Binary Modular Exponentiation

- In cryptography, it is important to be able to find $b^n \mod m$ efficiently, where b, n, and m are large integers.
- Use the binary expansion of n, $n = (a_{k-1},...,a_1,a_0)_2$, to compute b^n . Note that:

$$b^n = b^{a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2 + a_0} = b^{a_{k-1} \cdot 2^{k-1}} \cdots b^{a_1 \cdot 2} \cdot b^{a_0}.$$

• Therefore, to compute b^n , we need only compute the values of $b, b^2, (b^2)^2 = b^4, (b^4)^2 = b^8, ..., b^{2^k}$ and the multiply the terms b^{2^j} in this list, where $a_j = 1$.

Example: Compute 3^{11} using this method. Solution: Note that $11 = (1011)_2$ so that $3^{11} = 3^8 \ 3^2 \ 3^1 = ((3^2)^2)^2 \ 3^2 \ 3^1 = (9^2)^2 \cdot 9 \cdot 3 = (81)^2 \cdot 9 \cdot 3 = 6561 \cdot 9 \cdot 3 = 117,147.$

continued \rightarrow

Binary Modular Exponentiation Algorithm

• The algorithm successively finds $b \mod m$, $b^2 \mod m$, $b^4 \mod m$, ..., $b^{2^{k-1}} \mod m$, and multiplies together the terms b^{2^j} where $a_j = 1$.

procedure modular exponentiation(b: integer, $n = (a_{k-1}a_{k-2}...a_1a_0)_2$, m: positive integers) x := 1power := b mod m for i := 0 to k - 1if $a_i = 1$ then $x := (x \cdot power) \mod m$ power := (power $\cdot power$) mod m return $x \{x \text{ equals } b^n \mod m \}$

• $O((\log m)^2 \log n)$ bit operations are used to find $b^n \mod m$.