Matrices

A matrix is a rectangular array of numbers.
A matrix with m rows and n columns is called an mxn matrix.
Example: $A=\left[\begin{array}{cc}-1 & 1 \\ 2.5 & -0.3 \\ 8 & 0\end{array}\right] \quad$ is a 3×2 matrix.
A matrix with the same number of rows and columns is called square.
Two matrices are equal if they have the same number of rows and columns and the corresponding entries in every position are equal.

Sept 24, 2015
CS 320

Matrix Addition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be $m \times n$ matrices.
The sum of A and B, denoted by $A+B$, is the $m \times n$ matrix that has $\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}$ as its ($\left.\mathrm{i}, \mathrm{j}\right)$ th element.
In other words, $A+B=\left[a_{i j}+b_{i j}\right]$.

Example:
$\left[\begin{array}{cc}-2 & 1 \\ 4 & 8 \\ -3 & 0\end{array}\right]+\left[\begin{array}{cc}5 & 9 \\ -3 & 6 \\ -4 & 1\end{array}\right]=\left[\begin{array}{cc}3 & 10 \\ 1 & 14 \\ -7 & 1\end{array}\right]$

Sept 24, 2015

Matrix Multiplication

A more intuitive description of calculating $C=A B$:

$$
A=\left[\begin{array}{ccc}
3 & 0 & 1 \\
-2 & -1 & 4 \\
0 & 0 & 5 \\
-1 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 1 \\
0 & -1 \\
3 & 4
\end{array}\right]
$$

- Take the first column of B
- Turn it counterclockwise by 90° and superimpose it on the first row of A
- Multiply corresponding entries in A and B and add the products: $3.2+0.0+1.3=9$
- Enter the result in the upper-left corner of C Sept 24, 2015

CS 320

Matrices

A general description of an $m \times n$ matrix $A=$ $\left[a_{i j}\right]$:

$$
\begin{aligned}
{\left[\mathrm{a}_{\mathrm{ij}}\right] } & :\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \quad\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\cdot \\
\cdot \\
\cdot \\
a_{m j}
\end{array}\right] \quad \begin{array}{c}
\text { j-th column } \\
\text { of A }
\end{array} \\
& {\left[\begin{array}{llll}
a_{i 1}, & a_{i 2}, & \ldots, & a_{i n}
\end{array}\right] }
\end{aligned}
$$

i-th row of A
Sept 24, 2015

Matrix Multiplication

Let A be an $m \times k$ matrix and B be a $k \times n$ matrix.
The product of A and B, denoted by $A B$, is the $m \times n$
matrix with (i, j) th entry equal to the sum of the products of the corresponding elements from the i-th row of A and the j-th column of B.

In other words, if $A B=\left[c_{i j}\right]$, then

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i k} b_{k j}=\sum_{t=1}^{k} a_{i t} b_{t j}
$$

Sept 24, 2015 CS 320

Matrix Multiplication

- Now superimpose the first column of B on the second, third, ..., m-th row of A to obtain the entries in the first column of C (same order).
- Then repeat this procedure with the second, third, \ldots, n-th column of B, to obtain to obtain the remaining columns in C (same order).
- After completing this algorithm, the new matrix C contains the product $A B$.

Matrix Multiplication

Let us calculate the complete matrix C:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 0 & 1 \\
-2 & -1 & 4 \\
0 & 0 & 5 \\
-1 & 1 & 0
\end{array}\right] \\
& C=\left[\begin{array}{cc}
9 & 7 \\
8 & 15 \\
15 & 20 \\
-2 & -2
\end{array}\right] \\
& \text { Sepl 24, 2015 } 38200
\end{aligned}
$$

Identity Matrices

The identity matrix of order n is the $n \times n$ matrix $\mathrm{I}_{\mathrm{n}}=\left[\delta_{\mathrm{ij}}\right]$, where $\delta_{\mathrm{ij}}=1$ if $\mathrm{i}=\mathrm{j}$ and $\delta_{\mathrm{ij}}=0$ if $\mathrm{i} \neq \mathrm{j}$:

Multiplying an $m \times n$ matrix A by an identity matrix of appropriate size does not change this matrix:
$A I_{n}=I_{m} A=A$
Sept 24, 2015

Powers and Transposes of Matrices
The power function can be defined for square matrices. If A is an $n \times n$ matrix, we have:
$A^{0}=I_{n}$,
$A^{r}=A^{n} A A \ldots A$ (r times the matrix A)

The transpose of an $m \times n$ matrix $A=\left[a_{i j}\right]$, denoted by A^{t}, is the $n \times m$ matrix obtained by interchanging the rows and columns of A.

In other words, if $A^{t}=\left[b_{i j}\right]$, then $b_{i j}=a_{i j}$ for
$i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

Sept 24, 2015
CS 320
40
40

Powers and Transposes of Matrices
Example: $\quad A=\left[\begin{array}{cc}2 & 1 \\ 0 & -1 \\ 3 & 4\end{array}\right] \quad A^{t}=\left[\begin{array}{ccc}2 & 0 & 3 \\ 1 & -1 & 4\end{array}\right]$
A square matrix A is called symmetric if $A=A^{t}$.
Thus $A=\left[a_{i j}\right]$ is symmetric if $a_{i j}=a_{i j}$ for all
$i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
5 & 1 & 3 \\
1 & 2 & -9 \\
3 & -9 & 4
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 3 & 1 \\
1 & 3 & 1 \\
1 & 3 & 1
\end{array}\right] \\
& \text { A is symmetric, B is not. } \\
& \text { Sept } 24,2015
\end{aligned}
$$

