More Number Theory

From section 4.3, with additions

Sept 24, 2015
CS 320 1

A very useful Theorem

Th. If a and b are positive integers then $\operatorname{gcd}(a, b)$ is the smallest positive integer of the form $s a+t b$, where s and t are integers. (note: one of s and t will be positive, the other negative)

Now let $d=$ the smallest positive integer in S $=\{s a+t b: s, t$ are integers $\}$
Then for any x in $\mathrm{S}, \mathrm{d} \mid \mathrm{x}$, because if $x=q d+r, 0 \leq r<d$, then r is in S, so r must be 0 by definition of d.
Thus d is a common divisor of a and b.
But every common divisor u of a and b divides every element of S, and hence u divides d. Hence $u \leq d$.
Thus d must be gcd(a,b), the greatest common divisor of a and b.
Thus, if x, y are in S and we divide y into $x, x=q y+r, 0 \leq r<y$, then $r=x-a y$ is in S.
Sept 24,2015 CS 320

Note that this representation of
We can use the Euclidean Algorithm and work backwards to get this representation of the gcd.
Let's do gcd(287,91).

1. $287=91 * 3+14$
2. $91=14 * 6+7$
3. $14=7 * 2+0$, so gcd $=7$.
4. From $2,7=91-14 * 6$
5. From $1,7=91-(287-91 * 3) * 6$ so
6. $7=19 * 91-287 * 6$

Sept 24, 2015
CS 320
$\operatorname{gcd}(a, b)$ as sa + tb isn't unique.

We have
$7=19 * 91-287 * 6$, but also
$7=(19-287) * 91+(-6+91) * 287$, so
7 = (-268)*91+(85)*287
For another algorithm, see p 273, 41-45 ($6^{\text {th }}$ ed. p. 246, 48-51)

Sept 24, 2015
CS 320

A useful Corollary

Theorem: $\operatorname{gcd}(a, b)=1$ iff there are integers s and t such that $1=s a+t b$
Proof:
If $\operatorname{gcd}(a, b)=1$ then $1=s a+t b$ by the previous theorem.
Conversely, if sa+tb $=1$ for some s, t then 1 must be the smallest positive integer in the set $S=\{s a+t b: s, t$ are integers $\}$ and hence $1=\operatorname{gcd}(a, b)$ by the previous theorem.

Sept 24, 2015
CS 320

More useful facts

Lemma (p.271) (p 233, $6^{\text {th }}$ ed). If a \mid bc and $\operatorname{gcd}(a, b)=1$ then $a \mid c(a, b, c$ positive integers).
Proof: if $\operatorname{gcd}(a, b)=1$ then $1=s a+t b$, so $c=s a c+t b c$. Hence a |c.
Corollary: if p is prime, a_{i} are integers and p $\mid a_{1} a_{2} . . a_{n}$, then $p \mid a_{i}$ for some i.
Proof: for each $i, p \mid a_{i} \operatorname{or} \operatorname{gcd}\left(p, a_{i}\right)=1$, and use induction on n.

Sept 24, 2015
CS 320

Solving Linear Congruences

Th. (p. 272) If $\mathrm{ac} \equiv \mathrm{bc}(\bmod m)$ and $\operatorname{gcd}(c, m)=1$, then $a \equiv b(\bmod m)$
proof: since $a c \equiv b c(\bmod m)$ we have $m \mid a c-b c=c(a-b)$.
Since $\operatorname{gcd}(c, m)=1, m \mid a-b$, so
$a \equiv b(\bmod m)$
Note: this is a cancellation law, like the usual rule $\mathrm{ac}=\mathrm{bc} \rightarrow \mathrm{a}=\mathrm{b}$ if $\mathrm{c} \neq 0$.

Sept 24, 2015
CS 320
10

That is, there is an integer s with

$$
s a \equiv 1(\bmod m) \text { and if }
$$

$$
\mathrm{ta} \equiv 1(\bmod \mathrm{~m}) \text { then } \mathrm{s} \equiv \mathrm{t}(\bmod \mathrm{~m})
$$

$$
\begin{aligned}
& \text { proof: Since } \operatorname{gcd}(\mathrm{a}, \mathrm{~m})=1 \text { we } \\
& \text { have } \\
& \text { sa }+\mathrm{tm}=1 \text { for some integers } \mathrm{s}, \mathrm{t} \text {. } \\
& \text { But it follows from this that } \\
& \mathrm{sa}=1-\mathrm{tm} \text {, so } \\
& \mathrm{sa} \equiv 1(\bmod \mathrm{~m}) \\
& \text { spm24, 2021 }
\end{aligned}
$$

An example

To find an inverse of 7 modulo 11, we need $\mathrm{s} 7+\mathrm{t} 11=1$.
We use trial and error, look at multiples of 7 and 11 .
7, 14, 21, 28, ...,
$11,22,33, \ldots$. We've found it!
$1=22-21=11 * 2+(-3) * 7$, so -3 is an inverse to 7 .
But we want a positive inverse, so add 11.
$-3+11=8$. Yup, $7 * 8 \equiv 1(\bmod 11)$
Sept 24, 2015
CS 320
13

Following up...
Suppose we want to solve
$7 x \equiv 5(\bmod 11)$ for x.
Since we have an inverse to 7,8 ,
$8 * 7 * x \equiv 8 * 5(\bmod 11)$,
$x \equiv 7(\bmod 11)$, since $40 \equiv 7(\bmod$ 11)

Check:
$7 * 7=49 \equiv 5(\bmod 11)$.
Sept 24, $2015 \quad$ CS 320 14

Chinese Remainder Theorem

Sun-Tsu asked: Is there some \times such that

1. $x \equiv 2(\bmod 3)$ and
2. $x \equiv 3(\bmod 5)$ and
3. $x \equiv 2(\bmod 7)$?

For $1, x=2,5,8,11,14,17,20,23,28, \ldots$
For $2, x=3,8,13,18,23,28,33, \ldots$
For $3, x=2,9,16,23,30,37, \ldots$
So, $x=23$ satisfies all three conditions!
And it turns out x is unique $\bmod 3 * 5 * 7=$ 105.

Note that if x is a solution, so is $\mathrm{x}+\mathrm{n} * 105$.
Sept 24, 2015
CS 320
15

The Chinese Remainder Theorem
Th. (p 278) Suppose $m_{1}, m_{2} \ldots m_{n}$ are pairwise relatively prime positive integers. Then the system
$x \equiv a_{1}\left(\bmod m_{1}\right)$,
$x \equiv a_{2}\left(\bmod m_{2}\right), \ldots$
$x \equiv a_{n}\left(\bmod m_{n}\right)$
has a unique solution x modulo $m=m_{1} * m_{2} \ldots * m_{n}$

Sept 24, 2015
CS 320

Proof:
Let $M_{k}=m / m_{k}=m_{1} . . m_{k-1} m_{k+1} . . m_{n}$
Then $\operatorname{gcd}\left(M_{k}, m_{k}\right)=1$ for $k=1, . ., n$.
Hence M_{k} has an inverse y_{k} mod m_{k}, $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$
Let $x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n}$.
Then $x \equiv a_{k} M_{k} y_{k} \equiv a_{k}\left(\bmod m_{k}\right) \forall k$, since $\mathrm{a}_{\mathrm{j}} \mathrm{M}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}} \equiv 0\left(\bmod \mathrm{~m}_{\mathrm{k}}\right)$ for $\mathrm{j} \neq \mathrm{k}$
To see uniqueness, if x and y are two solutions then $x-y \equiv 0\left(\bmod m_{k}\right) \forall k$ and hence $m \mid x-y$, so $x \equiv y(\bmod m)$.

The example again
$x \equiv 2(\bmod 3)$, so $a_{1}=2, m_{1}=3$
$x \equiv 3(\bmod 5)$, so $a_{2}=3, m_{2}=5$
$x \equiv 2(\bmod 7)$, so $a_{3}=2, m_{3}=7$
Thus $M_{1}=35, M_{2}=21, M_{3}=15$.
Now $2 \star 35=70 \equiv 1(\bmod 3)$, let $y_{1}=2$
$21 * 1 \equiv 1(\bmod 5)$, so let $\mathrm{y}_{2}=1$
$15 * 1 \equiv 1(\bmod 7)$, so let $y_{3}=1$.
Let $x=2 * 35 * 2+3 * 21 * 1+2 * 15 * 1=233$.
Now $3 * 5 * 7=105$, and $233 \equiv 23(\bmod 105)$,
so 23 is a solution, unique $\bmod 105$.
Sept 24, 2015
CS 320
18

Chinese Remainder Theorem
The Chinese Remainder Theorem can be used to design systems for doing large number arithmetic.
See page 278 (p. 236, $6^{\text {th }}$ ed.)

Hashing collisions

A collision is when two keys map to the same array location.
A perfect hash function is designed to produce no collisions.
A collision can be resolved by moving down the array to the next free array location, or by hanging linked lists off the array locations.

Fermat's Little Theorem

Theorem: If p is prime and p does not divide a, then
$a^{p-1} \equiv 1(\bmod p)$, and thus also
$a^{p} \equiv a(\bmod p)$.

Hash Functions

Hash functions are used to maps long keys (e.g. names, id numbers) to array locations. If there are m array locations, a simple method is to convert the key to an integer k and then map to k mod m.

Sept 24, 2015

Pseudorandom Numbers

It's difficult to generate truly random numbers.
Computers often generate "random" numbers using a linear congruential method. For fixed m, a, c and a seed x_{0}, we define $x_{n+1}=\left(a x_{n}+c\right) \bmod m$.

Sept 24, 2015
CS 320
22

Proof: The numbers a, 2a, 3a, ..., (p-1)a are distinct mod p since their pairwise differences are not 0 mod p .
Thus they are $1,2,3, \ldots, p-1$ in some order, mod p.
So $\mathrm{a} * 2 \mathrm{a} * \ldots *(\mathrm{p}-1) \mathrm{a} \equiv 1 * 2 * \ldots *(\mathrm{p}-1)(\bmod$ p)

Dividing both sides by $1 * 2 * 3 * \ldots *(p-1)$, which is relatively prime to p, we get $\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$, hence $\mathrm{a}^{\mathrm{p}} \equiv \mathrm{a}(\bmod \mathrm{p})$

Sept 24, 2015
CS 320
24

Cryptology

A really simple cryptographic method was used by Julius Caesar. This was to shift each letter right a fixed number of places in the alphabet.
If we encode each letter by its position in the alphabet we can use: $f(x)=(x+k) \bmod 26$, to shift k places.

RSA Encryption

RSA encryption exploits the computational difficulty of factoring large numbers to create a public key for encryption and a private key for decryption.
Public: Suitable large integers n and e .
Private: primes p, q, integer d, with $p q=n$, and $d e \equiv 1 \bmod (p-1)(q-1)$

RSA Decryption

We decrypt using the private key.
e has been selected relatively prime to $(p-1)(q-1)$.
$\mathrm{de} \equiv 1 \bmod (\mathrm{p}-1(\mathrm{q}-1)$, so that $d e=1+k(p-1)(q-1)$.
We can arrange for $\operatorname{gcd}(\mathrm{M}, \mathrm{pq})=1$.
Generally M has some random padding for extra security.

Sept 24, 2015
CS 320 29

RSA Encryption

A block of the message is M, interpreted as a number.
We encrypt it by computing $C=M^{e} \bmod n$
Here e is part of the public key. We use an efficient algorithm for computing the power. (Algorithm 5, p. 254)

Sept 24, 2015
CS 320
28

Thus, by Fermat's Little Theorem, $M^{p-1} \equiv 1(\bmod p), M^{a^{-1}} \equiv 1(\bmod q)$
So $C^{d} \equiv M *\left(M^{p-1}\right)^{k(q-1)} \equiv M * 1(\bmod p)$,
$\& C^{d} \equiv M *\left(M^{-1}\right)^{k(p-1)} \equiv M * 1(\bmod q)$.
Since $C^{d} \equiv M(\bmod p) \& C^{d} \equiv M(\bmod q)$
Hence, by the Chinese Remainder Theorem, $C^{d} \equiv M(\bmod p q)$ i.e. $C^{d} \equiv M(\bmod n)-$ This is the decryption.
[Since M is a solution and the solution is unique mod n, and C^{d} is a solution, we have $C^{d} \equiv M \bmod n$. (Chinese Remainder Theorem)]
Sept 24, 2015
CS 320
30

Private Key Cryptography

The RSA algorithm uses a fair bit of computation, so in practice it is used not for exchanging large messages, but for a secure exchange of private keys which can then be used to exchange large messages efficiently and securely using DES or AES, symmetric key algorithms, whose computational cost is cheap. See Wikipedia for more info.
Sept 24, 2015
cs 320 31

Matrices

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix.

Example: is a 3×2 matrix.

A matrix with the same number of rows and columns is called square.
Two matrices are equal if they have the same number of rows and columns and the corresponding entries in every position are equal.

Matrix Addition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be $m \times n$ matrices.
The sum of A and B, denoted by $A+B$, is the $m \times n$ matrix that has $a_{i j}+b_{i j}$ as its (i , j)th element. In other words, $A+B=\left[a_{i j}+b_{i j}\right]$.

Example:

Matrix Multiplication

Let A be an $m \times k$ matrix and B be a $k \times n$ matrix. The product of A and B, denoted by $A B$, is the $m \times n$
matrix with (i, j)th entry equal to the sum of the products of the corresponding elements from the $i-$ th row of A and the j-th column of B.

In other words, if $A B=\left[c_{i j}\right]$, then

Matrix Multiplication

- Now superimpose the first column of B on the second, third, ..., m-th row of A to obtain the entries in the first column of C (same order).
- Then repeat this procedure with the second, third, ..., n-th column of B, to obtain to obtain the remaining columns in C (same order).
- After completing this algorithm, the new matrix C contains the product $A B$.

Identity Matrices

The identity matrix of order n is the $\mathrm{n} \times \mathrm{n}$ matrix $\mathrm{I}_{\mathrm{n}}=\left[\delta_{\mathrm{ij}}\right]$, where $\delta_{\mathrm{ij}}=1$ if $\mathrm{i}=\mathrm{j}$ and $\delta_{\mathrm{ij}}=0$ if $\mathrm{i} \neq \mathrm{j}$:

Multiplying an $m \times n$ matrix A by an identity matrix of appropriate size does not change this matrix:
$A I_{n}=I_{m} A=A$
Sept 24, 2015
CS 320

Matrix Multiplication

Let us calculate the complete matrix C :

97
$8 \quad 15$
1520
$-2 \quad-2$
Sept 24, 2015
CS 320
38

Powers and Transposes of Matrices
The power function can be defined for square matrices. If A is an $n \times n$ matrix, we have:
$A^{0}=I_{n}$,
$A^{r}=A n A A \ldots A(r$ times the matrix $A)$

The transpose of an $m \times n$ matrix $A=\left[a_{i j}\right]$, denoted by A^{t}, is the $n \times m$ matrix obtained by interchanging the rows and columns of A.

In other words, if $A^{t}=\left[b_{i j}\right]$, then $b_{i j}=a_{j i}$ for
$i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.
Sept 24, 2015
CS 320
40

Example:

A square matrix A is called symmetric if $A=A^{t}$.
Thus $A=\left[a_{i j}\right]$ is symmetric if $a_{i j}=a_{j i}$ for all
$i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

A is symmetric, B is not.

Sept 24, 2015
CS 320
41

