Mathematical Induction

If we have a propositional function $P(n)$, and we want to prove that $P(n)$ is true for any natural number n, we do the following:

- Show that $P(0)$ is true. (basis step) We could also start at any other integer m, in which case we prove it for all $n \geq m$.
- Show that if $P(n)$ then $P(n+1)$ for any $n \in N$.
(inductive step)
- Then $P(n)$ must be true for any $n \in N$. (conclusion)

Induction

2. Show that if $P(n)$ is true, then $P(n+1)$ is true.
(inductive step)
3. Assume that $n<2^{n}$ is true.

We need to show that $P(n+1)$ is true, i.e.
$n+1<2^{n+1}$
We start from $\mathrm{n}<2^{\text {n }}$
$n+1<2^{n}+1 \leq 2^{n}+2^{n}=2^{n+1}$
Therefore, if $n<2^{n}$ then $n+1<2^{n+1}$

Sept. 29, 2015
CS 320

Induction

Another Example ("Gauss"):

$1+2+\ldots+n=n(n+1) / 2$

1. Show that $P(1)$ is true. (basis step)
For $\mathrm{n}=1$ we get $1=1$. True.

Induction

Example:

Show that $\mathrm{n}<2^{\mathrm{n}}$ for all positive integers n .
Let $P(n)$ be the proposition " $n<2^{n}$."

1. Show that $P(1)$ is true.
(basis step)
$P(1)$ is true, because $1<2^{1}=2$.

Induction

3. Then $P(n)$ must be true for any positive integer.
(conclusion)
$n<2^{n}$ is true for any positive integer

End of proof.

Induction

2. Show that if $P(n)$ then $P(n+1)$ for any $n \geq 1$. (inductive step)
$1+2+\ldots+n=n(n+1) / 2$
$1+2+\ldots+n+(n+1)=(n+1)+n(n+1) / 2$
$=(n+1)(1+n / 2)$
$=(n+1)((2+n) / 2)$
$=(n+1)((n+1)+1) / 2$

Sept. 29, 2015
Cs 20

Induction

3. Then $P(n)$ must be true for any $n \geq 1$. (conclusion)
$1+2+\ldots+n=n(n+1) / 2$ is true for all $n \geq 1$

End of proof.
Note that we've already seen a proof for this not using induction. Often more than one proof is possible.

Sept. 29, 2015
CS 320
7

Induction

A variation on induction is the second principle of mathematical induction or strong induction.

It is also used to prove that a propositional function $P(n)$ is true for any natural number n.

It's easy to check that strong induction follows from regular mathematical induction.
Sept. 29, 2015 CS $320 \quad 8$

Induction

Example:

Show that every integer greater than 1 can be written as the product of primes.

- Show that $P(2)$ is true.
(basis step)
2 is the product of one prime: itself.

Induction

- Show that if $P(2)$ and $P(3)$ and \ldots and $P(n)$, then $P(n+1)$ for any $n \in N$. (inductive step)

Two possible cases:
If $(n+1)$ is prime, then obviously $P(n+1)$ is true.
If $(n+1)$ is composite, it can be written as the product of two integers a and b such that $2 \leq a \leq b<n+1$.

By the induction hypothesis, both a and b can be written as the product of primes.
Therefore, $\mathrm{n}+1=\mathrm{a} \cdot \mathrm{b}$ can be written as the product of primes.

Sept. 29, 2015
CS 320
${ }^{11}$

Induction

- Then $P(n)$ must be true for any $n \in N$. (conclusion)
End of proof.

We have shown that every integer greater than 1 can be written as the product of primes.

This proves the Fundamental Theorem of Arithmetic (p. 258) (p. $2116^{\text {th }}$ ed), except for the uniqueness part.

Sept. 29, $2015 \quad$ CS 320
12

Well Ordering

The Well Ordering Property of the Natural Numbers is:
Every non-empty set of natural numbers has a least element.
This is an axiom of the natural numbers, and is equivalent to mathematical induction.
$2 \rightarrow 3$.
Suppose strong induction is valid.
Let A be a set of natural numbers without a least element.
Let $P(j)$ be " j is not in A ".
Then $P(0)$ is true, and if $P(0), P(1), \ldots$, $P(n-1)$ are true then also $P(n)$ is true, or n would be the least element of A. But then by strong induction $P(n)$ is true for all n in A, and hence A is empty.
Thus any non empty subset of N has a least element.

Sept. 29, 2015
CS 320
16

Recursive Definitions

Recursion is a principle closely related to mathematical induction.
In a recursive definition, an object is defined in terms of itself.

We can recursively define sequences, functions and sets.

Recursively Defined Sequences

Example:

The sequence $\left\{a_{n}\right\}$ of powers of 2 is given by $a_{n}=2^{n}$ for $n=0,1,2, \ldots$.
The same sequence can also be defined recursively:
$\mathrm{a}_{0}=1$
$a_{n+1}=2 a_{n}$ for $n=0,1,2, \ldots$
Obviously, induction and recursion are similar principles.

Recursively Defined Functions

How can we recursively define the factorial function $f(n)=n!$?
$f(0)=1$
$f(n+1)=(n+1) f(n)$
$f(0)=1$
$f(1)=1 f(0)=1 \cdot 1=1$
$f(2)=2 f(1)=2 \cdot 1=2$
$f(3)=3 f(2)=3 \cdot 2=6$
$f(4)=4 f(3)=4 \cdot 6=24$

Sept. 29, 2015
CS 320
22

Recursively Defined Sets

If we want to recursively define a set A, we need to provide two things: an initial set of elements,

- rules for the construction of additional elements from elements in the set.
Example: $x_{1}, x_{2}, \ldots x_{n} \in A \rightarrow R\left(x_{1}, \ldots, x_{n}\right) \in A$
When we want to prove $P(x)$ is true for all x in a recursively defined set A we must prove
- $P(x)$ is true for each element of the initial set of A.

For each rule generating new elements, if $P\left(x_{1}\right)$, $P\left(x_{2},\right), \ldots, P\left(x_{n}\right)$ are true then $P\left(R\left(x_{1}, \ldots, x_{n}\right)\right)$ is true

[^0]
Recursively Defined Sets

Example: Let S be recursively defined by:
 $3 \in S$
 $(x+y) \in S$ if $(x \in S)$ and $(y \in S)$
 S is the set of positive integers divisible by 3 .
 Proof:
 Let A be the set of all positive integers divisible by 3 .
 To show that $A=S$, we must show that
 $A \subseteq S$ and $S \subseteq A$.
 Part I: To prove that $A \subseteq S$, we must show that every positive integer divisible by 3 is in S .
 We will use mathematical induction to show this.

Sept. 29, 2015
CS 320

Recursively Defined Sets

Part II: To show: $S \subseteq A$.
Basis step: To show:
All initial elements of S are in $A .3$ is in A. True.
Inductive step: To show:
$(x+y)$ is in A whenever x and y are in S.
If x and y are both in A, it follows that $3 \mid x$ and
$3 \mid y$. As we already know,
it follows that $3 \mid(x+y)$.
Conclusion of Part II: $S \subseteq A$.
Overall conclusion: $A=S$.
Sept. $29,2015 \quad$ CS 320 27

Recursively Defined Sets

With this definition, we can construct formulas such as:
$(x-y)$
((z/3)-y)
$((z / 3)-(6+5))$
$((z /(2 * 4))-(6+5))$

Recursively Defined Sets

Let $P(n)$ be the statement " $3 n$ belongs to S ". Basis step: $P(1)$ is true, because 3 is in S.

Inductive step: To show:
If $P(n)$ is true, then $P(n+1)$ is true.
Assume $3 n$ is in S. Since $3 n$ is in S and 3 is in S, it follows from the recursive definition of S that $3 n+3=3(n+1)$ is also in S.

Conclusion of Part I: A S.

$$
\text { Sept. 29, } 2015
$$

Recursively Defined Sets

Another example:

The well-formed formulas of variables, numerals and operators from $\{+,-, \star, /, \wedge\}$ are defined by
x is a well-formed formula if x is a numeral or variable.
$(f+g),(f-g),(f * g),(f / g),(f \wedge g)$ are wellformed formulas if f and g are.

Recursive Algorithms

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example I: Recursive Euclidean Algorithm
procedure gcd(a, b: nonnegative integers with $\mathrm{a}<\mathrm{b}$)
if $a=0$ then $\operatorname{gcd}(a, b):=b$
else $\operatorname{gcd}(\mathrm{a}, \mathrm{b}):=\operatorname{gcd}(\mathrm{b} \bmod \mathrm{a}, \mathrm{a})$

Sept. 29, 2015
CS 320
30

Recursive Algorithms

Example II: Recursive Fibonacci Algorithm
procedure fibo(n: nonnegative integer)
if $\mathrm{n}=0$ then fibo(0) := 0
else if $n=1$ then fibo(1) $:=1$
else fibo(n) := fibo(n-1) + fibo(n-2)

Recursive Algorithms

procedure iterative_fibo(n: nonnegative integer)
if $\mathrm{n}=0$ then $\mathrm{y}:=0$
else
begin
$x:=0$
$y:=1$
for $i:=1$ to $n-1$
begin
$z:=x+y$
$x:=y$
$y:=z$
end
end $\{y$ is the n-th Fibonacci number $\}$

Sept. 29, 2015
CS 32

Program Verification

Proof that a program works correctly is difficult. One approach is to attach statements about the state of the program (values of the variables) and prove thereby that sequences of statements will do what you expect. See section 5.5, p 372
(4.5, p 322 in $6^{\text {th }}$ edition)

Sept 29, 2015
Cs 320

Partial Correctness

Def. A program segment S is partially correct with respect to initial assertion p and final assertion q, if whenever p is true and S is executed and terminates then a will be true

In this case we write: $\mathrm{p}\{\mathrm{S}\} \mathrm{q}$

Sept 29, 2015

Loop Invariants

($\mathrm{p} \wedge$ condition) $\{\mathrm{S}\} \mathrm{p}$
\bar{p} \{while condition S$\}(\neg$ condition $\wedge \mathrm{p}$)
Here p is called a loop invariant because it remains true on each pass through the loop.
We usually pick a loop invariant carefully to establish some fact we want.

Sept 29, 2015
CS 320

Example

Suppose p is T, q is " $x>0$ ", r is " $y>0$ "
Then $p\{x:=4\} q$, and $q\{y:=2 * x\} r$ are correct, and thus so is
$p\{x:=4 ; y:=2 * x\} r$.

Conditionals 2

($\mathrm{p} \wedge$ condition) $\left\{\mathrm{S}_{1}\right\} \mathrm{a}$
($\mathrm{p} \wedge \neg$ condition) $\left\{\mathrm{S}_{2}\right\} \mathrm{q}$
$\overline{\mathrm{p}\left\{\text { if condition then } \mathrm{S}_{1} \text { else } \mathrm{S}_{2}\right\}} \mathrm{q}$

Similar thing, for if-then-else.

Sept 29, 2015
CS 320
40

Example of loop invariants

$$
\begin{aligned}
& \text { We can use loop invariants to prove that binary search is } \\
& \text { correct. } \\
& \left.\quad \text { (searching for } x \text { in an ordered sequence } a_{1}, \cdots, a_{n}\right) \\
& i:=1 ; k:=n ; \\
& \text { while }(i<k)\{ \\
& m:=\lfloor(i+k) / 2\rfloor ; \\
& \text { if }\left(x>a_{m}\right) \text { then } i:=m+1 ; / / i_{\text {post }}=m+1, k_{\text {post }}=k_{\text {pre }} \\
& \qquad \text { else } k:=m ; \quad / / i_{\text {post }}=i_{\text {pre }}, k_{\text {post }}=m \\
& \} \\
& \text { if }\left(x=a_{i}\right) \text { then location }:=i ; \\
& \quad \text { else location }:=0 ; \\
& \quad / / A \text { loop invariant that works: } \\
& \quad / / p:\left(x=a_{j} \text { for some } j\right) \rightarrow\left(a_{i} \leq x \leq a_{k}\right) \wedge(i \leq k)
\end{aligned}
$$

Sept 29, 2015
CS 320
42

To see this loop invariant works:

1. Check that $i \leq k$ is invariant.
2. $m=\lfloor(i+k) / 2\rfloor=\lfloor k-(k-i) / 2\rfloor=$ $k-\lceil(k-i) / 2\rceil$, so $m<k$ (if $i<k)$.
3. $m=\lfloor(i+k) / 2\rfloor=\lfloor i+(k-i) / 2\rfloor=$ $i+\lfloor(k-i) / 2\rfloor$, so $m \geq i$.
4. Thus $\mathrm{i} \leq \mathrm{m}<\mathrm{k}$ on each pass through the loop and $i<m<k$ unless $\mathrm{i}+1=\mathrm{k}$. (i, k are $\mathrm{i}_{\text {pre }}, \mathrm{k}_{\text {pre }}$
Sept 29, 2015
CS 320 43

Now check that $a_{i} \leq x \leq a_{k}$ is invariant on each pass through the loop.
if $\left(x>a_{m}\right)$
then $i_{\text {post }}:=m+1$;
// so $a_{m+1} \leq x \leq a_{k}$, if x is one of the a_{j} else $k_{\text {post }}:=m$; // so $\mathrm{a}_{\mathrm{i}} \leq \mathrm{x} \leq \mathrm{a}_{\mathrm{m}}$

Thus in each case we also have $\mathrm{a}_{\mathrm{i}} \leq \mathrm{x} \leq \mathrm{a}_{\mathrm{k}}$ after each pass through the loop.

Sept 29, 2015
CS 320
44

[^0]: Sept. 29, 2015
 CS 320

