 , we mean $9 \cdot 10^{2}+6 \cdot 10^{1}+$ $5 \cdot 10^{0}$.
We can represent numbers using any base b, where b is a positive integer greater than 1.
The bases $b=2$ (binary), $b=8$ (octal), and $b=$ 16 (hexadecimal) are important for computing and communications
The ancient Mayans used base 20 and the ancient Babylonians used base 60 .

Base b Representations

We can use positive integer b greater than 1 as a base, because of this theorem:
Theorem 1: Let b be a positive integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form:

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0}
$$

where k is a nonnegative integer, $a_{0}, a_{1}, \ldots . a_{k}$ are nonnegative integers less than b, and $a_{k} \neq 0$. The a_{j}, j $=0, \ldots, k$ are called the base- b digits of the representation.
(We will prove this using mathematical induction in Section 5.1.)
The representation of n given in Theorem 1 is called the base b expansion of n and is denoted by $\left(a_{k} a_{k-1} \ldots . a_{1} a_{0}\right)_{b}$.
We usually omit the subscript 10 for base 10 expansions.
22 Sept 2015

Binary Expansions

Most computers represent integers and do arithmetic with binary (base 2) expansions of integers. In these expansions, the only digits used are 0 and 1 .
Example: What is the decimal expansion of the integer that has (101011111$)_{2}$ as its binary expansion?

Solution:

$(101011111)_{2}=1 \cdot 2^{8}+0 \cdot 2^{7}+1 \cdot 2^{6}+0 \cdot 2^{5}+$ $1 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=351$.

Octal Expansions

The octal expansion (base 8) uses the digits $\{0,1,2,3,4,5,6,7\}$.

Example: What is the decimal expansion of the number with octal expansion $(7016)_{8}$?
Solution: $7 \cdot 8^{3}+0 \cdot 8^{2}+1 \cdot 8^{1}+6 \cdot 8^{0}$ $=3598$

Hexadecimal Expansions

The hexadecimal expansion needs 16 digits, but our decimal system provides only 10 . So letters are used for the additional symbols. The hexadecimal system uses the additional symbols. The hexadecimal system uses
the digits $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$. The letters A
through F represent the decimal numbers 10 through 15.

Example: What is the decimal expansion of the number with hexadecimal expansion $(2 \mathrm{AE} 0 \mathrm{~B})_{16}$?
Solution:
$2 \cdot 16^{4}+10 \cdot 16^{3}+14 \cdot 16^{2}+0 \cdot 16^{1}+11 \cdot 16^{0}=175627$
Example: What is the decimal expansion of the number with hexadecimal expansion (E5) ${ }_{16}$?
Solution: $1 \cdot 16^{2}+14 \cdot 16^{1}+5 \cdot 16^{0}=256+224+5=485$

Binary Expansions

Example: What is the decimal expansion of the integer that has $(11011)_{2}$ as its binary expansion?
Solution: $(11011)_{2}=1 \cdot 2^{4}+1 \cdot 2^{3}+$ $0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=27$.

Octal Expansions

Example: What is the decimal
expansion of the number with octal expansion $(111)_{8}$?
Solution: $1 \cdot 8^{2}+1 \cdot 8^{1}+1 \cdot 8^{0}=64$
$+8+1=73$

Base Conversion

To construct the base b expansion of an integer n :

- Divide n by b to obtain a quotient and remainder. $n=b q_{0}+a_{0} \quad 0 \leq a_{0} \leq b$
- The remainder, a_{0}, is the rightmost digit in the base b expansion of n. Next, divide q_{0} by b. $q_{0}=b q_{1}+a_{1} \quad 0 \leq a_{1} \leq b$
- The remainder, a_{1}, is the second digit from the right in the base b expansion of n.
- Continue by successively dividing the quotients by b, obtaining the additional base b digits as the remainder The process terminates when the quotient is 0 .

Algorithm: Constructing Base b Expansions

```
procedure base b expansion(n, b: positive integers with b>1)
```

$q:=n$
$k=0$
while ($q \neq 0$)
$a_{k}:=q \bmod b$
$q:=q \operatorname{div} b$
$q:=q \operatorname{div} b$
$k:=k+1$
$\operatorname{return}\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)\left\{\left(a_{k-1} \ldots a_{1} a_{0}\right)_{b}\right.$ is base b expansion of $\left.n\right\}$
q represents the quotient obtained by successive divisions by b, starting with $q=n$.
The digits in the base b expansion are the remainders of the division given by q mod b.
The algorithm terminates when $q=0$ is reached.
22 Sept 2015

Comparison of Hexadecimal, Octal, and Binary Representations

TABLE 1 Hexadecimal, 0 ctal, and Binary Representation of the Integers 0 through 15.																
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	III	1000	1001	1010	1011	1100	1101	1110	1111

Initial 0s are not shown
Each octal digit corresponds to a block of 3 binary digits.
Each hexadecimal digit corresponds to a block of 4 binary digits.
So, conversion between binary, octal, and hexadecimal is easy.

Base Conversion

Example: Find the octal expansion of (12345) ${ }_{10}$

Solution: Successively dividing by 8 gives:

- $12345=8 \cdot 1543+1$
- $1543=8 \cdot 192+7$
- $192=8 \cdot 24+0$
$-24=8 \cdot 3+0$
- $3=8 \cdot 0+3$

The remainders are the digits from right to left yielding (30071) ${ }_{8}$.

Conversion Between Binary, Octal, and Hexadecimal Expansions

Example: Find the octal and hexadecimal expansions of (111110 1011 1100) ${ }_{2}$.

Solution:

- To convert to octal, we group the digits into blocks of three (011111010111100$)_{2}$, adding initial 0s as needed. The blocks from left to right correspond to the digits $3,7,2,7$, and 4 . Hence, the solution is (37274) ${ }_{8}$
- To convert to hexadecimal, we group the digits into blocks of four (00111110 10111100) , adding initial 0 s as needed. The blocks from left to right correspond to the digits $3, \mathrm{E}, \mathrm{B}$, and C. Hence, the solution is $(3 E B C)_{16}$

Binary Addition of Integers

```
procedure \(\operatorname{add}(a, b\) : positive integers)
\{the binary expansions of \(a\) and \(b\) are \(\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)_{2}\) and
\(\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)_{2}\), respectively\}
\(c:=0\)
for \(j:=0\) to \(n-1\)
            \(d:=\left\lfloor\left(a_{j}+b_{j}+c\right) / 2\right\rfloor\)
            \(s_{j}:=a_{j}+b_{j}+c-2 d\)
            \(c:=d\)
\(s_{n}:=c\)
return \(\left(s_{0}, s_{1}, \ldots, s_{n}\right)\)
    \{the binary expansion of the sum is \(\left.\left(s_{n}, s_{n-1}, \ldots, s_{0}\right)_{2}\right\}\)
```

 22 Sept 2015
 \({ }^{30}\)

Binary Multiplication of Integers

Algorithm for computing the product of two n bit integers.
procedure multiply(a, b : positive integers)
\{the binary expansions of a and b are $\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)_{2}$ and $\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)_{2}$,
respectively\}
for $j:=0$ to $n-1$
for $\begin{aligned} & \text { if } b_{j}=1 \text { then } c_{j}=a \text { shifted } j \text { places }\end{aligned}$
else $c_{:}=0$
$\begin{array}{c}\text { else } c_{j}:=0 \\ \left\{c_{0}, c_{1}, \ldots, c_{n-1}\right.\end{array}$ are the partial products $\}$
$\left\{c_{0}, c_{1}, \ldots\right.$
$p:=0$
for $j:=0$ to $n-1$
$p:=p+c_{j}$
return $p\{p$ is the value of $a b\}$

The number of additions of bits used by the algorithm to multiply two n-bit integers is $O\left(n^{2}\right)$.

22 Sept 2015
${ }^{31}$

Binary Modular Exponentiation

In cryptography, it is important to be able to find $b^{n} \bmod m$ efficiently, where b, n, and m are large integers
Use the binary expansion of $n, n=\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)_{2}$, to compute b^{n}. Note that:

```
b}=\mp@subsup{b}{}{\mp@subsup{a}{k-1}{}\cdot\mp@subsup{2}{}{k-1}+\cdots+\mp@subsup{a}{1}{}\cdot2+\mp@subsup{a}{0}{}}=\mp@subsup{b}{}{\mp@subsup{a}{k-1}{}\cdot\mp@subsup{2}{}{k-1}}\cdots\mp@subsup{b}{}{\mp@subsup{a}{1}{}\cdot2}\cdot\mp@subsup{b}{}{\mp@subsup{a}{0}{}
```

Therefore, to compute b^{n}, we need only compute the values of b $b^{2},\left(b^{2}\right)^{2}=b^{4},\left(b^{4}\right)^{2}=b^{8}, \ldots, b^{2^{k}}$ and then multiply the terms b^{2} in this list, where $a_{j}=1$.

Example: Compute 3^{11} using this method.
Solution: Note that $11=(1011)_{2}$ so that $3^{11}=3^{8} 3^{2} 3^{1}=$ $\left(\left(3^{2}\right)^{2}\right)^{2} 3^{2} 3^{1}=\left(9^{2}\right)^{2} \cdot 9 \cdot 3=(81)^{2} \cdot 9 \cdot 3=6561 \cdot 9 \cdot 3=117,147$.

$$
\text { continued } \rightarrow
$$

2 Sept 2015
32

Binary Modular Exponentiation

Algorithm

The algorithm successively finds $b \bmod m, b^{2}$ $\bmod m, \quad h^{2^{2-1}} b^{4} \bmod m, \ldots, \quad \bmod m$, and multiplies together the terms b^{2} where $a_{j}=1$.
procedure modular exponentiation(b: integer, $n=\left(a_{k-1} a_{k-2} \ldots a_{1} a_{0}\right)_{2}, m$: positive printegers)
$x:=1$
power: $:=b \bmod m$
power := \quad mod m
for $i:=0$ to $k-1$
if $a_{i}=1$ then $x:=(x \cdot$ power $) \bmod m$
power := (power. power) mod m
return $x\left\{x\right.$ equals $\left.b^{n} \bmod m\right\}$

$$
\text { - } O\left((\log m)^{2} \log n\right) \text { bit operations are used to find } b^{n} \bmod m \text {. }
$$

22 Sept 2015

