
29 Sept 2015

1

Sept. 29, 2015 CS 320 1

Mathematical Induction
If we have a propositional function P(n),
and we want to prove that P(n) is true for
any natural number n, we do the
following:
• Show that P(0) is true. (basis step)

We could also start at any other integer m,
in which case we prove it for all n ≥ m.

• Show that if P(n) then P(n+1) for any
n∈N.

(inductive step)
• Then P(n) must be true for any n∈N.

(conclusion)

Sept. 29, 2015 CS 320 2

Induction

Example:

Show that n < 2n for all positive integers n.

Let P(n) be the proposition “n < 2n.”

1. Show that P(1) is true.
(basis step)

P(1) is true, because 1 < 21 = 2.

Sept. 29, 2015 CS 320 3

Induction

2. Show that if P(n) is true, then P(n + 1) is
true.
(inductive step)

3. Assume that n < 2n is true.

We need to show that P(n + 1) is true, i.e.

n + 1 < 2n+1

We start from n < 2n:

n + 1 < 2n + 1 ≤ 2n + 2n = 2n+1

Therefore, if n < 2n then n + 1 < 2n+1

Sept. 29, 2015 CS 320 4

Induction

3. Then P(n) must be true for any positive
integer.
(conclusion)

n < 2n is true for any positive integer.

End of proof.

Sept. 29, 2015 CS 320 5

Induction

Another Example (“Gauss”):
1 + 2 + … + n = n (n + 1)/2

1. Show that P(1) is true.
(basis step)
For n = 1 we get 1 = 1. True.

Sept. 29, 2015 CS 320 6

Induction

2. Show that if P(n) then P(n + 1) for any
n ≥ 1. (inductive step)

1 + 2 + … + n = n (n + 1)/2

1 + 2 + … + n + (n + 1) = (n + 1) + n (n + 1)/2

= (n + 1)(1 + n/2)

= (n + 1)((2 + n)/2)

= (n + 1) ((n + 1) + 1)/2

29 Sept 2015

2

Sept. 29, 2015 CS 320 7

Induction

3. Then P(n) must be true for any n ≥ 1.
(conclusion)

1 + 2 + … + n = n (n + 1)/2 is true for
all n ≥ 1

End of proof.

Note that we’ve already seen a proof for
this not using induction. Often more
than one proof is possible.

Sept. 29, 2015 CS 320 8

Induction

A variation on induction is the second
principle of mathematical induction or
strong induction.

It is also used to prove that a propositional
function P(n) is true for any natural number
n.

It’s easy to check that strong induction
follows from regular mathematical
induction.

Sept. 29, 2015 CS 320 9

Induction

The second principle of mathematical
induction:

• Show that P(0) is true.
(basis step)
Show that if P(0) and P(1) and P(2)… and
P(n),
then P(n + 1) for any n∈N.
(inductive step)

• Then P(n) must be true for any n∈N.
(conclusion)

Sept. 29, 2015 CS 320 10

Induction

Example:

Show that every integer greater than 1 can be
written as the product of primes.

• Show that P(2) is true.
(basis step)

2 is the product of one prime: itself.

Sept. 29, 2015 CS 320 11

Induction
• Show that if P(2) and P(3) and … and P(n),

then P(n + 1) for any n∈N. (inductive step)

Two possible cases:
If (n + 1) is prime, then obviously P(n + 1) is
true.
If (n + 1) is composite, it can be written as the
product of two integers a and b such that
2 ≤ a ≤ b < n + 1.

By the induction hypothesis, both a and b can
be written as the product of primes.

Therefore, n + 1 = a⋅b can be written as the
product of primes.

Sept. 29, 2015 CS 320 12

Induction

• Then P(n) must be true for any n∈N.
(conclusion)

End of proof.

We have shown that every integer greater than 1
can be written as the product of primes.

This proves the Fundamental Theorem of
Arithmetic (p. 258) (p. 211 6th ed), except for the
uniqueness part.

29 Sept 2015

3

Sept. 29, 2015 CS 320 13

Well Ordering

The Well Ordering Property of the
Natural Numbers is:

Every non-empty set of natural
numbers has a least element.

This is an axiom of the natural
numbers, and is equivalent to
mathematical induction.

Sept. 29, 2015 CS 320 14

Well Ordering

Theorem: the following are
equivalent

1. Mathematical Induction is valid.

2. Strong induction is valid

3. Every non empty set of natural
numbers has a least element

Sept. 29, 2015 CS 320 15

Proof: 1 → 2. Suppose regular
induction is valid, and suppose

(i) P(0) is true and
(ii) P(0)∧P(1)∧…∧P(n-1) → P(n)

for n ≥ 1.
We need to prove P(n) for all n.
Let Q(n) be “P(0), P(1), …, P(n-1) are

true”.
Then Q(0) is true and by (ii),

Q(n-1) →Q(n).
Thus by regular induction Q(n), and

hence P(n), is true for all n.

Sept. 29, 2015 CS 320 16

2 → 3.
Suppose strong induction is valid.
Let A be a set of natural numbers

without a least element.
Let P(j) be “j is not in A”.
Then P(0) is true, and if P(0), P(1),…,

P(n-1) are true then also P(n) is true,
or n would be the least element of A.
But then by strong induction P(n) is
true for all n in A, and hence A is
empty.

Thus any non empty subset of N has a
least element.

Sept. 29, 2015 CS 320 17

3 → 1.
Suppose well ordering is valid and P(j) is

a property such that
(i) P(0) is true
(ii) P(n-1) → P(n) for all n > 0.
Let A = {x ∊ N | P(x) is false}

We need to show A is empty.
If A is not empty it has a least element u.
But u is not 0 by (i).
And if u > 0 then P(u-1) is true and P(u)

is false, contradicting (ii).
Hence P(n) is true for all n ∊ N.

Sept. 29, 2015 CS 320 18

Recursive Definitions

Recursion is a principle closely related to
mathematical induction.
In a recursive definition, an object is defined in
terms of itself.

We can recursively define sequences, functions
and sets.

29 Sept 2015

4

Sept. 29, 2015 CS 320 19

Recursively Defined Sequences

Example:

The sequence {an} of powers of 2 is given by
an = 2n for n = 0, 1, 2, … .

The same sequence can also be defined
recursively:
a0 = 1

an+1 = 2an for n = 0, 1, 2, …

Obviously, induction and recursion are similar
principles.

Sept. 29, 2015 CS 320 20

Recursively Defined Functions

We can use the following method to define a
function with the natural numbers as its domain:

Specify the value of the function at zero.
Give a rule for finding its value at any integer

from its values at smaller integers.

Such a definition is called recursive or inductive
definition.

Sept. 29, 2015 CS 320 21

Recursively Defined Functions

Example:
f(0) = 3

f(n + 1) = 2f(n) + 3

f(0) = 3

f(1) = 2f(0) + 3 = 2⋅3 + 3 = 9
f(2) = 2f(1) + 3 = 2⋅9 + 3 = 21
f(3) = 2f(2) + 3 = 2⋅21 + 3 = 45
f(4) = 2f(3) + 3 = 2⋅45 + 3 = 93

Sept. 29, 2015 CS 320 22

Recursively Defined Functions

How can we recursively define the factorial
function f(n) = n! ?

f(0) = 1

f(n + 1) = (n + 1)f(n)

f(0) = 1

f(1) = 1f(0) = 1⋅1 = 1
f(2) = 2f(1) = 2⋅1 = 2
f(3) = 3f(2) = 3⋅2 = 6
f(4) = 4f(3) = 4⋅6 = 24

Sept. 29, 2015 CS 320 23

Recursively Defined Functions

A famous example: The Fibonacci numbers

f(0) = 0, f(1) = 1

f(n) = f(n – 1) + f(n - 2)

f(0) = 0

f(1) = 1

f(2) = f(1) + f(0) = 1 + 0 = 1

f(3) = f(2) + f(1) = 1 + 1 = 2

f(4) = f(3) + f(2) = 2 + 1 = 3

f(5) = f(4) + f(3) = 3 + 2 = 5

f(6) = f(5) + f(4) = 5 + 3 = 8

Sept. 29, 2015 CS 320 24

Recursively Defined Sets
If we want to recursively define a set A, we need
to provide two things:

an initial set of elements,
• rules for the construction of additional

elements from elements in the set.
Example: x1,x2,…xn ∊ A → R(x1,..,xn)∊A

When we want to prove P(x) is true for all x in a
recursively defined set A we must prove
• P(x) is true for each element of the initial set of
A.
For each rule generating new elements, if P(x1),

P(x2,),…, P(xn) are true then P(R(x1,..,xn)) is true

29 Sept 2015

5

Sept. 29, 2015 CS 320 25

Recursively Defined Sets

.

Sept. 29, 2015 CS 320 26

Recursively Defined Sets

Let P(n) be the statement “3n belongs to S”.
Basis step: P(1) is true, because 3 is in S.

Inductive step: To show:
If P(n) is true, then P(n + 1) is true.

Assume 3n is in S. Since 3n is in S and 3 is in S,
it follows from the recursive definition of S that
3n + 3 = 3(n + 1) is also in S.

Conclusion of Part I: A ⊆ S.

Sept. 29, 2015 CS 320 27

Recursively Defined Sets
Part II: To show: S ⊆ A.

Basis step: To show:
All initial elements of S are in A. 3 is in A. True.

Inductive step: To show:
(x + y) is in A whenever x and y are in S.
If x and y are both in A, it follows that 3 | x and
3 | y. As we already know,
it follows that 3 | (x + y).

Conclusion of Part II: S ⊆ A.
Overall conclusion: A = S.

Sept. 29, 2015 CS 320 28

Recursively Defined Sets

Another example:
The well-formed formulas of variables, numerals
and operators from {+, -, *, /, ^} are defined by

x is a well-formed formula if x is a numeral or
variable.

(f + g), (f – g), (f * g), (f / g), (f ^ g) are well-
formed formulas if f and g are.

Sept. 29, 2015 CS 320 29

Recursively Defined Sets

With this definition, we can construct formulas
such as:
(x – y)
((z / 3) – y)
((z / 3) – (6 + 5))

((z / (2 * 4)) – (6 + 5))

Sept. 29, 2015 CS 320 30

Recursive Algorithms

An algorithm is called recursive if it solves a
problem by reducing it to an instance of the same
problem with smaller input.

Example I: Recursive Euclidean Algorithm

procedure gcd(a, b: nonnegative integers with a < b)

if a = 0 then gcd(a, b) := b

else gcd(a, b) := gcd(b mod a, a)

29 Sept 2015

6

Sept. 29, 2015 CS 320 31

Recursive Algorithms

Example II: Recursive Fibonacci Algorithm

procedure fibo(n: nonnegative integer)

if n = 0 then fibo(0) := 0

else if n = 1 then fibo(1) := 1

else fibo(n) := fibo(n – 1) + fibo(n – 2)

Sept. 29, 2015 CS 320 32

Recursive Algorithms

Recursive Fibonacci Evaluation:

f(4)

f(3)

f(2)

f(1) f(0)

f(1)

f(2)

f(1) f(0)

Sept. 29, 2015 CS 320 33

Recursive Algorithms
procedure iterative_fibo(n: nonnegative integer)
if n = 0 then y := 0
else
begin

x := 0
y := 1
for i := 1 to n-1
begin

z := x + y
x : = y
y := z

end
end {y is the n-th Fibonacci number}

Sept. 29, 2015 CS 320 34

Recursive Algorithms

For every recursive algorithm, there is an
equivalent iterative algorithm.

Recursive algorithms are often shorter, more
elegant, and easier to understand than their
iterative counterparts.

However, iterative algorithms are usually more
efficient in their use of space and time.

Sept 29, 2015 CS 320 35

Program Verification

Proof that a program works
correctly is difficult. One
approach is to attach statements
about the state of the program
(values of the variables) and
prove thereby that sequences of
statements will do what you
expect. See section 5.5, p 372

(4.5, p 322 in 6th edition)
Sept 29, 2015 CS 320 36

Partial Correctness

Def. A program segment S is
partially correct with respect to
initial assertion p and final
assertion q, if whenever p is true
and S is executed and terminates
then q will be true.

In this case we write: p{S}q

29 Sept 2015

7

Sept 29, 2015 CS 320 37

Composition Rule

p{S1}q

q{S2}r

p{S1; S2}r

This means that we can combine the
assertions about S1 and S2 to get an
assertion about what happens when
we execute first S1 and then S2.

Sept 29, 2015 CS 320 38

Example

Suppose p is T, q is “x > 0”,
r is “y > 0”

Then p{x := 4}q, and

q{y := 2*x}r are correct,

and thus so is

p{x := 4; y := 2*x}r.

Sept 29, 2015 CS 320 39

Conditionals 1

(p ∧ condition) {S} q

(p ∧ ¬condition) → q

p { if condition then S} q

Here we get a correctness condition on
execution of S giving us a
correctness condition for the
conditional.

Sept 29, 2015 CS 320 40

Conditionals 2

(p ∧ condition) {S1} q

(p ∧ ¬condition) {S2} q

p { if condition then S1 else S2} q

Similar thing, for if-then-else.

Sept 29, 2015 CS 320 41

Loop Invariants

(p ∧ condition) {S} p

p {while condition S} (¬condition ∧ p)

Here p is called a loop invariant
because it remains true on each pass
through the loop.

We usually pick a loop invariant
carefully to establish some fact we
want.

Sept 29, 2015 CS 320 42

Example of loop invariants

We can use loop invariants to prove that binary search is
correct.
(searching for x in an ordered sequence a1, …, an)

i := 1; k:= n;
while (i < k) {

m := (i+k)/2;
if (x > am) then i := m+1; // ipost = m+1, kpost = kpre

else k := m; // ipost = ipre, kpost = m
}
if (x = ai) then location := i;

else location := 0;
// A loop invariant that works:
// p: (x = aj for some j)→(ai ≤ x ≤ ak)∧(i ≤ k)

29 Sept 2015

8

Sept 29, 2015 CS 320 43

To see this loop invariant works:

1. Check that i ≤ k is invariant.

2. m = (i+k)/2 = k - (k-i)/2 =
k - (k-i)/2, so m < k (if i < k).

3. m = (i+k)/2 = i+(k-i)/2 =
i+(k-i)/2, so m ≥ i.

4. Thus i ≤ m < k on each pass
through the loop and i < m < k
unless i+1=k. (i, k are ipre,kpre)

Sept 29, 2015 CS 320 44

Now check that ai ≤ x ≤ ak is invariant on
each pass through the loop.

if (x > am)

then ipost := m+1;
// so am+1 ≤ x ≤ak, if x is one of the aj

else kpost := m;
// so ai ≤ x ≤am

Thus in each case we also have ai ≤ x ≤ ak

after each pass through the loop.

