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Matrices
A matrix is a rectangular array of numbers.
A matrix with m rows and n columns is called an
m×n matrix.

Example:
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A is a 3×2 matrix.

A matrix with the same number of rows and columns 
is called square.
Two matrices are equal if they have the same 
number of rows and columns and the corresponding 
entries in every position are equal. 
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Matrices

A general description of an m×n matrix A = 
[aij]: 
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Matrix Addition

Let A = [aij] and B = [bij] be m×n matrices.
The sum of A and B, denoted by A+B, is the m×n
matrix that has aij + bij as its (i, j)th element.
In other words, A+B = [aij + bij]. 

Example:
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Matrix Multiplication

Let A be an m×k matrix and B be a k×n matrix.
The product of A and B, denoted by AB, is the 
m×n
matrix with (i, j)th entry equal to the sum of the 
products of the corresponding elements from the 
i-th row of A and the j-th column of B.

In other words, if AB = [cij], then
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Matrix Multiplication

A more intuitive description of calculating C = AB: 
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- Take the first column of B 
- Turn it counterclockwise by 90° and superimpose 

it on the first row of A 
- Multiply corresponding entries in A and B and

add the products: 3⋅2 + 0⋅0 + 1⋅3 = 9 
- Enter the result in the upper-left corner of C 
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Matrix Multiplication

- Now superimpose the first column of B on the 
second, third, …, m-th row of A to obtain the 
entries in the first column of C (same order).

- Then repeat this procedure with the second, 
third, …, n-th column of B, to obtain to obtain 
the remaining columns in C (same order).

- After completing this algorithm, the new matrix
C contains the product AB.
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Matrix Multiplication

Let us calculate the complete matrix C: 
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Identity Matrices

The identity matrix of order n is the n×n matrix 
In = [δij], where δij = 1 if i = j and δij = 0 if i ≠ j:
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Multiplying an m×n matrix A by an identity matrix of 
appropriate size does not change this matrix:
AIn = ImA = A
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Powers and Transposes of Matrices

The power function can be defined for square
matrices. If A is an n×n matrix, we have:

A0 = In,
Ar = AAA…A  (r times the matrix A)

The transpose of an m×n matrix A = [aij], denoted 
by At, is the n×m matrix obtained by interchanging 
the rows and columns of A.

In other words, if At = [bij], then bij = aji for 
i = 1, 2, …, n and j = 1, 2, …, m.
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Powers and Transposes of Matrices

Example: 
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A square matrix A is called symmetric if A = At.
Thus A = [aij] is symmetric if aij = aji for all
i = 1, 2, …, n and j = 1, 2, …, m.
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A is symmetric, B is not.


