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More Number Theory

From section 4.3, 
with additions
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A very useful Theorem

Th. If a and b are positive integers 
then gcd(a,b) is the smallest 
positive integer of the form 

sa + tb, where s and t are integers.

(note: one of s and t will be 
positive, the other negative)
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Proof.  Let 
S = {sa + tb : s,t are integers}

a = 1a + 0b, b = 0a + 1b are in S.

Note that the sum of any two 
elements of S is also in S, and 
any multiple of an element of S is 
in S.

Thus, if x,y are in S and we divide 
y into x, x = qy + r, 0≤ r < y, then 
r = x-qy is in S.
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Now let d = the smallest positive integer in S 
= {sa+tb : s,t are integers}

Then for any x in S, d | x, because if 
x = qd + r, 0 ≤ r < d, then r is in S, 
so r must be 0 by definition of d.

Thus d is a common divisor of a and b.

But every common divisor u of a and b 
divides every element of S, and hence 
u divides d.  Hence u ≤ d.

Thus d must be gcd(a,b), the greatest 
common divisor of a and b.
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An example
We can use the Euclidean Algorithm 

and work backwards to get this 
representation of the gcd.

Let’s do gcd(287,91).
1. 287 = 91*3 + 14
2. 91 = 14*6 + 7
3. 14 = 7*2 + 0, so gcd = 7.
4. From 2, 7 = 91 – 14*6
5. From 1, 7 = 91 – (287-91*3)* 6 so
6. 7 = 19*91 - 287*6
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Note that this representation of 
gcd(a,b) as sa + tb isn’t unique.

We have 

7 = 19*91 -287*6, but also

7 = (19-287)*91+ (-6+91)*287, so

7 = (-268)*91+ (85)*287
For another algorithm, see p 273, 41-45 

(6th ed. p. 246, 48-51)
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A useful Corollary

Theorem:  gcd(a,b) = 1 iff there are integers 
s and t such that 1 = sa+tb

Proof:

If gcd(a,b) = 1 then 1 = sa+tb by the 
previous theorem.

Conversely, if sa+tb = 1 for some s,t then 1 
must be the smallest positive integer in the 
set S = {sa+tb : s,t are integers} and 
hence 1 = gcd(a,b) by the previous 
theorem.
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More useful facts

Lemma (p.271) (p 233, 6th ed).  If a | bc and 
gcd(a,b) = 1 then a | c (a,b,c positive 
integers).

Proof: if gcd(a,b) = 1 then 1 = sa+tb, so 
c = sac + tbc.  Hence a | c.

Corollary:  if p is prime, ai are integers and p 
| a1a2..an, then p | ai for some i.

Proof:  for each i, p | ai or gcd(p, ai ) = 1, 
and use induction on n.
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Fundamental Theorem of Arithmetic

From the Corollary we get the uniqueness part of the 
Fundamental Theorem of Arithmetic or Unique 
Factorization Theorem.

Suppose n = p1p2…ps = q1q2…qt where the pi and qi
are distinct primes written in increasing order.

If each pi = qi and s=t we are done.
If not, divide out by the common primes and get a 

smaller n where the pi, qj are all distinct (rename 
the primes, and s,t, for simplicity).

But then p1 | q1q2…qt and isn’t one of the qj, a 
contradiction.  So we must have had identical 
primes in the factorization.
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Solving Linear Congruences

Th. (p. 272) If ac ≡ bc (mod m) and 
gcd(c,m) = 1, then a ≡ b (mod m)

proof:  since ac ≡ bc (mod m) we have 
m | ac-bc = c(a-b).

Since gcd(c,m) = 1, m | a – b, so

a ≡ b (mod m)

Note:  this is a cancellation law, like the 
usual rule ac = bc → a = b if c ≠ 0.
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Solving Linear Congruences

Theorem (p.275)(p 234 6th ed): Suppose 
gcd(a,m) = 1, m > 1.  Then an 
inverse of a modulo m exists and is 
unique modulo m.

That is, there is an integer s with 
sa ≡ 1 (mod m) and if 
ta ≡ 1 (mod m) then s ≡ t (mod m) 
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proof:  Since gcd(a,m) = 1 we 
have
sa + tm = 1 for some integers s,t.

But it follows from this that 
sa = 1 – tm, so

sa ≡ 1 (mod m) 
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An example

To find an inverse of 7 modulo 11, we need 
s7 + t11 = 1.  

We use trial and error, look at multiples of 7 
and 11.

7, 14, 21, 28, …,
11, 22, 33, …. We’ve found it!
1 = 22 – 21 = 11*2 + (-3)* 7, so -3 is an 

inverse to 7.  
But we want a positive inverse, so add 11.
-3 + 11 = 8.  Yup, 7*8 ≡ 1 (mod 11)
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Following up…
Suppose we want to solve 

7x ≡ 5 (mod 11) for x.

Since we have an inverse to 7, 8,

8*7*x ≡ 8*5 (mod 11),

x ≡ 7 (mod 11), since 40 ≡ 7 (mod 
11)

Check:

7*7 = 49 ≡ 5 (mod 11).
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Chinese Remainder Theorem
Sun-Tsu asked:  Is there some x such that
1. x ≡ 2 (mod 3) and
2. x ≡ 3 (mod 5) and
3. x ≡ 2 (mod 7)?
For 1, x = 2, 5, 8, 11, 14, 17, 20, 23, 28,…
For 2, x = 3, 8, 13, 18, 23, 28, 33, …
For 3, x = 2, 9, 16, 23, 30, 37,…
So, x = 23 satisfies all three conditions!
And it turns out x is unique mod 3*5*7 = 

105.
Note that if x is a solution, so is x + n*105.
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The Chinese Remainder Theorem

Th. (p 278)  Suppose m1,m2…mn

are pairwise relatively prime 
positive integers.Then the system 
x ≡ a1 (mod m1),
x ≡ a2 (mod m2),…
x ≡ an (mod mn)

has a unique solution x modulo 
m = m1 * m2 …* mn
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Proof:  

Let Mk = m/mk = m1..mk-1mk+1..mn

Then gcd(Mk,mk) = 1 for k = 1,..,n.

Hence Mk has an inverse yk mod mk,
Mkyk ≡ 1 (mod mk)

Let x = a1M1y1 + a2M2y2 +…+ anMnyn.

Then x ≡ akMkyk ≡ ak (mod mk) ∀k, since  
ajMjyj ≡ 0 (mod mk) for j ≠ k

To see uniqueness, if x and y are two 
solutions then x - y ≡ 0 (mod mk) ∀k 
and hence m | x – y, so x ≡ y (mod m).
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The example again
x ≡ 2 (mod 3), so a1 = 2, m1= 3

x ≡ 3 (mod 5), so a2 = 3, m2= 5

x ≡ 2 (mod 7), so a3 = 2, m3= 7

Thus M1 = 35, M2 = 21, M3 = 15.

Now 2*35 = 70 ≡ 1 (mod 3), let y1 = 2

21*1 ≡ 1 (mod 5), so let y2 = 1

15*1 ≡ 1 (mod 7), so let y3 = 1.

Let x = 2*35*2 + 3*21*1 + 2*15*1 = 233.

Now 3*5*7 = 105, and 233 ≡ 23 (mod 105), 
so 23 is a solution, unique mod 105.
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Chinese Remainder Theorem

The Chinese Remainder Theorem 
can be used to design systems 
for doing large number 
arithmetic.

See page 278 (p. 236, 6th ed.)
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Hash Functions

Hash functions are used to maps 
long keys (e.g. names, id 
numbers) to array locations.  If 
there are m array locations, a 
simple method is to convert the 
key to an integer k and then map 
to k mod m.
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Hashing collisions

A collision is when two keys map to 
the same array location.

A perfect hash function is designed 
to produce no collisions.

A collision can be resolved by 
moving down the array to the next 
free array location, or by hanging 
linked lists off the array locations.
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Pseudorandom Numbers

It's difficult to generate truly 
random numbers.  

Computers often generate “random”
numbers using a linear 
congruential method.  For fixed m, 
a, c and a seed x0, we define
xn+1 = (axn + c) mod m.
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Fermat's Little Theorem

Theorem:  If p is prime and p does 
not divide a, then 

ap-1 ≡ 1 (mod p), and thus also 

ap ≡ a (mod p).
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Proof: The numbers a, 2a, 3a, …, (p-1)a 
are distinct mod p since their pairwise
differences are not 0 mod p.

Thus they are 1, 2, 3, …, p-1 in some 
order, mod p.

So a*2a*…*(p-1)a ≡ 1*2*…*(p-1) (mod 
p)

Dividing both sides by 1*2*3*…*(p-1), 
which is relatively prime to p, we get

ap-1 ≡ 1 (mod p), hence ap ≡ a (mod p)
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Cryptology

A really simple cryptographic method was 
used by Julius Caesar.  This was to 
shift each letter right a fixed number of 
places in the alphabet.

If we encode each letter by its position in 
the alphabet we can use:
f(x) = (x + k) mod 26, to shift k places.
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Cryptology

The Caesar cypher is very easy to 
crack, and any cryptographic 
method which uses a fixed code 
for each letter is vulnerable to 
attacks based on the frequency of 
occurrence of particular letters.
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RSA Encryption

RSA encryption exploits the 
computational difficulty of factoring 
large numbers to create a public key 
for encryption and a private key for 
decryption.

Public:  Suitable large integers n and e.

Private: primes p, q, integer d, with 
pq = n, and de ≡ 1 mod (p-1)(q-1)
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RSA Encryption

A block of the message is M, 
interpreted as a number.

We encrypt it by computing 
C = Me mod n

Here e is part of the public key.  We 
use an efficient algorithm for 
computing the power.  (Algorithm 5, 
p. 254)
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RSA Decryption

We decrypt using the private key.

e has been selected relatively prime to
(p-1)(q-1).

de ≡ 1 mod (p-1(q-1), so that
de = 1 + k(p-1)(q-1).

We can arrange for gcd(M, pq) = 1.

Generally M has some random padding 
for extra security.
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Thus, by Fermat’s Little Theorem, 
Mp-1 ≡ 1 (mod p), Mq-1 ≡ 1 (mod q)

So Cd ≡ M*(Mp-1)k(q-1) ≡ M * 1 (mod p),

& Cd ≡ M*(Mq-1)k(p-1) ≡ M * 1 (mod q).

Since Cd ≡ M (mod p) & Cd ≡ M (mod q)

Hence, by the Chinese Remainder Theorem, 
Cd ≡ M (mod pq) i.e.
Cd ≡ M (mod n) – This is the decryption.

[Since M is a solution and the solution is 
unique mod n, and Cd is a solution, we 
have Cd ≡ M mod n.  (Chinese Remainder 

Theorem)]
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Private Key Cryptography

The RSA algorithm uses a fair bit of 
computation, so in practice it is used 
not for exchanging large messages, 
but for a secure exchange of private 
keys which can then be used to 
exchange large messages efficiently 
and securely using DES or AES, 
symmetric key algorithms, whose 
computational cost is cheap.  See 
Wikipedia for more info.

Sept 24, 2015 CS 320 32

Matrices
A matrix is a rectangular array of numbers.
A matrix with m rows and n columns is called an
m×n matrix.

Example: is a 3×2 matrix.

A matrix with the same number of rows and columns 
is called square.
Two matrices are equal if they have the same 
number of rows and columns and the corresponding 
entries in every position are equal. 
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Matrices

A general description of an m×n matrix A = 
[aij]: 

i-th row of A

j-th column 
of A
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Matrix Addition

Let A = [aij] and B = [bij] be m×n matrices.
The sum of A and B, denoted by A+B, is the m×n
matrix that has aij + bij as its (i, j)th element.
In other words, A+B = [aij + bij]. 

Example:
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Matrix Multiplication

Let A be an m×k matrix and B be a k×n matrix.
The product of A and B, denoted by AB, is the 
m×n
matrix with (i, j)th entry equal to the sum of the 
products of the corresponding elements from the 
i-th row of A and the j-th column of B.

In other words, if AB = [cij], then
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Matrix Multiplication

A more intuitive description of calculating C = AB: 

- Take the first column of B 
- Turn it counterclockwise by 90° and superimpose 

it on the first row of A 
- Multiply corresponding entries in A and B and

add the products: 3⋅2 + 0⋅0 + 1⋅3 = 9 
- Enter the result in the upper-left corner of C 
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Matrix Multiplication

- Now superimpose the first column of B on the 
second, third, …, m-th row of A to obtain the 
entries in the first column of C (same order).

- Then repeat this procedure with the second, 
third, …, n-th column of B, to obtain to obtain 
the remaining columns in C (same order).

- After completing this algorithm, the new matrix
C contains the product AB.
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Matrix Multiplication

Let us calculate the complete matrix C: 

9
8

15
-2

7
15
20
-2
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Identity Matrices

The identity matrix of order n is the n×n matrix 
In = [δij], where δij = 1 if i = j and δij = 0 if i ≠ j:

Multiplying an m×n matrix A by an identity matrix of 
appropriate size does not change this matrix:
AIn = ImA = A
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Powers and Transposes of Matrices

The power function can be defined for square
matrices. If A is an n×n matrix, we have:

A0 = In,
Ar = AAA…A  (r times the matrix A)

The transpose of an m×n matrix A = [aij], denoted 
by At, is the n×m matrix obtained by interchanging 
the rows and columns of A.

In other words, if At = [bij], then bij = aji for 
i = 1, 2, …, n and j = 1, 2, …, m.
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Powers and Transposes of Matrices

Example:

A square matrix A is called symmetric if A = At.
Thus A = [aij] is symmetric if aij = aji for all
i = 1, 2, …, n and j = 1, 2, …, m.

A is symmetric, B is not.


