Binary Modular Exponentiation

- In cryptography, it is important to be able to find $b^{n} \bmod m$ efficiently, where b, n, and m are large integers.
- Use the binary expansion of $n, n=\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)_{2}$, to compute b^{n}. Note that:

$$
b^{n}=b^{a_{k-1} \cdot 2^{k-1}+\cdots+a_{1} \cdot 2+a_{0}}=b^{a_{k-1} \cdot 2^{k-1}} \cdots b^{a_{1} \cdot 2} \cdot b^{a_{0}}
$$

- Therefore, to compute b^{n}, we need only compute the values of $b, b^{2},\left(b^{2}\right)^{2}=b^{4},\left(b^{4}\right)^{2}=b^{8}, \ldots, b^{2^{k}}$ and the multiply the terms $b^{2^{j}}$ in this list, where $a_{j}=1$.

Example: Compute 3^{11} using this method.
Solution: Note that $11=(1011)_{2}$ so that $3^{11}=3^{8} 3^{2} 3^{1}=$ $\left(\left(3^{2}\right)^{2}\right)^{2} 3^{2} 3^{1}=\left(9^{2}\right)^{2} \cdot 9 \cdot 3=(81)^{2} \cdot 9 \cdot 3=6561 \cdot 9 \cdot 3=117,147$.

Binary Modular Exponentiation Algorithm

- The algorithm successively finds $b \bmod m, b^{2} \bmod m$, $b^{4} \bmod m, \ldots, b^{2^{k-1}} \bmod m$, and multiplies together the terms $b^{2^{j}}$ where $a_{j}=1$.

```
procedure modular exponentiation(b: integer, \(n=\left(a_{k-1} a_{k-2} \cdots a_{1} a_{0}\right)_{2}\), \(m\) : positive
    integers)
\(x:=1\)
power := \(b \bmod m\)
for \(i:=0\) to \(k-1\)
    if \(a_{i}=1\) then \(x:=(x \cdot\) power \() \bmod m\)
    power := (power•power \() \bmod m\)
return \(x\left\{x\right.\) equals \(\left.b^{n} \bmod m\right\}\)
```

- $O\left((\log m)^{2} \log n\right)$ bit operations are used to find $b^{n} \bmod m$.

