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Mathematical Induction
If we have a propositional function P(n), 
and we want to prove that P(n) is true for 
any natural number n, we do the 
following:
• Show that P(0) is true. (basis step) 

We could also start at any other integer m,
in which case we prove it for all n ≥ m.

• Show that if P(n) then P(n+1) for any 
n∈N.

(inductive step)
• Then P(n) must be true for any n∈N. 

(conclusion)
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Induction

Example:

Show that n < 2n for all positive integers n.

Let P(n) be the proposition “n < 2n.”

1.  Show that P(1) is true.
(basis step)

P(1) is true, because 1 < 21 = 2.
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Induction

2. Show that if P(n) is true, then P(n + 1) is 
true.
(inductive step)

3. Assume that n < 2n is true.

We need to show that P(n + 1) is true, i.e.

n + 1 < 2n+1

We start from n < 2n:

n + 1 < 2n + 1 ≤ 2n + 2n = 2n+1

Therefore, if n < 2n then n + 1 < 2n+1
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Induction

3. Then P(n) must be true for any positive 
integer.
(conclusion)

n < 2n is true for any positive integer.

End of proof.
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Induction

Another Example (“Gauss”):
1 + 2 + … + n = n (n + 1)/2

1. Show that P(1) is true.
(basis step)
For n = 1 we get 1 = 1. True.
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Induction

2. Show that if P(n) then P(n + 1) for any 
n ≥ 1. (inductive step)

1 + 2 + … + n = n (n + 1)/2

1 + 2 + … + n + (n + 1) = (n + 1) + n (n + 1)/2

= (n + 1)(1 + n/2)

= (n + 1)((2 + n)/2)

= (n + 1) ((n + 1) + 1)/2
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Induction

3. Then P(n) must be true for any n ≥ 1. 
(conclusion)

1 + 2 + … + n = n (n + 1)/2 is true for 
all n ≥ 1

End of proof.

Note that we’ve already seen a proof for 
this not using induction.  Often more 
than one proof is possible.
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Induction

A variation on induction is the second 
principle of mathematical induction or 
strong induction.

It is also used to prove that a propositional 
function P(n) is true for any natural number 
n.

It’s easy to check that strong induction 
follows from regular mathematical 
induction.
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Induction

The second principle of mathematical 
induction:

• Show that P(0) is true.
(basis step)
Show that if P(0) and P(1) and P(2)… and 
P(n),
then P(n + 1) for any n∈N.
(inductive step)

• Then P(n) must be true for any n∈N. 
(conclusion)
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Induction

Example:

Show that every integer greater than 1 can be 
written as the product of primes.

• Show that P(2) is true.
(basis step)

2 is the product of one prime: itself.
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Induction
• Show that if P(2) and P(3) and … and P(n),

then P(n + 1) for any n∈N. (inductive step)

Two possible cases:
If (n + 1) is prime, then obviously P(n + 1) is 
true.
If (n + 1) is composite, it can be written as the 
product of two integers a and b such that
2 ≤ a ≤ b < n + 1.

By the induction hypothesis, both a and b can 
be written as the product of primes.

Therefore, n + 1 = a⋅b can be written as the 
product of primes.
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Induction

• Then P(n) must be true for any n∈N. 
(conclusion)

End of proof.

We have shown that every integer greater than 1
can be written as the product of primes.

This proves the Fundamental Theorem of 
Arithmetic (p. 258) (p. 211 6th ed), except for the 
uniqueness part.
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Well Ordering

The Well Ordering Property of the 
Natural Numbers is:

Every non-empty set of natural 
numbers has a least element.

This is an axiom of the natural 
numbers, and is equivalent to 
mathematical induction.
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Well Ordering

Theorem:  the following are 
equivalent

1. Mathematical Induction is valid.

2. Strong induction is valid

3. Every non empty set of natural 
numbers has a least element
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Proof: 1 → 2. Suppose  regular 
induction is valid, and suppose 

(i) P(0) is true and 
(ii) P(0)∧P(1)∧…∧P(n-1) → P(n) 

for n ≥ 1.
We need to prove P(n) for all n.
Let Q(n) be “P(0), P(1), …, P(n-1) are 

true”.
Then Q(0) is true and by (ii), 

Q(n-1) →Q(n).
Thus by regular induction Q(n), and 

hence P(n), is true for all n.
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2 → 3.
Suppose strong induction is valid.
Let A be a set of natural numbers 

without a least element.
Let P(j) be “j is not in A”.
Then P(0) is true, and if P(0), P(1),…, 

P(n-1) are true then also P(n) is true, 
or n would be the least element of A.
But then by strong induction P(n) is 
true for all n in A, and hence A is 
empty.

Thus any non empty subset of N has a 
least element.
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3 → 1.
Suppose well ordering is valid and P(j) is 

a property such that
(i) P(0) is true
(ii) P(n-1) → P(n) for all n > 0.
Let A = {x ∊ N | P(x) is false}

We need to show A is empty.
If A is not empty it has a least element u. 
But u is not 0 by (i).
And if u > 0 then P(u-1) is true and P(u) 

is false, contradicting (ii). 
Hence P(n) is true for all n ∊ N.
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Recursive Definitions

Recursion is a principle closely related to 
mathematical induction.
In a recursive definition, an object is defined in 
terms of itself.

We can recursively define sequences, functions
and sets.
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Recursively Defined Sequences

Example:

The sequence {an} of powers of 2 is given by
an = 2n for n = 0, 1, 2, … . 

The same sequence can also be defined 
recursively:
a0 = 1

an+1 = 2an     for n = 0, 1, 2, …

Obviously, induction and recursion are similar 
principles.
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Recursively Defined Functions

We can use the following method to define a 
function with the natural numbers as its domain:

Specify the value of the function at zero.
Give a rule for finding its value at any integer 

from its values at smaller integers.

Such a definition is called recursive or inductive 
definition. 
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Recursively Defined Functions

Example:
f(0) = 3

f(n + 1) = 2f(n) + 3

f(0) = 3

f(1) = 2f(0) + 3 = 2⋅3 + 3 = 9
f(2) = 2f(1) + 3 = 2⋅9 + 3 = 21
f(3) = 2f(2) + 3 = 2⋅21 + 3 = 45
f(4) = 2f(3) + 3 = 2⋅45 + 3 = 93
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Recursively Defined Functions

How can we recursively define the factorial 
function f(n) = n! ? 

f(0) = 1 

f(n + 1) = (n + 1)f(n) 

f(0) = 1 

f(1) = 1f(0) = 1⋅1 = 1
f(2) = 2f(1) = 2⋅1 = 2
f(3) = 3f(2) = 3⋅2 = 6
f(4) = 4f(3) = 4⋅6 = 24 
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Recursively Defined Functions

A famous example: The Fibonacci numbers 

f(0) = 0, f(1) = 1 

f(n) = f(n – 1) + f(n - 2) 

f(0) = 0 

f(1) = 1 

f(2) = f(1) + f(0) = 1 + 0 = 1 

f(3) = f(2) + f(1) = 1 + 1 = 2 

f(4) = f(3) + f(2) = 2 + 1 = 3 

f(5) = f(4) + f(3) = 3 + 2 = 5 

f(6) = f(5) + f(4) = 5 + 3 = 8 
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Recursively Defined Sets
If we want to recursively define a set A, we need 
to provide two things: 

an initial set of elements, 
• rules for the construction of additional

elements from elements in the set. 
Example:  x1,x2,…xn ∊ A → R(x1,..,xn)∊A 

When we want to prove P(x) is true for all x in a 
recursively defined set A we must prove  
• P(x) is true for each element of the initial set of 
A.
For each rule generating new elements, if P(x1), 

P(x2,),…, P(xn ) are true then P(R(x1,..,xn)) is true
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Recursively Defined Sets

. 
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Recursively Defined Sets

Let P(n) be the statement “3n belongs to S”.
Basis step: P(1) is true, because 3 is in S. 

Inductive step: To show:
If P(n) is true, then P(n + 1) is true.

Assume 3n is in S. Since 3n is in S and 3 is in S, 
it follows from the recursive definition of S that
3n + 3 = 3(n + 1) is also in S.

Conclusion of Part I: A ⊆ S.
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Recursively Defined Sets
Part II: To show: S ⊆ A.

Basis step: To show: 
All initial elements of S are in A. 3 is in A. True.

Inductive step: To show:
(x + y) is in A whenever x and y are in S.
If x and y are both in A, it follows that 3 | x and 
3 | y. As we already know, 
it follows that 3 | (x + y).

Conclusion of Part II: S ⊆ A.
Overall conclusion: A = S.

Sept. 29, 2015 CS 320 28

Recursively Defined Sets

Another example:
The well-formed formulas of variables, numerals 
and operators from {+, -, *, /, ^} are defined by

x is a well-formed formula if x is a numeral or 
variable.

(f + g), (f – g), (f * g), (f / g), (f ^ g) are well-
formed formulas if f and g are.

Sept. 29, 2015 CS 320 29

Recursively Defined Sets

With this definition, we can construct formulas 
such as:
(x – y)
((z / 3) – y)
((z / 3) – (6 + 5)) 

((z / (2 * 4)) – (6 + 5))  
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Recursive Algorithms

An algorithm is called recursive if it solves a 
problem by reducing it to an instance of the same 
problem with smaller input.  

Example I: Recursive Euclidean Algorithm  

procedure gcd(a, b: nonnegative integers with a < b)  

if a = 0 then gcd(a, b) := b  

else gcd(a, b) := gcd(b mod a, a)  
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Recursive Algorithms

Example II: Recursive Fibonacci Algorithm  

procedure fibo(n: nonnegative integer)  

if n = 0 then fibo(0) := 0  

else if n = 1 then fibo(1) := 1  

else fibo(n) := fibo(n – 1) + fibo(n – 2)  
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Recursive Algorithms

Recursive Fibonacci Evaluation: 

f(4)

f(3)

f(2)

f(1) f(0)

f(1)

f(2)

f(1) f(0)
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Recursive Algorithms
procedure iterative_fibo(n: nonnegative integer) 
if n = 0 then y := 0 
else 
begin 

x := 0 
y := 1 
for i := 1 to n-1 
begin  

z := x + y  
x : = y  
y := z 

end 
end {y is the n-th Fibonacci number}  
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Recursive Algorithms

For every recursive algorithm, there is an 
equivalent iterative algorithm. 

Recursive algorithms are often shorter, more 
elegant, and easier to understand than their 
iterative counterparts.  

However, iterative algorithms are usually more 
efficient in their use of space and time. 
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Program Verification

Proof that a program works 
correctly is difficult.  One 
approach is to attach statements 
about the state of the program 
(values of the variables) and 
prove thereby that sequences of 
statements will do what you 
expect. See section 5.5, p 372

(4.5, p 322 in 6th edition)
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Partial Correctness

Def.  A program segment S is 
partially correct with respect to 
initial assertion p and final 
assertion q, if whenever p is true 
and S is executed and terminates 
then q will be true.  

In this case we write: p{S}q  
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Composition Rule

p{S1}q 

q{S2}r 

p{S1; S2}r 

This means that we can combine the 
assertions about S1 and S2 to get an 
assertion about what happens when 
we execute first S1 and then S2.  
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Example

Suppose p is T, q is “x > 0”,
r is “y > 0” 

Then p{x := 4}q, and 

q{y := 2*x}r are correct, 

and thus so is 

p{x := 4; y := 2*x}r.  
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Conditionals 1

(p ∧ condition) {S} q 

(p ∧ ¬condition) → q 

p { if condition then S} q 

Here we get a correctness condition on 
execution of S giving us a 
correctness condition for the 
conditional.  
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Conditionals 2

(p ∧ condition) {S1} q 

(p ∧ ¬condition) {S2} q  

p { if condition then S1 else S2} q  

Similar thing, for if-then-else. 
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Loop Invariants

(p ∧ condition) {S} p  

p {while condition S} (¬condition ∧ p) 

Here p is called a loop invariant
because it remains true on each pass 
through the loop.  

We usually pick a loop invariant 
carefully to establish some fact we 
want.  
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Example of loop invariants

We can use loop invariants to prove that binary search is 
correct.
(searching for x in an ordered sequence a1, …, an)

i := 1; k:= n;  
while (i < k) {  

m := (i+k)/2;  
if (x > am) then i := m+1;  // ipost = m+1, kpost = kpre

else k := m;     // ipost = ipre, kpost = m  
}  
if (x = ai) then location := i; 

else location := 0; 
// A loop invariant that works: 
// p: (x = aj for some j)→(ai ≤ x ≤ ak)∧(i ≤ k)  
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To see this loop invariant works:

1. Check that  i ≤ k is invariant.

2. m = (i+k)/2 = k - (k-i)/2 = 
k - (k-i)/2, so m < k (if i < k).

3. m = (i+k)/2 = i+(k-i)/2 = 
i+(k-i)/2, so m ≥ i.

4. Thus i ≤ m < k on each pass 
through the loop and i < m < k 
unless i+1=k.  (i, k are ipre,kpre)  
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Now check that ai ≤ x ≤ ak is invariant on 
each pass through the loop.

if (x > am) 

then ipost := m+1; 
// so am+1 ≤ x ≤ak, if x is one of the aj

else kpost := m;
// so ai ≤ x ≤am

Thus in each case we also have ai ≤ x ≤ ak

after each pass through the loop.  


