Leakage in Data Mining:
Formulation, Detection, and Avoidance

Shachar Kaufman
School of Electrical Engineering
Tel-Aviv University
69978 Tel-Aviv, Israel

shachark@post.tau.ac.il

ABSTRACT

Deemed “one of the top ten data mining mistakes”, leakage is
essentially the introduction of information about the data mining
target, which should not be legitimately available to mine from. In
addition to our own industry experience with real-life projects,
controversies around several major public data mining competi-
tions held recently such as the INFORMS 2010 Data Mining
Challenge and the IJCNN 2011 Social Network Challenge are
evidence that this issue is as relevant today as it has ever been.
While acknowledging the importance and prevalence of leakage
in both synthetic competitions and real-life data mining projects,
existing literature has largely left this idea unexplored. What little
has been said turns out not to be broad enough to cover more
complex cases of leakage, such as those where the classical i.i.d.
assumption is violated, that have been recently documented. In
our new approach, these cases and others are explained by expli-
citly defining modeling goals and analyzing the broader frame-
work of the data mining problem. The resulting definition enables
us to derive general methodology for dealing with the issue. We
show that it is possible to avoid leakage with a simple specific
approach to data management followed by what we call a learn-
predict separation, and present several ways of detecting leakage
when the modeler has no control over how the data have been
collected.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications — Data
mining. 1.5.2 [Pattern Recognition]: Design Methodology — Clas-
sifier design and evaluation.

General Terms
Theory, Algorithms.

Keywords

Data mining, Leakage, Statistical inference, Predictive modeling.

1. INTRODUCTION

Deemed “one of the top ten data mining mistakes” [7], leakage in
data mining (henceforth, leakage) is essentially the introduction of
information about the target of a data mining problem, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

KDD’11, August 21 — 24, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0813-7/11/08...$10.00.

Saharon Rosset
School of Mathematical Sciences
Tel-Aviv University
69978 Tel-Aviv, Israel

saharon@post.tau.ac.il

556

Claudia Perlich
Media6Degrees
37 East 18" Street, 9" floor
New York, NY 10003

claudia@mediabdegrees.com

should not be legitimately available to mine from. A trivial exam-
ple of leakage would be a model that uses the target itself as an
input, thus concluding for example that ‘it rains on rainy days’. In
practice, the introduction of this illegitimate information is unin-
tentional, and facilitated by the data collection, aggregation and
preparation process. It is usually subtle and indirect, making it
very hard to detect and eliminate. Leakage is undesirable as it may
lead a modeler, someone trying to solve the problem, to learn a
suboptimal solution, which would in fact be outperformed in
deployment by a leakage-free model that could have otherwise
been built. At the very least leakage leads to overestimation of the
model’s performance. A client for whom the modeling is underta-
ken is likely to discover the sad truth about the model when per-
formance in deployment is found to be systematically worse than
the estimate promised by the modeler. Even then, identifying
leakage as the reason might be highly nontrivial.

Existing literature, which we survey in Section 2, mentions lea-
kage and acknowledges its importance and prevalence in both
synthetic competitions and real-life data mining projects [e.g. 2,
7]. However these discussions lack several key ingredients. First,
they do not present a general and clear theory of what constitutes
leakage. Second, these sources do not suggest practical methodol-
ogies for leakage detection and avoidance that modelers could
apply to their own statistical inference problems. This gap in
theory and methodology could be the reason that several major
data mining competitions held recently such as KDD-Cup 2008,
or the INFORMS 2010 Data Mining Challenge, though judicious-
ly organized by capable individuals, suffered from severe leakage.
In many cases, attempts to fix leakage resulted in the introduction
of new leakage which is even harder to deal with. Other competi-
tions such as KDD-Cup 2007 and IJCNN 2011 Social Network
Challenge were affected by a second form of leakage which is
specific to competitions. Leakage from available external sources
undermined the organizers’ implicit true goal of encouraging
submissions that would actually be useful for the domain. These
cases, in addition to our own experience with leakage in the indus-
try and as competitors in and organizers of data mining chal-
lenges, are examined in more detail also in Section 2. We revisit
them in later sections to provide a more concrete setting for our
discussion.

The major contribution of this paper, that is, aside from raising
awareness to an important issue which we believe is often over-
looked, is a proposal in Section 3 for a formal definition of lea-
kage. This definition covers both the common case of leaking
features and more complex scenarios that have been encountered
in predictive modeling competitions. We use this formulation to
facilitate leakage avoidance in Section 4, and suggest in Section 5
methodology for detecting leakage when we have limited or no

control over how the data have been collected. This methodology
should be particularly useful for practitioners in predictive model-
ing problems, as well as for prospective competition organizers.

2. LEAKAGE IN THE KDD LITERATURE

The subject of leakage has been visited by several data mining
textbooks as well as a few papers. Most of the papers we refer to
are related to KDD-Cup competitions, probably due to authors of
works outside of competitions locating and fixing leakage issues
without reporting the process. We shall give a short chronological
review here while collecting examples to be used later as case
studies for our proposed definition of leakage.

Pyle [9, 10, 11] refers to the phenomenon which we call here
leakage, in the context of predictive modeling, as Anachronisms
(something that is out of place in time), and says that "too good to
be true" performance is "a dead giveaway" of its existence. The
author suggests turning to exploratory data analysis in order to
find and eliminate leakage sources, which we will also discuss in
Section 5. Nisbet et al. [7] refer to the issue as "leaks from the
future” and claim it is "one of the top 10 data mining mistakes".
They repeat the same basic insights, but also do not suggest a
general definition or methodology to correct and prevent leakage.
These titles provide a handful of elementary but common exam-
ples of leakage. Two representative ones are: (i) An "account
number" feature, for the problem of predicting whether a potential
customer would open an account at a bank. Obviously, assignment
of such an account number is only done after an account has been
opened. (ii) An "interviewer name" feature, in a cellular company
churn prediction problem. While the information “who inter-
viewed the client when they churned” appears innocent enough, it
turns out that a specific salesperson was assigned to take over
cases where customers had already notified they intend to churn.

Kohavi ef al. [2] describe the introduction of leaks in data mining
competitions as giveaway attributes that predict the target because
they are downstream in the data collection process. The authors
give an example in the domain of retail website data analytics
where for each page viewed the prediction target is whether the
user would leave or stay to view another page. A leaking attribute
is the "session length", which is the total number of pages viewed
by the user during this visit to the website. This attribute is added
to each page-view record at the end of the session. A solution is to
replace this attribute with "page number in session" which de-
scribes the session length up to the current page, where prediction
is required.

Subsequent work by Kohavi et al. [3] presents the common busi-
ness analysis problem of characterizing big spenders among cus-
tomers. The authors explain that this problem is prone to leakage
since immediate triggers of the target (e.g. a large purchase or
purchase of a diamond) or consequences of the target (e.g. paying
a lot of tax) are usually available in collected data and need to be
manually identified and removed. To show how correcting for
leakage can become an involved process, the authors also discuss
the more complex situation where removing the information "total
purchase in jewelry" caused information of "no purchases in any
department" to become fictitiously predictive. This is because
each customer found in the database is there in the first place due
to some purchase, and if this purchase is not in any department
(still available), it has to be jewelry (which has been removed).
They suggest defining analytical questions that should suffer less
from leaks — such as characterizing a "migrator" (a user who is a
light spender but will become a heavy one) instead of characteriz-

557

ing the "heavy spender". The idea is that it is better to ask analyti-
cal questions that have a clear temporal cause-and-effect structure.
Of course leaks are still possible, but much harder to introduce by
accident and much easier to identify. We return to this idea in
Section 3. A later paper by the authors [4] reiterates the previous
discussion, and adds the example of the “use of free shipping”,
where a leak is introduced when free shipping is provided as a
special offer with large purchases.

Rosset et al. [11] discuss leakage encountered in the 2007 KDD-
Cup competition. In that year's contest there were two related
challenges concerning movie viewers’ reviews from the famous
Netflix database. The first challenge, "Who Reviewed What", was
to predict whether each user would give a review for each title in
2006, given data up to 2005. The second challenge, "How Many
Reviews", was to predict the number of reviews each title would
receive in 2006, also using data given up to 2005. For the first
challenge, a test set with actual reviews from 2006 was provided.
Although disjoint sets of titles were used to construct the data sets
for these two challenges, Rosset et al.’s winning submission ma-
naged to use the test set for the first problem as the target in a
supervised-learning modeling approach for the second problem.
This was possible due to a combination of two facts. First, up to a
scaling factor and noise, the expected number of user/review pairs
in the first problem's test set in which a title appears is equal to the
total number of reviews which that titled received in 2006. This is
exactly the target for the second problem, only on different titles.
Second, the titles are similar enough to share statistical properties,
so from the available dynamics for the first group of titles one can
infer the dynamics of the second group’s. We shall revisit this
complex example in Section 3, where this case will motivate us to
extend our definition of leakage beyond leaking features.

Two medical data mining contests held the following year and
which also exhibited leakage are discussed in [7, 13]. KDD-Cup
2008 dealt with cancer detection from mammography data. Ana-
lyzing the data for this competition, the authors point out that the
“Patient ID” feature (ignored by most competitors) has tremend-
ous and unexpected predictive power. They hypothesize that mul-
tiple clinical study, institution or equipment sources were used to
compile the data, and that some of these sources were assigned
their population with prior knowledge of the patient’s condition.
Leakage was thus facilitated by assigning consecutive patient IDs
for data from each source, that is, the merge was done without
obfuscating the source. The INFORMS Data Mining Challenge
2008 competition held the same year, addressed the problem of
pneumonia diagnosis based on patient information from hospital
records. The target was originally embedded as a special value of
one or more features in the data given to competitors. The orga-
nizers removed these values, however it was possible to identify
traces of such removal, constituting the source of leakage in this
example (e.g. a record with all condition codes missing, similarly
to Kohavi’s jewelry example).

Also in the recent work by Rosset et al. [13], the concept of iden-
tifying and harnessing leakage has been openly addressed as one
of three key aspects for winning data mining competitions. This
work provides the intuitive definition of leakage as "The uninten-
tional introduction of predictive information about the target by
the data collection, aggregation and preparation process". The
authors mention that leakage might be the cause of many failures
of data mining applications, and give the illustrative example of
predicting people who are likely to be sick by looking at how

many work days they would end up missing. They also describe a
real-life business intelligence project at IBM where potential
customers for certain products were identified, among other
things, based on keywords found on their websites. This turned
out to be leakage since the website content used for training had
been sampled at the point in time where the potential customer has
already become a customer, and where the website contained
traces of the IBM products purchased, such as the word “Webs-
phere” (e.g. in a press release about the purchase or a specific
product feature the client uses).

The latest INFORMS and IJCNN competitions held in late 2010
and early 2011 are fresh examples of how leakage continues to
plague predictive modeling problems and competitions in particu-
lar. The INFORMS 2010 Data Mining Challenge required partici-
pants to develop a model that predicts stock price movements,
over a fixed one-hour horizon, at five minute intervals. Competi-
tors were provided with intraday trading data showing stock pric-
es, sectoral data, economic data, experts' predictions and indices.
The data were segmented to a training database, on which partici-
pants were expected to build their predictive models, and a test
database which was used by the organizers to evaluate submis-
sions. The surprising results were that about 30 participating
groups achieved more than 0.9 AUC, with the best model surpass-
ing 0.99 AUC. Had these models been legitimate they would’ve
indeed made a “big impact on the finance industry” as the orga-
nizers had hoped, not to mention making their operators very
wealthy individuals. Unfortunately, however, it became clear that
although some steps had been taken to prevent competitors from
“looking up the answers” (the underlying target stock’s identity
was not revealed, and the test set did not include the variable
being predicted), it was still possible to build models that rely on
data from the future. Having data from the future for the explana-
tory variables, some of which are highly cointegrated with the
target (e.g. a second stock within the same sector as the target
stock), and having access to publicly available stock data such as
Yahoo/Google Finance (which allows finding at least good candi-
dates for the identity of the target stock, consequently revealing all
test values) was the true driver of success for these models. The
organizers held two rankings of competitors, one where future
information was allowed and another where it was forbidden,
however in the end they had to admit that verifying future infor-
mation was not used was impossible, and that it was probable that
all models were tainted, as all modelers had been exposed to the
test set.

The IJCNN 2011 Social Network Challenge presented participants
with anonymized 7,237,983 edges from an undisclosed online
social network and asked to predict which of an additional set of
8,960 potential edges are in fact realized on the network as well.
The winners have recently reported [3] they had been able to
recognize, through sophisticated analysis, that the social network
in question was Flickr and then to de-anonymize the majority of
the data. This allowed them to use edges available from the on-
line Flickr network to correctly predict over 60% of edges which
were identified, while the rest had to be handled classically using
legitimate prediction. Similarly to other cases that have been
mentioned, these rogue solutions are sometimes so elegant and
insightful that they carry merit in their own right. The problem is
that they do not answer the original question presented by the
organizers.

Clearly, then, the issue of leakage has been observed in various
contexts and problem domains, with a natural focus on predictive

558

modeling. However, none of the discussions that we could find
has addressed the issue in a general way, or suggested methodolo-
gy for handling it. In the following section we make our attempt to
derive a definition of leakage.

3. FORMULATION

3.1 Preliminaries and Legitimacy

In our discussion of leakage we shall define the roles of client and
modeler as in Section 1, and consider the standard statistical infe-
rence framework of supervised learning and its generalizations,
where we can discuss examples, targets and features. We assume
the reader is familiar with these concepts. For a complete refer-
ence see [1]. Let us just lay out our notation and say that in our
framework we receive from an axiomatic data preparation stage a
multivariate random process W = (X,VY). Y is the outcome or
target generating process with samples y target instances. Values
or realizations of the random variable y are denoted y (in bold).
Similarly, X', X and X are the feature-vector generating process,
an instance and realization. For individual feature generating
processes, instances and realizations we use x € X, x € X and
x € X. Specific instances x, and y, taken from the same instance
of W are said to be W-related. The modeler’s goal is to statistical-
ly infer a target instance, from its associated feature-vector in-
stance in W and from a separate group of samples of W, called
the training examples W,.. The solution to this problem is a mod-
el § = M(X, W,,.). We say that the model’s observational inputs
for predictingy are X and W,,, and this relation between the
various elements in the framework is the base for our discussion.

Models containing leaks are a subclass of the broader concept of
illegitimate or unacceptable models. At this level, legitimacy,
which is a key concept in our formulation of leakage, is complete-
ly abstract. Every modeling problem sets its own rules for what
constitutes a legitimate or acceptable solution and different prob-
lems, even if using the same data, may have wildly different views
on legitimacy. For example a solution could be considered illegi-
timate if it is too complex — say if it uses too many features or if it
is not linear in its features.

However our focus here is on leakage, which is a specific form of
illegitimacy that is an intrinsic property of the observational inputs
of a model. This form of illegitimacy remains partly abstract, but
could be further defined as follows: Let u be some random varia-
ble. We say a second random variable v is u-legitimate if v is
observable to the client for the purpose of inferring u. In this case
we write v € legit{u}.

A fully concrete meaning of legitimacy is built-in to any specific
inference problem. The trivial legitimacy rule, going back to the
first example of leakage given in Section 1, is that the target itself
must never be used for inference:

y & legit{y}. 1

We could use this rule if we wanted to disqualify the winning
submission to the [ICNN 2011 Social Network Challenge, for it,
however cleverly, eventually uses some of the targets themselves
for inference. This condition should be abided by all problems,
and we refrain from explicitly mentioning it for the remaining
examples we shall discuss.

Naturally, a model contains leaks with respect to a target instance
y if one or more of its observational inputs are y-illegitimate. We
say that the model inherits the illegitimacy property from the

features and training examples it uses. The discussion proceeds
along these two possible sources of leakage for a model: features
and training examples.

3.2 Leaking Features

We begin with the more common case of leaking features. First
we must extend our abstract definition of legitimacy to the case of
random processes: Let « be some random process. We say a
second random process v is u-legitimate if, for every pair of
instances of « and v, u and v respectively, which are W-related,
v is u-legitimate. We use the same notation as we did for random
variables in 3.1, and write that v € legit{u}.

Leaking features are then covered by a simple condition for the
absence of leakage:

Vx € X,x € legit{}. 2)

That is, any feature made available by the data preparation process
is deemed legitimate by the precise formulation of the modeling
problem at hand, instance by instance w.r.t. its matching target.

The prevailing example for this type of leakage is what we call the
no-time-machine requirement. In the context of predictive model-
ing, it is implicitly required that a legitimate model only build on
features with information from a time earlier (or sometimes, no
later) than that of the target. Formally, x and 4, made scalar for
the sake of simplicity, are random processes over some time axis t
(not necessarily physical time). Prediction is required by the client
for the target process ¢ at times t,,, and their W-related feature
process x is observable to the client at times t,.. We then have:

©)

Such a rule should be read: Any legitimate feature w.r.t. the target
process is a member of the right hand side set of features. In this
case the right hand side is the set of all features whose every in-
stance is observed earlier than its W-related target instance. We
are assuming with this notation that X' contains all possible fea-
tures, and use “S” to express that additional legitimacy constraints
might also apply (otherwise “=" could be used).

legit{y} < {x € X|t, < t,}.

While the simple no-time-machine requirement is indeed the most
common case, one could think of additional scenarios which are
still covered by condition (2). A simple extension is to require
features to be observable a sufficient period of time prior to t,, as
in (4) below in order to preclude any information that is an imme-
diate trigger of the target. One reason why this might be necessary
is that sometimes it is too limiting to think of the target as pertain-
ing to a point-in-time, only to a rough interval. Using data observ-
able close to t,, makes the problem uninteresting. Such is the case
for the “heavy spender” example from [3]. With legitimacy de-
fined as (3) (or as (4) when 7 = 0) a model may be built that uses
the purchase of a diamond to conclude that the customer is a big
spender but with 7 sufficiently large this is not allowed. This
transforms the problem from identification of “heavy spenders” to
the suggested identification of “migrators”.

“4)

Another example, using the same random process notation, is a
memory limitation, where a model may not use information older
than a time relative to that of the target:

legit{y} c {x € X|t, <t, —1}.

559

®)

We can think of a requirement to use exactly n features from a
specified pool X, of preselected features:

legit{y} S {x € X|t, — Tt <t, <t,}.

(6)

and so on. In fact, there is a variant of example (6) which is very
common: only the features X, selected for a specific provided
dataset are considered legitimate. Sometimes this rule allows free
use of the entire set:

legit{y} S {[x1, ..,] |Vk 2}, € X, k unique},

legit{y} € X;. @)
Usually however this rule is combined with (3) to give:
legit{y} < {x € Xp|t, < t,}. ®)

Most documented cases of leakage mentioned in Section 2 are
covered by condition (2) in conjunction with a no-time-machine
requirement as in (3). For instance, in the trivial example of pre-
dicting rainy days, the target is an illegitimate feature since its
value is not observable to the client when the prediction is re-
quired (say, the previous day). As another example, the pneumo-
nia detection database in the INFORMS 2008 challenge discussed
in [8, 13] implies that a certain combination of missing diagnosis
code and some other features is highly informative of the target.
However this feature is illegitimate, as the patient’s condition is
still being studied.

It is easy to see how conditions (2) and (3) similarly apply to the
account number and interviewer name examples from [10], the
session length of [2] (while the corrected “page number in ses-
sion” is fine), the immediate and indirect triggers described in [3,
4], the remaining competitions described in [8, 13], and the web-
site based features used by IBM and discussed in [13]. However
not all examples fall under condition (2).

Let us examine the case mentioned earlier of KDD-Cup 2007 as
discussed in [11]. While clearly taking advantage of information
from reviews given to titles during 2006 (the mere fact of using
data from the future is proof, but we can also see it in action by
the presence of measurable leakage — the fact that this model
performed significantly better both in internal tests and the final
competition), the final delivered model M does not include any
illegitimate feature'. To understand what has transpired, we must
address the issue of leakage in training examples.

3.3 Leakage in Training Examples

Let us first consider the following synthetic but illustrative exam-
ple. Suppose we are trying to predict the level of a white noise
process 4, for t =[101,102,...,200], clearly a hopeless task.
Suppose further that for the purpose of predicting 4., # itself is a
legitimate feature but otherwise, as in (3), only past information is
deemed legitimate — so obviously we cannot cheat. Now consider
a model trained on examples W, taken from t = [1,2,...,200].
The proposed model is j; = M(t, W,,.), a table containing for
each t the target’s realized value y,. Strictly speaking, the only

' In fact the use of external sources that are not rolled-back to
2005, such as using current (2007) IMDB data, is simple lea-
kage just like in the IBM example. However this is not the ma-
jor source of leakage in this example.

feature used by this model, £, is legitimate. Hence the model has
no leakage as defined by condition (2), however it clearly has
perfect prediction performance for the evaluation set in the exam-
ple. We would naturally like to capture this case under a complete
definition of leakage for this problem.

In order to tackle this case, we suggest adding to (2) the following
condition for the absence of leakage: Forall y € Y,

VX € X;r, X € legit{y} N VJ €Yy, 7 € legit{y} ©)]

where Y, is the set of evaluation? target instances, and Y;,, X, are
the sets of training targets and feature-vectors respectively whose
realizations make up the set of training examples W,..

One way of interpreting this condition is to think of the informa-
tion presented for training as constant features embedded into the
model, and added to every feature-vector instance the model is
called to generate a prediction for.

For modeling problems where the usual i.i.d. instances assump-
tion is valid, and when without loss of generality considering all
information specific to the instance being predicted as features
rather than examples, condition (9) simply reduces to condition
(2) since irrelevant observations can always be considered legiti-
mate. In contrast, when dealing with problems exhibiting non-
stationarity, a.k.a. concept-drift [15], and more specifically the
case when samples of the target (or, within a Bayesian framework,
the target/feature) are not mutually independent, condition (9)
cannot be reduced to condition (2). Such is the case of KDD-Cup
2007. Available information about the number of reviews given to
a group of titles for the “who reviewed what” task is not statisti-
cally independent of the number of reviews given to the second
group of titles which is the target in the “how many ratings” task.
The reason for this is that these reviews are all given by the same
population of users over the same period in 2006, and thus are
mutually affected by shared causal ancestors such as viewing and
participation trends (e.g. promotions, similar media or event that
gets a lot of exposure and so on). Without proper conditioning on
these shared ancestors we have potential dependence, and because
most of these ancestors are unobservable, and difficult to find
observable proxies for, dependence is bound to occur.

3.4 Discussion

It is worth noting that leakage in training examples is not limited
to the explicit use of illegitimate examples in the training process.
A more dangerous way in which illegitimate examples may creep
in and introduce leakage is through design decisions. Suppose for
example that we have access to illegitimate data about the dep-
loyment population, but there is no evidence in training data to
support this knowledge. This might prompt us to use a certain
modeling approach that otherwise contains no leakage in training
examples but is still illegitimate. Examples could be: (i) selecting
or designing features that will have predictive power in deploy-
ment, but don’t show this power on training examples, (ii) algo-
rithm or parametric model selection, and (iii) meta-parameter
value choices. This form of leakage is perhaps the most dangerous
as an evaluator may not be able to identify it even when she
knows what she is looking for. The exact same design could have
been brought on by theoretic rationale, in which case it would

2 We use the term evaluation as it could play the classic role of
either validation or testing.

560

have been completely legitimate. In some domains such as time
series prediction, where typically only a single history measuring
the phenomenon of interest is available for analysis, this form of
leakage is endemic and commonly known as data snooping /
dredging [5].

Regarding concretization of legitimacy for a new problem: Argu-
ably, more often than not the modeler might find it very challeng-
ing to define, together with the client, a complete set of such
legitimacy guidelines prior to any modeling work being underta-
ken, and specifically prior to performing preliminary evaluation.
Nevertheless it should usually be rather easy to provide a coarse
definition of legitimacy for the problem, and a good place to start
is to consider model use cases. The specification of any modeling
problem is really incomplete without laying out these ground rules
of what constitutes a legitimate model.

As a final point on legitimacy, let us mention that once it has been
clearly defined for a problem, the major challenge becomes pre-
paring the data in such a way that ensures models built on this
data would be leakage free. Alternatively, when we do not have
full control over data collection or when it is simply given to us, a
methodology for detecting when a large number of seemingly
innocent pieces of information are in fact plagued with leakage is
required. This shall be the focus of the following two sections.

4. AVOIDANCE
4.1 Methodology

Our suggested methodology for avoiding leakage is a two stage
process of tagging every observation with legitimacy tags during
collection and then observing what we call a learn-predict separa-
tion. We shall now describe these stages and then provide some
examples.

At the most basic level suitable for handling the more general case
of leakage in training examples, legitimacy tags (or hints) are
ancillary data attached to every pair (x,y) of observational input
instance x and target instance y, sufficient for answering the ques-
tion “is x legitimate for inferring y* under the problem’s defini-
tion of legitimacy. With this tagged version of the database it is
possible, for every example being studied, to roll back the state of

SN

legitimate

(a) A general separation

(b) Time separation

(c) Only targets are illegit.

Figure 1. An illustration of learn-predict separation.

the world to a legitimate decision state, eliminating any confusion
that may arise from only considering the original raw data.

In the learn-predict separation paradigm (illustrated in Figure 1)
the modeler uses the raw but tagged data to construct training
examples in such a way that (i) for each target instance, only those
observational inputs which are purely legitimate for predicting it
are included as features, and (ii) only observational inputs which
are purely legitimate with all evaluation targets may serve as
examples. This way, by construction, we directly take care of the
two types of leakage that make up our formulation, respectively
leakage in features (2) and in training examples (9). To complete-
ly prevent leakage by design decisions, the modeler has to be
careful not to even get exposed to information beyond the separa-
tion point, for this we can only prescribe self-control.

As an example, in the common no-time-machine case where legi-
timacy is defined by (3), legitimacy tags are time-stamps with
sufficient precision. Legitimacy tagging is implemented by time-
stamping every observation. Learn-predict separation is imple-
mented by a cut at some point in time that segments training from
evaluation examples. This is what has been coined in [13] predic-
tion about the future. Interestingly enough, this common case
does not sit well with the equally common way databases are
organized. Updates to database records are usually not time-
stamped and not stored separately, and at best whole records end
up with one time-stamp. Records are then translated into exam-
ples, and this loss of information is often the source of all evil that
allows leakage to find its way into predictive models.

The original data for the INFORMS 2008 Data Mining Challenge,
lacked proper time-stamping, causing observations taken before
and after the target’s time-stamp to end up as components of
examples. This made time-separation impossible, and models
built on this data did not perform prediction about the future. On
the other hand, the data for KDD-Cup 2007’s “How Many Re-
views” task in itself was (as far as we are aware) well time-
stamped and separated. Training data provided to competitors was
sampled prior to 2006, while test data was sampled after and
including 2006, and was not given. The fact that training data
exposed by the organizers for the separate "Who Reviewed What"
task contained leakage was due to an external source of leakage,
an issue related with data mining competitions which we shall
discuss next.

4.2 External Leakage in Competitions

Our account of leakage avoidance, especially in light of our recur-
ring references to data mining competitions in this paper, would
be incomplete without mentioning the case of external leakage.
This happens when some data source other than what is simply
given by the client (organizer) for the purpose of performing
inference, contains leakage and is accessible to modelers (compet-
itors). Examples for this kind of leakage include the KDD-Cup
2007 “How Many Reviews” task, the INFORMS 2010 financial
forecgsting challenge, and the IJCNN 2011 Social Network Chal-
lenge’.

In these cases, it would seem that even a perfect application of the
suggested avoidance methodology breaks down by considering
the additional source of data. Indeed, separation only prevents

3 Although it is entirely possible that internal leakage was also
present in these cases (e.g. forum discussions regarding the
IJCNN 2011 competition on http://www.kaggle.com).

561

leakage from the data actually separated. The fact that other data
are even considered is indeed a competition issue, or in some
cases an issue of a project organized like a competition (i.e.
projects within large organizations, outsourcing or government
issued projects). Sometimes this issue stems from a lack of an
auditing process for submissions, however most of the time, it is
introduced to the playground on purpose.

Competition organizers, and some project clients, have an ulterior
conflict of interest. On the one hand they do not want competitors
to cheat and use illegitimate data. On the other hand they would
welcome insightful competitors suggesting new ideas for sources
of information. This is a common situation, but the two desires or
tasks are often conflicting: when one admits not knowing which
sources could be used, one also admits she can't provide an air-
tight definition of what she accepts as legitimate. She may be able
to say something about legitimacy in her problem, but would
intentionally leave room for competitors to maneuver.

The solution to this conflict is to separate the task of suggesting
broader legitimacy definitions for a problem from the modeling
task that fixes the current understanding of legitimacy. Competi-
tions should just choose one task, or have two separate challenges:
one to suggest better data, and one to predict with the given data
only. The two tasks require different approaches to competition
organization, a thorough account of which is beyond the scope of
this paper. One approach for the first task that we will mention is
live prediction.

When the legitimacy definition for a data mining problem is iso-
morphic to the no-time-machine legitimacy definition (3) of pre-
dictive modeling, we can sometimes take advantage of the fact
that a learn-predict separation over time is physically impossible
to circumvent. We can then ask competitors to literally predict
targets in the future (that is, a time after submission date) with
whatever sources of data they think might be relevant, and they
will not be able to cheat in this respect. For instance the [JCNN
Social Network Challenge could have asked to predict new edges
in the network graph a month in advance, instead of synthetically
removing edges from an existing network which left traces and
the online original source for competitors to find.

5. DETECTION

Often the modeler doesn’t have control over the data collection
process. When the data are not properly tagged, the modeler can-
not pursue a learn-predict separation as in the previous section.
One important question is how to detect leakage when it happens
in given data, as the ability to detect that there is a problem can
help mitigate its effects. In the context of our formulation from
Section 3, detecting leakage boils down to pointing out how con-
ditions (2) or (9) fail to hold for the dataset in question. A brute-
force solution to this task is often infeasible because datasets will
always be too large. We propose the following methods for filter-
ing leakage candidates.

Exploratory data analysis (EDA) can be a powerful tool for identi-
fying leakage. EDA [14] is the good practice of getting more
intimate with the raw data, examining it through basic and inter-
pretable visualization or statistical tools. Prejudice free and me-
thodological, this kind of examination can expose leakage as
patterns in the data that are surprising. In the INFORMS 2008
breast cancer example, for instance, the fact that the “patient id” is
so strongly correlated with the target is surprising, if we expect ids
to be given with little or no knowledge of the patient’s diagnosis,
for instance on an arrival time basis. Of course some surprising

facts revealed by the data through basic analysis could be legiti-
mate, for the same breast cancer example it might be the case that
family doctors direct their patients to specific diagnosis paths
(which issue patient IDs) based on their initial diagnosis, which is
a legitimate piece of information. Generally however, as most
worthy problems are highly nontrivial, it is reasonable that only
few surprising candidates would require closer examination to
validate their legitimacy.

Initial EDA is not the only stage of modeling where surprising
behavior can expose leakage. The “IBM Websphere” example
discussed in Section 1 is an excellent example that shows how the
surprising behavior of a feature in the fitted model, in this case a
high entropy value (the word “Websphere”), becomes apparent
only after the model has been built. Another approach related to
critical examination of modeling results comes from observing
overall surprising model performance. In many cases we can
come to expect, from our own experience or from prior/competing
documented results, a certain level of performance for the prob-
lem at hand. A substantial divergence from this expected perfor-
mance is surprising and merits testing the most informative
observations the model is based on more closely for legitimacy.
The results of many participants in the INFORMS 2010 financial
forecasting Challenge are an example of this case because they
contradict prior evidence about the efficiency of the stock market.

Finally, perhaps the best approach but possibly also the one most
expensive to implement, is early in-the-field testing of initial
models. Any substantial leakage would be reflected as a differ-
ence between estimated and realized out-of-sample performance.
However, this is in fact a sanity check of the model’s generaliza-
tion capability, and while this would work well for many cases,
other issues can make it challenging or even impossible to isolate
the cause of such performance discrepancy as leakage: classical
over-fitting, tangible concept-drift, issues with the design of the
field-test such a sampling bias and so on.

A fundamental problem with the methods for leakage detection
suggested in this section is that they all require some degree of
domain knowledge: For EDA one needs to know if a good predic-
tor is reasonable; comparison of model performance to alternative
models or prior state-of-art models requires knowledge of the
previous results; and the setup for early in-the-field evaluation is
obviously very involved. The fact that these methods still rely on
domain knowledge places an emphasis on leakage avoidance
during data collection, where we have more control over the data.

6. (NOT) FIXING LEAKAGE

Once we have detected leakage, what should we do about it? In
the best-case scenario, one might be able to take a step back, get
access to raw data with intact legitimacy tags, and use a learn-
predict separation to reconstruct a leakage-free version of the
problem. The second-best scenario happens when intact data is
not available but the modeler can afford to fix the data collection
process and postpone the project until leakage-free data become
available. In the final scenario, one just has to make do with that
which is available.

Because of structural constraints at work, leakage can be some-
what localized in samples. This is true in both INFORMS 2008
and INFORMS 2009 competitions mentioned above, and also in
the IBM Websphere example. When the model is used in the field,
by definition all observations are legitimate and there can be no
active leaks. So to the extent that most training examples are also
leakage-free, the model may perform worse in deployment than in

562

the pilot evaluation — but would still be better than random guess-
ing and possibly competitive with models built with no leakage.
This is good news as it means that, for some problems, living with
leakage without attempting to fix it could work.

What happens when we do try to fix leakage? Without explicit
legitimacy tags in the data, it is often impossible to figure out the
legitimacy of specific observations and/or features even if it is
obvious that leakage has occurred. It may be possible to partly
plug the leak but not to seal it completely, and it is not uncommon
that an attempt to fix leakage only makes it worse.

Usually, where there is one leaking feature, there are more. Re-
moving the "obvious" leaks that are detected may exacerbate the
effect of undetected ones. In the e-commerce example from [4],
one might envision to simply remove the obvious ‘free shipping’
field, however this kind of feature removal succeeds only in very
few and simple scenarios to completely eradicate leaks. In particu-
lar, in this example you are still left with the ‘no purchase in any
department’ signature. Another example for this is KDD-Cup
2008 breast cancer prediction competition, where the patient ID
contained an obvious leak. It is by no means obvious that remov-
ing this feature would leave a leakage-free dataset, however. As-
suming different ID ranges correspond to different health care
facilities (in different geographical locations, with different
equipment), there may be additional traces of this in the data. If
for instance the imaging equipment’s grey scale is slightly differ-
ent and in particular grey levels are higher in the location with
high cancer rate, the model without ID could pick up this leaking
signal from the remaining data, and the performance estimate
would still be optimistic (the winners show evidence of this in
their report [8]).

Similar arguments can be made about feature modification per-
formed in INFORMS 2008 in an attempt to plug obvious leaks,
which clearly created others; and instance removal in organization
of INFORMS 2009, which also left some unintended traces [16].

In summary, further research into general methodology for lea-
kage correction is indeed required. Lacking such methodology,
our experience is that fully fixing leakage without learn-predict
separation is typically very hard, perhaps impossible, and that
modeling with the remaining leakage is often the preferred alter-
native to futile leakage removal efforts.

7. CONCLUSION

It should be clear by now that modeling with leakage is undesira-
ble on many levels: it is a source for poor generalization and over-
estimation of expected performance. A rich set of examples from
diverse data mining domains given throughout this paper add to
our own experience to suggest that in the absence of methodology
for handling it, leakage could be the cause of many failures of data
mining applications.

In this paper we have described leakage as an abstract property of
the relationship of observational inputs and target instances, and
showed how it could be made concrete for various problems. In
light of this formulation an approach for preventing leakage dur-
ing data collection was presented that adds legitimacy tags to each
observation. Also suggested were three ways for zooming in on
potentially leaking features: EDA, ex-post analysis of modeling
results and early field-testing. Finally, problems with fixing lea-
kage have been discussed as an area where further research is
required.

Many cases of leakage happen when in selecting the target varia-
ble from an existing dataset, the modeler neglects to consider the
legitimacy definition imposed by this selection, which makes
other related variables illegitimate (e.g. large purchases vs. free
shipping). In other cases, the modeler is well aware of the implica-
tions of his selection, but falters when facing the tradeoff between
removing potentially important predictive information and ensur-
ing no leakage. Most instances of internal leakage in competitions
were in fact of this nature and have been created by the organizers
despite best attempts to avoid it.

We hope that the case studies and suggested methodology de-
scribed in this paper can help save projects and competitions from
falling in the leakage trap and allow them to encourage models
and modeling approaches that would be relevant in their domains.

8. REFERENCES

[1] Hastie T., Tibshirani, R. and Friedman, J. H. 2009. The Ele-
ments of Statistical Learning: Data Mining, Inference, and
Prediction. Second Edition. Springer.

Kohavi, R., Brodley, C., Frasca, B., Mason, L., and Zheng,

Z.2000. KDD-cup 2000 organizers’ report: peeling the
onion. ACM SIGKDD Explorations Newsletter. 2(2).

Kohavi, R. and Parekh, R. 2003. Ten supplementary analyses
to improve e-commerce web sites. In Proceedings of the
Fifth WEBKDD Workshop.

Kohavi, R., Mason L., Parekh, R. and Zheng Z. 2004. Les-
sons and challenges from mining retail e-commerce data.
Machine Learning. 57(1-2).

Lo, A.W. and MacKinlay A.C. 1990. Data-snooping biases
in tests of financial asset pricing models. Review of Financial
Studies. 3(3) 431-467.

Narayanan, A., Shi, E., and Rubinstein, B. 2011. Link Pre-
diction by De-anonymization: How We Won the Kaggle So-

(2]

563

cial Network Challenge. Proceedings of the 2011 Interna-
tional Joint Conference on Neural Networks (IJCNN). Pre-
print.

Nisbet, R., Elder, J. and Miner, G. 2009. Handbook of Statis-
tical Analysis and Data Mining Applications. Academic
Press.

Perlich C., Melville P., Liu Y., Swirszcz G., Lawrence R.,
Rosset S. 2008. Breast cancer identification: KDD cup win-
ner’s report. SIGKDD Explorations Newsletter. 10(2) 39-42.

Pyle, D. 1999. Data Preparation for Data Mining. Morgan
Kaufmann Publishers.

[10] Pyle, D. 2003. Business Modeling and Data Mining. Morgan
Kaufmann Publishers.

[11] Pyle, D. 2009. Data Mining: Know it All. Ch. 9. Morgan
Kaufmann Publishers.

[12] Rosset, S., Perlich, C. and Liu, Y. 2007. Making the most of
your data: KDD-Cup 2007 “How Many Ratings” Winner’s
Report. ACM SIGKDD Explorations Newsletter. 9(2).

[13] Rosset, S., Perlich, C., Swirszcz, G., Liu, Y., and Prem, M.
2010. Medical data mining: lessons from winning two com-
petitions. Data Mining and Knowledge Discovery. 20(3) 439-
468.

[14] Tukey, J. 1977. Exploratory Data Analysis. Addison-Wesley.

[15] Widmer, G. and Kubat, M. 1996. Learning in the presence of
concept drift and hidden contexts. Machine Learning. 23(1).

[16] Xie, J. and Coggeshall, S. 2010. Prediction of transfers to
tertiary care and hospital mortality: A gradient boosting deci-
sion tree approach. Statistical Analysis and Data Mining, 3:
253-258.

(7]

(8]

(9]

