
1 23

Applied Intelligence
The International Journal of Artificial
Intelligence, Neural Networks, and
Complex Problem-Solving Technologies
 
ISSN 0924-669X
 
Appl Intell
DOI 10.1007/s10489-016-0826-7

Learning weighted distance metric from
group level information and its parallel
implementation

Hamidreza Mohebbi, Yang Mu & Wei
Ding



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Appl Intell
DOI 10.1007/s10489-016-0826-7

Learning weighted distance metric from group level
information and its parallel implementation

Hamidreza Mohebbi1 ·Yang Mu1 ·Wei Ding1

© Springer Science+Business Media New York 2016

Abstract The performance of many machine learning algo-
rithms heavily relies on the distance metrics. Usually a
distance metric is learned from a training set, while other
valuable information, such as group structure, is not. Sam-
ples within a short distance form a group, which may
contain several classes; each sample may have partial mem-
berships to multiple groups. The group structure exists in
both training and test sets. Additionally, outliers have neg-
ative effects on a distance metric. Increasing the number
of noisy samples during the learning phase may increase
the negative effects of outliers. Use of weights is one way
to alleviate this problem when more similar samples are
given more weight. This paper introduces a learning tech-
nique for weighted-distance metric. This semi-supervised
method learns labeled information from training set and
identifies groups among the samples from test set to form a
metric space. In the experiments, the nearest neighbors algo-
rithm is used as a classifier. The proposed weighted-distance
metric improves the classification accuracy by more than
10 %. Furthermore, parallel computing with optimized CPU
and GPU code is developed to speed up the computing
time. Two parallel implementations with Matlab and CUDA
are compared in this research. Parallel code that uses both

� Hamidreza Mohebbi
Hamidreza.Mohebbi001@umb.edu

Yang Mu
yangmu@cs.umb.edu

Wei Ding
wei.ding@umb.edu

1 Computer Science Department, University of Massachusetts
Boston, Boston, MA 02125, USA

CPU and the GPU achieves more than 3.7 times speedup
compared to the traditional CPU code in the experiments.

Keywords Distance learning · Semi-supervised learning ·
Parallel computing · GPU accelaration

1 Introduction

Often samples of the same class have closer distances
to each other than samples of other classes. This cre-
ates a group structure among the samples. Each sample
contributes to a group based on its distance and its contribu-
tion, which is moderated as a weight. This group structure
exists both in the training and test sets, the information
derived from the group structure can improve the classifi-
cation accuracy. This paper proposes a method to learn this
group structure from both labeled training and unlabeled
test sets. The improvements on classification accuracy are
demonstrated with extensive experiments.

Machine learning algorithms often learn the distance
metric from class-labeled information of training data only
and miss the group-level information which may contain the
group structure of the classes. Similar samples of a class
create a group, and dissimilar ones belong to another group.
A group can contain samples from more than one class, and
each sample may contribute to more than one group. The
proposed method assigns a weight to each sample to bring
out the group and class structures. A sample may have dif-
ferent weights for different groups. A classifier may achieve
higher accuracy by identifying groups of similar and dis-
similar samples. This is because the performance of many
classification and clustering algorithms, such as k-nearest-
neighbors (KNN) and k-means, depends on distance metrics

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10489-016-0826-7-x&domain=pdf
http://orcid.org/0000-0001-8300-6042
mailto:Hamidreza.Mohebbi001@umb.edu
mailto:yangmu@cs.umb.edu
mailto:wei.ding@umb.edu


H. Mohebbi et al.

over input samples [24]. The classification may be more
accurate if the distance metric expresses the statistical prop-
erties of input data more clearly. The proposed weighted
distance metric (WDM) learns the metrics from both labeled
training and unlabeled test data to create group structure,
and then combines these two parts to project them into a
new space where instances of the same class are brought
together. This is the novelty and major difference between
the WDM and other distance learning methods [2, 13, 14].

One way to search for groups in the samples is to limit
search space to nearest neighbors. The proposed method
looks among the nearest neighbors of each class to iden-
tify group structure. The sample with shortest distance is the
most similar member of a class, and the one with the far-
thest distance among nearest neighbors often belongs to a
different class. The ideal distance metric brings samples of a
class together, and thus gives more weight to members of its
own class than those of other classes. TheWDM creates two
weight vectors from training and test sets; these two vectors
are then combined into one weight vector. Another advan-
tage of a weighted-distance metric is that it reduces the
sensitivity of KNN-based classifiers to the number of neigh-
bors. It has been shown that the negative effect of scarcity
and noise in data dramatically increases with a higher num-
ber of neighbors in KNN-based classifiers [6]. This article

describes a new KNN-based classifier called KNN-WDM
that uses the KNN classifier on the proposed weighted-
distance metric. Fig. 1 shows an overview of the WDM
distance learning process.

Time complexity of computing a distance metric among
n samples is O(n2). Parallel computing divides tasks and
executes them concurrently. Modern CPUs have several
cores. GPU devices with thousands of cores can provide
greater processing power than CPUs. However, GPUs may
not be the best solution for all computations. One weak-
ness of GPUs is the overhead of memory communication
between the host CPU and the device. A GPU task with high
communication overhead may be slower than good parallel
implementation on a CPU. Our goal in this research is to
integrate CPU and GPU computation to improve the over-
all execution time. Based on runtime profiling, we chose to
do distance calculation on the GPU and rest of the compu-
tation on the CPU. Fig. 1 illustrates the parallel architecture
of WDM.

Our contributions towards this research are:

– We introduce a weighted-distance metric that learns
group information from both labeled training and unla-
beled test sets. The technique reduces the effect of
outliers and increases the classification performance.

Fig. 1 Overview of the WDM architecture: The WDM learns a
weighted-distance metric by combining class and group informa-
tion from labeled training and unlabeled test data, respectively.
WDT raining and WDT est are the weighted-distance metrics learned

from the training and test sets. WD combines WDT raining and
WDT est . Parallel computation by using both CPU and GPU greatly
speeds up the computation

Author's personal copy



WDM: weighted distance metric

The maximum increase of classification accuracy is
more than 10 %.

– We reduce the sensitivity of a KNN classifier to the
number of neighbors.

– We improve the execution time by combining CPU and
GPU parallel computations. The maximum, minimum,
and average of speedup achieved by the parallel imple-
mentation of WDM is more than 3.7, 1.6, and 2.5 times
than serial CPU code, respectively.

2 Related work

The related work of this study categorizes into two parts:
distance metric learning, and the GPU acceleration of
machine learning algorithms.

2.1 Distance metric learning

The distance metric learning category of related work
divides into three subcategories. The first subcategory con-
tains local classification methods like the SVM method.
The second subcategory includes the algorithms that use
similarity and dissimilarity constraints to build a global-
general metric over all data set. The third subcategory
comprises semi-supervised methods that use both labeled
and unlabeled information from both training and test
sets.

Many efforts [18, 20] have been made to define or
learn either local or global metrics for supervised classi-
fication. While these methods often created good metrics
for classification, it is less clear whether they can be used
as general metrics for other algorithms such as K-means.
Especially if the information is less structured than the tra-
ditional, homogeneous-labeled training sets expected by the
algorithms. The WDM method addressed this problem by
learning group-level information from both labeled training
and unlabeled test sets. The distance metric produced by this
method would be more general because it uses different data
sources.

The Xings method [24] is one of the related approaches
that tried to satisfy both similarity and dissimilarity

constraints simultaneously by building constraints globally
over the entire data set. The opposite of global are local
constraint methods like large margin nearest neighbor
(LMNN) [21] and local Fisher discriminant analysis
(LFDA) [19]. Local constraint methods outperformed
global approaches in multimodal distribution environments,
because local methods utilized only neighborhood con-
straints rather than all constraints in the data set to learn
the distance [12]. The WDM followed the local constraint
approach.

The proposed method builds a weighted-distance met-
ric from the labeled training set and combines it with
group-level information from the unlabeled test set. This
differs from the related approaches that use only labeled
training data in order to build the model. The WDM is a
semi-supervised approach, similar to Semi-supervised Dis-
criminant Analysis (SDA) [2] and Bipart [14] that used
labeled and unlabeled data. The difference between WDM
and methods like SDA is that it learns group-level informa-
tion from both training and test sets. The proposed method
combines the information from these two sources with a
projection matrix. In addition, similar and dissimilar sam-
ples contribute to this process based on their similarity and
dissimilarity to the query sample. In order to reach this goal,
WDM assigns a weight to each sample.

Table 1 compares WDM method with the other state-of-
the-art algorithms using criteria of Category, Detect Group
Structure, Sensitivity to Outliers, and Weight Learning
features. Category indicates whether the algorithms use
unsupervised, supervised, and semi-supervised approaches.
Similar classes create a group and WDM detects this
structure. Sensitivity to Outliers represents the relation-
ship between the accuracy of a classifier and search
space. Weight Learning indicates whether the methods use
weighted samples when computing distance metrics. From
each category of the related methods, the most similar
method to WDM selected for this comparison. The list
includes Weighted-KNN because WDM uses a KNN clas-
sifier in this study. SVM, LMNN, and Bipart methods
represent the choice for the first, second, and third groups
of the related methods, respectively. This table shows the
novelties of the proposed method, including detecting group

Table 1 The feature comparison of the wdm method and the related approaches

Distance Metric Algorithm Category Detect Group Structure Sensitivity To Outliers Weight Learning

WDM Semi-Supervised � Low �
Weighted-KNN Supervised × Low �
SVM Supervised × High ×

LMNN Supervised × High ×

Bipart Semi-Supervised × High ×

Author's personal copy



H. Mohebbi et al.

structure, reducing the sensitivity to outliers, and learn-
ing weights based on the similarity and dissimilarity of
constraints.

2.2 GPU acceleration of machine learning algorithms

Data scientists in industry and academia have used GPUs
for machine learning across a variety of applications includ-
ing image classification, video analytics, speech recogni-
tion, and natural language processing. Researchers with
sophisticated, multi-level, deep neural networks have per-
formed feature detection from massive amounts of training
data [16]. The communication overhead between compo-
nents has been one of the challenges of a distributed learning
system. Coates et al. [4] proposed an approach with high

Table 2 Definition of symbols in the manuscript

Notation Description

X Data set of n samples with d dimensions

xi Data sample i

Y Labels for each element in X

yi Label for data sample xi

Gi i-th group of samples, {xGi

1 , . . . , x
Gi

ki
}

yGi Label of group Gi

ki Number of elements in group Gi

A The unified objective distance metric

A1 The unified objective distance

metric from training set

A2 The unified objective distance metric from test set

dA Distance metric defined by matrix A

L Alignment matrix

W Weighted distance metric learned from

both training and test sets

W1 Weighted distance metric learned from training set

W2 Weighted distance metric learned from test set

wt Weight of t-th nearest neighbor of sample xi

Gs
i Group nearest Gi with same class label

Gd
i Group nearest Gi with different class label

ks
i Number of elements in group Gs

i

with same class label

kd
i Number of elements in group Gd

i

with different class label

x
Gs

i
p p-th element from group Gs

i

x
Gd

i
q q-th element from group Gd

i

ws Weight vector for group Gs
i with same class label

wd Weight vector for group Gd
i

with different class label

wi Weight vector for sample xi learned

from both training and test sets

β Balancing parameter for training and test metrics

n1 number of samples in test set

speed communication infrastructure along with GPU pro-
cessing power to scale up a deep learning algorithm.

Many libraries and frameworks such as cuBLAS [5]
and Matlab Parallel Computing Toolbox [11] used GPU
for high performance computing. These libraries used opti-
mized parallel matrix operations to provide good perfor-
mance. Another approach is to implement specific opera-
tions directly with CUDA [15], which is the hardest method
in terms of implementation and debugging. In order to
achieve high performance in the WDM, the bottlenecks in
the code identified and vectorization techniques applied to
reduce the number of instructions in the code.

3 The WDM method

This section explains the weighted-distance metric learning
and its parallel implementation. Table 2 shows the definition
of symbols in this paper.

3.1 Weighted distance metric learning

The WDM method is a semi-supervised learning approach
that learns distance metric from both labeled and unlabeled
data. There are two components of the WDM metric. One
metric is learned from the similar and dissimilar groups
of the training set, and the other is learned from those of
the test set. These two are combined into a single met-
ric, which the data is projected for classification. Some
may think that using unlabeled information from the test
set is cheating. However, its been shown that the use of
unlabeled data in conjunction with labeled information can
produce considerable improvements in learning accuracy.
The semi-supervised learning is useful when there are rel-
atively few labeled points and a large number of unlabeled
points. It is directly relevant to a lot of practical problems
where it is expensive to produce labeled data, e.g., the auto-
matic classification of web pages [3]. This class of learning
methods falls between unsupervised (without any labeled
training data) and supervised learning (with completely
labeled training data).

The major difference between the approach of this
paper and typical classification is in using group struc-
ture in classification. Let a data set be (X, Y ) =
{(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}, where xi ∈ IRn, and
yi is the label of xi . The goal is to generate a model to
classify unknown samples. Instead of classifying unknown
samples directly, groups are first identified as Gi =
{xGi

1 , . . . , x
Gi

ki
}, where ki is the number of samples in group

Gi . The corresponding label yGi of Gi is defined as yGi =
y

Gi

1 =, . . . , = y
Gi

ki
.

Consider the task of predicting the label of query
sample xi . The Mahalanobis distance (dA) between two

Author's personal copy



WDM: weighted distance metric

samples (xi, xj ) can be defined by (1), where A is positive
semi-definite. Note that when A is the identity matrix, this
simplifies to Euclidean distance.

dA(xi, xj ) =
√

(xi − xj )
T A(xi − xj ) (1)

Equation (1) expressed as (2) with the Cholesky decompo-
sition [23]. This replaces A with WWT , where W is the
weighted-distance metric.

dA(xi, xj ) =
√

(xi − xj )
T WWT (xi − xj ) = ‖WT (xi − xj )‖ (2)

The WDM method learned distance metric from unlabeled
test W1 and the labeled training W2 sets by projecting to W1,
then to W2, as in (3).

dA(xi, xj ) =
√

(xi − xj )
T W2W2

T W1W1
T (xi − xj )

= ‖W2
T W1

T (xi − xj )‖ (3)

In order to learn the projection matrices W1 and W2, it is
necessary to find a metric space that keeps similar samples
in a group and dissimilar ones in another group. It means
that, for samples in a group, the distances among samples
of the same class should be minimized and those among
samples of different classes should be maximized.

In the KNN-based classifiers, when the size of training
set approaches infinity, the error rate approximates the opti-
mal Bayesian error rate [6]. In other words, the accuracy
of the KNN classifier decreases with increasing values of k.
Also, to find the right value of k is one of the challenges
in KNN, which can have a significant impact on the perfor-
mance of KNN-based classifiers. If k is very small, the local
estimate tends to be very poor for sparse and noisy data. If k

is very large, the accuracy of classification decreases due to
outliers from other classes [25]. The idea behind the WDM
method is to reduces the sensitivity of KNN-based classi-
fier to k and improves the accuracy of the classification. In
the WDM method a weight assigns to each sample, which
shows the level of similarity or dissimilarity of the sample in
the group. TheWDM creates a more general distance metric
with higher values of k.

The first way to assign the weights is to normalize
the distance between the nearest and farthest elements. (4)
shows this method. The nearest element gets weight of one,
and the farthest element gets weight of zero. The weight of
other elements are scaled linearly by their distances. In (4),
wt is the weight of t-th nearest neighbor of query xi , and the
k is the number of neighbors in the KNN algorithm.

wt =
{

d(xi ,xk)−d(xi ,xt )
d(xi ,xk)−d(xi ,x1)

if d(xi, xk) �= d(xi, x1)

1 if d(xi, xk) = d(xi, x1)
(4)

With the weight vector w = {w1, . . . , wk}, the KNN
becomes less sensitive to the choices of k than the related
methods. However, it is still not robust to large values of k,
and it still suffers from the issue of outliers. The WDM uses

a dual weight approach to make it more robust to the change
of k. (5) represents normalization of the weight in (4). With
this change the weight of each nearest neighbor reduces,
except for the first nearest and the k-th nearest neighbor. It
avoids giving too much weight to the outliers, and therefore
increases classification accuracy.

wt =
{

d(xi ,xk)−d(xi ,xt )
d(xi ,xk)−d(xi ,x1)

× d(xi ,xk)+d(xi ,x1)
d(xi ,xk)+d(xi ,xt )

if d(xi, xk) �= d(xi, x1)

1 if d(xi, xk) = d(xi , x1)

(5)

Previous studies [19, 21] showed that building local con-
straints from neighbors leads to higher accuracy than the
global constraint method in the multimodal distributions.
For any sample xi in group Gs

i , similarity constraints are
formed from other elements in the same group. In the same
way the dissimilarity constraints are built from groups with
different class labels denoted asGd

i . Based on (5), theWDM
method uses a dual weighted-distance metric, which cre-
ates a distance vector for similar and dissimilar classes. The
weights are between one and zero such that the nearest ele-
ment has weight one, and the farthest element has a weight
close to zero.

The distance metric is more general when more samples
are incorporated. In this study the value for the number of
neighbors is twice (2k) of Bipart (k). In the WDM, the near-
est k samples are close to the sample point that they are good
enough with existing weights. However, the farther k sam-
ples have longer distances, and their weights are adjusted
according to (5).

Let n1 be the number of elements in training set for sam-
ple xi , and let ks

i be the number of elements in the group Gs
i .

Let ks
i be vectors in the nearest group with the same class

label x
Gs

i
p ∈ Gs

i . Let w
s = [ws

1, . . . , w
s
ks
i
] be the weight vec-

tor of the same class and kd
i be the number of elements in

dissimilar group (Gd
i ). The following shows the derivation

of W1. Similar derivation works for W2. (6) minimizes the
similarity constraints, where dA1 is Euclidean distance from
the training set.

argminA1

n1∑
i=1

ks
i∑

p=1

ws
p.d2

A1

(
xi, x

Gs
i

p

)
(6)

In the same way, (7) maximizes dissimilarity constraints.

argmaxA1

n1∑
i=1

kd
i∑

q=1

wd
q .d2

A1

(
xi, x

Gd
i

q

)
(7)

Equations (6) and (7) combine into one equation using the
scaling parameter β:

argminA1

n1∑
i=1

⎛
⎝

ks
i∑

p=1

ws
p.d2

A1

(
xi, x

Gs
i

p

)
− β

kd
i∑

q=1

wd
q .d2

A1

(
xi, x

Gd
i

q

)⎞
⎠

(8)

Author's personal copy



H. Mohebbi et al.

In the above equations, A1 = WT
1 W1 is the distance metric

learned from the training set. Similar equations are obtained
for the labeled test set A2 = WT

2 W2. The weights vector
with the balancing parameter defined as this:

wi =
[
ws
1, . . . , w

s
ks
i
, −β.wd

1 , . . . , −β.wd

kd
i

]
(9)

Equation 8 is rewritten belowwhere the i-th row of matrixX

is Xi = [xi, G
s
i , G

d
i ] = [xi, x

Gs
i

1 , . . . , x
Gs

i

ks
i

, x
Gd

i

1 , . . . , x
Gd

i

kd
i

].

argminA1

n1∑
i=1

⎛
⎝

ks
i +kd

i∑
j=1

d2
A1

(Xi{1}, Xi{j + 1}) (wi)j

⎞
⎠

= argminA1

n1∑
i=1

⎛
⎝

ks
i +kd

i∑
j=1

‖W1 (Xi{1} − Xi{j + 1}) ‖22(wi)j

⎞
⎠

= argminA1

n1∑
i=1

tr
(
WT

1 XiLiX
T
i W1

)
(10)

where Xi{j} is the j -th column of matrix Xi , (wi)j is the
j -th element of wi , and L is the alignment matrix computed
by following equation:

L =
n1∑
i=1

L(Xi, Xi) + Li (11)

The Li matrix is defined by (12) such that Li ∈
IR

(
ks
i +kd

i +1
)×(

ks
i +kd

i +1
)
.

Li =
⎡
⎢⎣

ks
i +kd

i∑
j=1

(wi)j −wT
i

−wi diag(wi)

⎤
⎥⎦ (12)

3.2 Parallel computation

Several ways explored to parallelize the computation,
including writing CUDA [15] code directly, calling CUDA
libraries such as cuBLAS [5], and using other tools such as
Matlab Parallel Computing Toolbox [11]. Writing CUDA
code is the most involved, because programmers need to
understand the hardware architecture. For instance, GPU
devices handle the floating point calculations differently
from CPUs, which raise some issues like accuracy and pre-
cision [22]. However, efficient CUDA code can provide
good performance. Many matrix operations implemented
and are available in CUDA libraries. Using existing library
routines saves time in code development. However, pro-
grammers need to integrate the CUDA code with other pro-
gramming languages and development tools, which reduce
readability and maintainability due to heterogeneous code.
Matlab [10] is a solution to these issues, and its Paral-
lel Computing Toolbox delivers high performance along
with simplicity, ease of debugging, maintainability, and

readability. Each of these methods have its own advantages
and disadvantages. In this experiment two versions of the
parallel code with CUDA and Matlab Parallel Computing
Toolbox are implemented and compared.

The first step to create parallel code from a serial one
is to identify the parts of the code that take the most of
computation time. These parts are bottlenecks in achieving
faster execution. One of the bottlenecks is the loop. There
are two big loops in the WDM method. The first one is
based on (10) that calculates the weighted-distance met-
ric. The algorithm (1) shows the pseudo code for (10). The
second one runs the KNN classifier on sample data (3) –
algorithm (2) shows the pseudo code. The main operation
on the KNN classifier is the Euclidean distance calculation
between the samples, and it is the most time consuming part
of the calculation in (3). An explicit Matlab loop can be
removed by apply a function to each element of an array
(arrayfun), which uses a fast, implicit loop to run the
elements of the array through the function. This mechanism
applied to the algorithms (1) and (2) and the optimized algo-
rithms are shown by algorithms (3) and (4), respectively.
Using arrayfun has significant impact on the total exe-
cution time. Other improvements like the use of vectorized
operations and the removal of the if-else statements also
lead to faster computation.

The next step is to convert the efficient CPU code into
the parallel version on the GPU platform. This step is
implemented with Matlab Parallel Computing Toolbox and
CUDA code.

The Matlab Parallel Computing Toolbox provides
options for element-wise arrayfun functions on GPU.
Each element of the array is processed by a GPU thread. The
ideal parallel solution is to run arrayfun of (3) and (10)
on the GPU. However the arrayfun method has some
limitations; for instance all the input elements must have
same size and same type [17]. But (3) and (10) have inputs

Fig. 2 Overview of the parallel implementation of WDM. The CPU
threads send each part of the job to a group of the GPU cores, which
organized as a block in the GPU. Each block calculates a part of output
matrix. The blocks in the GPU are organized as a grid

Author's personal copy



WDM: weighted distance metric

Author's personal copy



H. Mohebbi et al.

with different sizes. There are two solutions for this prob-
lem. The first solution is the use of global variables and the
second, includes the handle class which provides a shared
reference to the object. However, Matlab does not send
shared variables or references to the GPU [17], because of
consistency issues among copies of shared variables and ref-
erences. Thus for this study, the ideal solution is not feasible
with the Matlab Parallel Computing Toolbox. The next best
solution is a hybrid approach that uses optimized CPU code
and GPU together. Fig. 2 shows an overview of this parallel
approach. (3) and (10) are implemented by optimized CPU
code and the Euclidean distance calculation in (3) is exe-
cuted on the GPU. In other words, a group of CPU threads
are running the code, and each CPU thread sends a job to
the GPU for Euclidean distance calculation. In the GPU, a
group of threads called a block is responsible for execut-
ing a job, and blocks are grouped into a grid. Threads of a
single block will be executed on a multiprocessor. Threads
are synchronized and they use shared data cache in a block.
A function is executed on the GPU as a grid of blocks of
threads. The GPU devices run different functions as multi-
ple grids simultaneously. Fig. 2 represents thread, block and
grid organization in the GPU.

Many general functions are implemented as part of
Matlab Parallel Computing Toolbox and there are built-in
functions used for general matrix operations. These func-
tions are used in the GPU implementation of the Euclidean
distance calculation of (3). In particular, the gpuArray
function creates an array data structure in the GPU memory.
Each index of the array represents a part of the data in the
host memory. After array creation, the element-wise oper-
ations are executed on the GPU. It means that each GPU
core is responsible for providing the results for a chunk
of elements in the array. Another function named gather
retrieves a gpuArray from the GPU memory into the
Matlab workspace [11].

The CUDA implementation follows the structure of the
hybrid approach which is explained in Fig. 2. Parts of the
code that can not be implemented efficiently with CPU
or parallel Matlab code are implemented by the CUDA.
The weighted-distance metric calculation in algorithm (1)
is selected for CUDA implementation. Based on runtime
profiling, this part is one of the time consuming parts
of the code. Algorithm (5) represents the CUDA pseudo
code for weighted-distance metric. The CUDA code calcu-
lates the L matrix represented by (11). In this code, each
thread is responsible for reading one record of data from
the Euclidean distance matrix (D) and ground truth (gnd)
inputs. Each thread fills a part of output (L) matrix. The
L matrix is the projection of similar and dissimilar sam-
ples to the i-th sample. The similar and dissimilar samples
are different for each sample. Therefore each thread writes
to different places of the output matrix. Then the mem-
ory access pattern is irregular. This irregular access slows
down the computation. In general, GPU devices are good in
computation but weak in memory access.

Data transfer time is another consideration in using GPU.
The total time is the sum of the execution time on the GPU
plus the transfer time of the data and results between the
host memory and the GPUmemory. When the size of data is
small, the CPU is faster than the GPU, because of the com-
munication overhead for GPU. However, when the data is
big enough, the total time on GPU is less than CPU compu-
tation time. Based on this, the size of intermediate variables
must taken into the account, and only large chunks of data
should sent to the GPU for processing.

4 Distance metric evaluation

Four data sets are used for distance metric evaluation. The
criteria are accuracy, precision, and recall. The first data set

Author's personal copy



WDM: weighted distance metric

is the Diffuse Large B-cell lymphoma (DLBCL) [9]. The
DLBCL data set is classified into breast cancer subtypes.
The task is to identify the common subtypes in two inde-
pendent data sets, which makes this data set good candidate
for evaluation of the WDM method. The data set contains
genomic expression profiles of 129 patients. The data was
generated with an one-channel oligonucleotide microarray
and 2-channel custom cDNA microarrays. There are four
category of breast cancer subtypes, D 1, D 2, D 3, and D
4. Each patient record has 3,795 features. In this evalua-
tion, the number of features is reduced to 400 with the PCA
method.

The second data set is the Madelon [7]. This is an
artificial data set from the NIPS 2003 feature selection
challenge. This is a two-class classification problem with
continuous input variables. It has 4,400 instances, and
the number of features is 500, which is reduced to 10
with the PCA approach. The difficulty in classifying this
data set is that the problem is multivariate and highly
non-linear.

The third data set is the Heart disease (Hungary) [1]. It
contains the information of 294 patients, and the classes
refer to the presence of heart disease in the patient. Class 0
means the patient has no heart disease, and Classes 1 to 4
identify different heart diseases. The original data set con-
tains 76 features, but a subset of 14 features selected for
evaluation of the WDM.

The fourth data set is the Mice Protein Expression [8].
The data set consists of the expression levels of 77 pro-
teins/protein modifications that produced detectable signals
in the nuclear fraction of cortex. There are 38 control mice
and 34 trisomic mice (Down syndrome), for a total of 72
mice. In the experiments, 15 measurements were registered
of each protein per sample/mouse. Therefore, for control
mice, there are 38 × 15 = 570 measurements, and for
trisomic mice, there are 34 × 15 = 510 measurements.
The data set contains a total of 1,080 measurements per
protein. Each measurement can be considered as an inde-
pendent sample/mouse. The eight classes of mice described
based on features such as genotype, behavior and treatment.
According to genotype, mice can be control or trisomic.
Based on behavior, some mice have been stimulated to
learn (context-shock) and others have not (shock-context).
In order to assess the effect of the drug memantine in recov-
ering the ability to learn in trisomic mice, some mice have
been injected with the drug and others have not. The aim is
to identify subsets of proteins that are discriminant between
the classes. The Classes of Mice Protein Expression data set
are:

– c-CS-s: control mice, stimulated to learn, injected with
saline (9 mice).

– c-CS-m: control mice, stimulated to learn, injected with
memantine (10 mice).

Author's personal copy



H. Mohebbi et al.

– c-SC-s: control mice, not stimulated to learn, injected
with saline (9 mice).

– c-SC-m: control mice, not stimulated to learn, injected
with memantine (10 mice).

– t-CS-s: trisomy mice, stimulated to learn, injected with
saline (7 mice).

– t-CS-m: trisomy mice, stimulated to learn, injected with
memantine (9 mice).

– t-SC-s: trisomy mice, not stimulated to learn, injected
with saline (9 mice).

– t-SC-m: trisomy mice, not stimulated to learn, injected
with memantine (9 mice).

The results of the WDM method are compared with five
related distance metric methods. These methods includes
the related approaches in Table 1. The classic KNN and
Weighted KNN classifiers are selected to compare the
proposed distance metric with Euclidean and weighted
Euclidean distances, respectively. The weights of Weighted
KNN classifier have inverse relationship with the square of
distance. In what follows, KNN stands for the classic KNN,
Weighted KNN stands for KNN classifier with weights for
distance, Bipart stands for the Bipart metric in conjunc-
tion with KNN, and KNN-WDM for KNN with the WDM
metric.

KNN-WDM and these other methods are compared
based on accuracy, precision, and recall. Accuracy is the
ratio of correct classifications over the total number of sam-
ples. The reported accuracy is the mean of accuracies from
10 independent runs. Precision is the ratio of the number of
relevant records retrieved to the total number of irrelevant
and relevant records retrieved. Recall is the ratio of the num-
ber of relevant records retrieved to the number of relevant
records. 10-fold cross validation (CV ) and random splitting
(RS) are used to prevent overfitting. RS 1, . . . , RS 9 rep-
resent splitting the data into labeled training and test sets
incrementally from 10 to 90 percent, respectively.

The performance of parallel and GPU implementations
are compared to the serial implementation. The input for
this evaluation is random data, and runtime is measured in

minutes. Different numbers of records in the input data are
used to compare performance. The KNN-WDM and other
methods are implemented with the 64-bit Matlab R2011b
installed on CentOS v6.6. The server has two 3.5 GHz Intel
Xeon E5-2643 v2 CPUs with 128 GB RAM and 4.0 TB hard
drive. The GPU device used in this study is Nvidia Tesla
K40 with 2,880 CUDA cores and 12 GB RAM.

4.1 Classification results

In this section, the classification results of KNN-WDM
are compared with the accuracy of related classifiers for
DLBCL, Madelon, Heart disease, and Mice Protein Expres-
sion data sets.

Table 3 shows the accuracy of multiple classification
for the DLBCL data set. The KNN-WDM method is more
accurate than other methods in most of the cases for the
DLBCL data set. The best results are obtained by using
RS 5, RS 6, RS 7, RS 8, and CV methods. It is observed
that when the size of the training set is relatively small to
the test set (RS 1, . . . , RS 4), SVM performs better than
other approaches. One explanation to this behavior of WDM
is that when the size of training set is relatively small to
the size of test set, the algorithm can not detect the group
structures properly. This is because WDM at first builds
the groups structure based on the training set and then uses
the test set to make the group structure clearer. This also
explains the increase in accuracy of KNN-WDM when the
size of training set is greater than or equal to the size of
test set. Other factors such as use of weights and distin-
guishing similar and dissimilar groups also affect accuracy
of KNN-WDM.

Table 4 shows the results of the precision evaluation
for the DLBCL data set. Precision is measured with cross
validation and it reveals that KNN-WDM can distinguish
more relevant samples to all the records for D2 and
D4 subtypes than the other methods. Precision of SVM
is higher than the other methods for D1 and D3 sub-
types. Table 5 represents the values of recall for cross

Table 3 The multiple
classification accuracy (%)
comparison of knn-wdm
method and the related
classifiers fOR dlbcl data set

SVM LMNN KNN Weighted KNN Bipart KNN-WDM

CV 73.7973 73.6927 64.0852 71.0903 76.8263 78.3746

RS 1 53.4483 44.3499 49.569 36.8966 45.9483 46.8966

RS 2 64.0777 59.6511 52.3301 45.9223 59.6117 60.2913

RS 3 71.1111 62.4444 58.3333 52.4444 66.6667 65.4444

RS 4 71.4286 68.7012 62.4675 61.1688 70.6494 71.039

RS 5 73.4375 72.0312 63.5938 58.9063 71.5625 73.5938

RS 6 69.2308 72.5 58.6538 63.6538 74.8077 82.3077

RS 7 69.2308 72.8205 60.5128 63.0769 76.4103 82.3077

RS 8 73.0769 69.6153 63.0769 63.0769 76.5385 77.3077

RS 9 76.9231 66.1538 62.3077 70.7692 78.4615 76.9231

Author's personal copy



WDM: weighted distance metric

Table 4 The precision (%)
comparison of knn-wdm
method and the related
classifiers fOR dlbcl data set.
the precision measured fOR
each category and only cv
experiments were considered

SubType SVM LMNN KNN Weighted KNN Bipart KNN-WDM

D1 63.3333 30.6968 22.9147 22.5556 40.509 43.5238

D2 60.45 53.5107 41.729 50.9532 59.219 61.608

D3 64.4167 38.3 22.46 28.231 45.454 50.5

D4 64.1242 61.229 52.615 58.3998 66.696 67.750

validation. It shows that KNN-WDM can predict more
relevant records for D1 and D4 subtypes than other meth-
ods, and for D2 and D3 subtypes, it is not far behind
Bipart. The main reason for these results is the use of
weights and information in similar and dissimilar groups in
KNN-WDM.

The same evaluations are repeated for Madelon
data set. Table 6 contains the accuracy evaluation
of this experiment. KNN-WDM has higher accuracy
than the related methods for cross validation and
RS 2, RS 4, RS 5, RS 6, RS 8, RS 9. Bipart is the sec-
ond best method. This shows the importance of using
information in the test set in learning distance metric. Also,
Weighted KNN is more accurate than KNN; this shows the
use of weights is effective in this data set. KNN-WDM
uses weights with a semi-supervised approach and there-
fore can achieve higher classification accuracy than other
approaches. Another point in the results of both Madelon
and DLBCL data sets is that the accuracy of KNN-WDM
increases with sizes of the training sets.

The Madelon data set contains two classes and Table 7
shows the precision of the related methods by cross valida-
tion. KNN-WDM can distinguish more relevant samples to
all records for class 1. KNN has the highest precision for
class 2. Table 8 compares recall of the proposed method
with other approaches. KNN and KNN-WDM achieve the
highest recall for class 1 and 2, respectively. However, in
KNN the difference between the values of precision and
recall for class 1 and 2 are high – this reflects the unbal-
anced classification between two classes. In the Madelon
data set the number of elements in class 1 is equal to class
2. Therefore, precision and recall for two classes should
be close. The precision and recall values for class 1 and
2 is close together for proposed method and this shows it
provides a more balanced and clear classification compare

to other approaches. One explanation to this, is the use of
weights and learn group structure to distinguish similar and
dissimilar samples more clearly.

Table 9 compares accuracy of KNN-WDM with the
related approaches for the Heart disease data set. The accu-
racy of KNN-WDM is higher than other methods for cross
validation. Table 10 and 11 contain the precision and recall
measures for KNN-WDM and the related methods for 10-
CV. The precision and recall of KNN-WDM are higher than
other methods for class 0 and 3.

Comparison of accuracy for the Mice Protein Expression
data set shown by Table 12. Bipart and KNN-WDM have
higher accuracy than other methods. This is because both
of these methods are semi-supervised approaches. However,
KNN-WDM detects group structure and uses more samples
with appropriate weights. The highest accuracy achieved by
KNN-WDM for CV , RS 1, RS 2, RS 3, RS 7, RS 8 and
RS 9 splitting approaches. The same pattern is observed
for precision (Table 13) and recall (Table 14). Precision of
KNN-WDM is the highest for c − CS − s, c − CS − m,
t − CS − s and t − CS − m classes. Bipart has the highest
precision for other classes. KNN-WDM has the highest
recall for all classes except the c − SC − m class, for which
Weighted KNN has the highest recall. It observed that the
accuracy, precision and recall measures for all the methods
are close together.

4.2 Sensitivity to the number of neighbors

This section compares the accuracy of the KNN-WDMwith
Bipart according to the number of neighbors for DLBCL,
Madelon, Heart disease and Mice Protein Expression data
sets. One of the goals of this study is to, by using weights;
reduce the sensitivity of the Bipart method to the number
of neighbors. There are two numbers of neighbors, one for

Table 5 The recall (%)
comparison of knn-wdm
method and the related
classifiers fOR dlbcl data set.
the recall measured fOR each
category and only cv
experiments were considered

SubType SVM LMNN KNN Weighted KNN Bipart KNN-WDM

D1 30.3812 60.5 58.5 42.5 62.5 70.5

D2 49.9024 68.8333 52.25 79.9167 74.5 73.583

D3 33.6786 55.6667 39.5 39.6667 67.833 65.833

D4 79.094 90.4 86.1 89.6 88.1 91.05

Author's personal copy



H. Mohebbi et al.

Table 6 The multiple
classification accuracy (%)
comparison of knn-wdm
method and the related
classifiers fOR madelon data
set

SVM LMNN KNN Weighted KNN Bipart KNN-WDM

CV 50.0833 73.35 70.0833 74.3167 68.5167 75.2333

RS 1 48.3333 67.1667 67.6667 76.5 68.8333 73.833

RS 2 53.3333 70.8333 73.0833 74.8333 71.75 78

RS 3 47.2222 71.7778 76.4444 76.1111 80.3333 79.889

RS 4 49.5833 74.25 76.2083 78.5 79.5833 80.042

RS 5 49.3333 74.7667 77.1667 79.9333 82.3 83.033

RS 6 49.4444 72.5833 77.75 79.8889 83.1111 83.167

RS 7 50.2381 73.1905 78.6905 79.4524 83.381 83.357

RS 8 50.4167 73.2708 79.5833 80 83.0208 83.313

RS 9 50.7407 73.8148 79.9444 79.5 83.5926 83.704

Table 7 The precision (%) comparison of knn-wdm method and the related classifiers fOR madelon data set. the precision measured fOR each
category and only cv experiments were considered

Class SVM LMNN KNN Weighted KNN Bipart KNN-WDM

1 22.7614 72.9767 64.8119 73.1804 68.0489 74.0317

2 30.5498 74.7937 83.2901 74.3882 69.6996 75.1441

Table 8 The recall (%) comparison of knn-wdm method and the related classifiers fOR madelon data set. the recall measured fOR each category
and only cv experiments were considered

Class SVM LMNN KNN Weighted KNN Bipart KNN-WDM

1 39.8667 75.4 89.2 76.9667 70.6 75.4333

2 60.3 71.3 50.9667 73.2 66.4333 74.0333

Table 9 The multiple
classification accuracy (%)
comparison of knn-wdm
method and the related
classifiers fOR heart disease
data set and hungary database

SVM LMNN KNN Weighted KNN Bipart KNN-WDM

CV 57.3036 52.088 49.7593 49.9038 56.6762 59.6848

RS 1 54.0377 46.7427 47.8491 48.1132 53.3585 53.5094

RS 2 52.3404 46.4219 49.0213 47.9574 52.2979 53.5745

RS 3 53.3398 47.6484 50.4369 48.2039 54.8544 56.4078

RS 4 54.375 45.9045 49.4886 49.0909 55.2273 56.5909

RS 5 55.932 47.8592 50.8163 49.0476 53.9456 57.551

RS 6 54.2373 49.5915 48.7288 50.9322 54.5763 54.8305

RS 7 55.5455 51.8772 49.4318 52.9545 56.25 56.4773

RS 8 54.8305 52.193 48.8136 51.8644 56.7797 53.3898

RS 9 55.5517 53.4386 50 52.069 53.7931 56.2069

Table 10 The precision (%)
comparison of the knn-wdm
method and the related
classifiers fOR the heart disease
data set and hungary database.
the precision measured fOR
each category and only cv
experiments were considered

Class SVM LMNN KNN Weighted KNN Bipart KNN-WDM

0 50 60.1176 58.6408 58.78 63.0994 64.4037

1 7.5112 5.9828 4.9819 4.322 6.0462 7.1691

2 0.4811 2.0607 1.8091 1.6061 4.4405 4.1948

3 2.6841 3.208 1.6962 1.8057 4.8956 6.263

4 0.2245 0.0714 0.9064 0.6436 2.8234 1.5305

Author's personal copy



WDM: weighted distance metric

Table 11 Comparison the
recall (%) of knn-wdm method
fOR each category with the
related classifiers fOR heart
disease data set and hungary
database (only cv experiments
were considered)

Class SVM LMNN KNN Weighted KNN Bipart KNN-WDM

0 70.3036 73.9211 71.538 72.0848 77.8918 82.5643

1 56.3333 19.6667 16.0833 14.8333 18.1667 19.0833

2 14.3333 9.6667 8.8333 8 17.6667 17

3 16.1667 13.8333 7.8333 8.6667 19.1667 24.5

4 3.5 0.5 7.5 6 23 13

Table 12 The multiple
classification accuracy (%)
comparison of knn-wdm
method and the related
classifiers fOR mice protein
expression data set

SVM LMNN KNN Weighted KNN Bipart KNN-WDM

CV 96.2368 98.5367 96.214 98.4058 98.0846 99.7309

RS 1 82.5412 80.1325 56.5844 69.177 81.7181 82.6132

RS 2 82.9282 85.3604 69.3519 80.9375 93.75 94.838

RS 3 93.0159 95.3227 76.3889 87.381 97.4339 97.8704

RS 4 93.4259 96.2891 82.7932 91.3272 98.5957 98.5031

RS 5 93.463 98.9795 86.7778 94.1481 99.3333 99.2963

RS 6 95.162 99.48 89.3056 96.8519 99.4213 99.3519

RS 7 95.6173 98.4215 92.4383 97.3148 99.5531 99.6605

RS 8 96.8981 99.6324 93.7963 98.1944 99.7685 99.7685

RS 9 97.8704 98.8681 95.8333 98.9815 99.6296 99.7222

Table 13 The precision (%)
comparison of knn-wdm
method and the related
classifiers fOR mice protein
expression data set. the
precision measured fOR each
category and only cv
experiments were considered

Class SVM LMNN KNN Weighted KNN Bipart KNN-WDM

c − CS − s 90.5916 91.1325 79.7327 95.8835 98.1088 99.1604

c − CS − m 92.4815 91.3601 81.9505 90.5047 97.9353 98.2647

c − SC − s 85.897 91.3227 77.8197 89.4772 99.2945 98.0734

c − SC − m 91.3156 92.2891 79.8715 90.6943 98.9615 98.8782

t − CS − s 90.2368 88.9795 74.7095 87.1282 96.0432 97.5682

t − CS − m 90.6577 90.48 82.4742 90.2144 97.9292 98.1437

t − SC − s 90.7824 90.4215 78.2103 89.9182 98.6095 98.0976

t − SC − m 92.9892 91.6324 79.9151 90.3315 98.4171 98.0976

Table 14 The recall (%)
comparison of knn-wdm
method and the related
classifiers fOR mice protein
expression data set. the recall
measured fOR each category
and only cv experiments were
considered

Class SVM LMNN KNN Weighted KNN Bipart KNN-WDM

c − CS − s 93.4505 98.456 95.2418 91.4231 88.3177 98.7418

c − CS − m 94.8 99.3333 94.8 99.7333 89.9095 100

c − SC − s 95.044 98.0824 100 100 87.5029 100

c − SC − m 96.8667 98.0667 99.2 99.5333 88.9932 99.2667

t − CS − s 90 97.9091 95.6364 99.9091 87.0589 100

t − CS − m 93.8846 99.1758 89.8297 98.7418 88.8538 99.9286

t − SC − s 94.6099 99.2527 99.1099 99.2473 88.2942 100

t − SC − m 100 97.8681 95.5549 98.7308 88.2898 100

Author's personal copy



H. Mohebbi et al.

Fig. 3 Difference between the
accuracies of KNN-WDM and
Bipart (KNN-WDMAccuracy −
BipartAccuracy) with changing
the value of k1 and k2 for
DLBCL (a), MADELON (b),
Heart Disease (c) and Mice
Protein Expression (d) data sets.
This figure shows that KNN-
WDM is more accurate than
Bipart when the k1 and k2 have
high values. However when the
value of k1 and k2 reduces, the
value of |KNN-WDMAccuracy −
BipartAccuracy| decrease too in
considered data sets

Author's personal copy



WDM: weighted distance metric

Fig. 4 The comparison of
execution time of CPU and
Matlab implementation on GPU
for computing the Euclidean
distance. The execution time
includes the computation time
plus the transfer time of data
between the host and GPU
device. This experiment showed
that GPU is faster than CPU for
larger input size

the labeled training set (k1) and another for the test set (k2).
Fig. 3 shows the difference between KNN-WDM and Bipart
accuracies with changing values of k1 and k2 in the range
from 2 to 256.

Figure 3 reveals that KNN-WDM has higher accuracy
than Bipart for all of the data sets. The performance of KNN
and Bipart depend on good choices of the numbers of neigh-
bors. In contrast, KNN-WDM is less sensitive to the number
of neighbors than Bipart, and thus it produces good results
even when the number of neighbors is not at the optimal
setting. It is observed in results that when the values of k1
and k2 are both small, the value of |KNN-WDMAccuracy −
BipartAccuracy| is higher than the situation when k1 and k2
are close to 256. This observed for DLBCL, Mdelon and
Heart disease data sets clearly. The accuracy of KNN-WDM
is close to Bipart for Mice Expression data set and this phe-
nomenon is not clear for this data set. WDM assigns higher
weights to the similar samples and lower weights to the dis-
similar ones. WDM distinguishes more relevant samples,
with more neighbors than Bipart. Therefore, the classifier
performs better with increasing numbers of neighbors and
this is the reason behind these results.

5 Speedup evaluation

According to runtime profiling, distance calculation in (3)
is chosen for parallelization by the GPU with Matlab. Fig. 4
shows the execution time of distance calculation between
two random square matrices. The input data are random
numbers between zero and one. The execution time includes
the time of doing the calculation 1,000 times, and for the
data transfer time between the host and the GPU. This
experiment is designed to evaluate WDM distance calcu-
lation time for large input sizes. Fig. 4 shows that GPU
with Matlab is faster than CPU, and the advantage of GPU
becomes higher for input with larger sizes.

Figure 5 compares different implementations of WDM
on the GPU device. The comparion is based on the exe-
cution time (log of minutes) of the original code, the
optimized version for CPU, GPU implementation with Mat-
lab, and CUDA. The GPUmethods use both optimized CPU
code and GPU. The GPU-MATLAB approach calculates
Euclidean distance on GPU. The GPU-CUDA implements
weighted-distance metric with CUDA. This experiment
measures the effect on the execution time by increasing the

Fig. 5 Comparison of log

execution time (minute) of CPU,
Optimized CPU, and two hybrid
implementations of WDM. The
first hybrid approach uses
Matlab Parallel Computing
toolbox (GPU-MATLAB) and
the second calls a CUDA kernel
for parallel implementation
(GPU-CUDA). This figure
shows that GPU implementation
with Matlab is the fastest
approach in this experiment

Author's personal copy



H. Mohebbi et al.

number of records in the training data. Other factors are kept
constant during the experiment. The number of features are
400, the test set contains 1000 records, the number of classes
is 4, and all the input are random numbers.

The results in the Fig. 5 show the GPU-MATLAB
approach is the fastest, and GPU-CUDA is the second
fastest method. However, the execution time of optimized
CPU version and GPU implementations are close together
and it is against the initial expectation. The CUDA imple-
mentation does not reach its potential, because of irregu-
lar memory access patterns by each thread. Many threads
access to different parts of the memory at the same time.
This leads to serialization of memory access. The small size
of intermediate variables that sent to the GPU explains the
results of GPU-MATLAB approach. In addition, the transfer
time of data between the host and the GPU increases with
the numbers of records. These results show that communi-
cation between the host and the GPU is the bottleneck.

6 Future directions and conclusion

Possible future directions include improving the classifi-
cation accuracy and parallel implementation. In this study,
WDM is used in conjunction with KNN classification, and
this may limit the accuracy of the WDM method. One way
to improve the results is to use more sophisticated classi-
fiers such as SVMs or neural networks, as WDM allows
for any classification method to be used. The Matlab Par-
allel Computing Toolbox has some limitation on the used
GPU devices. The performance of the GPU implementation
of the WDM method may improve with SIMD instructions
to provide data-level parallelism. Many of the latest inte-
grated core architecture such as Intel Xeon Phi processors
provide data-level parallelism. Future work may use other
software and hardware parallel mechanisms to achieve high
performance.

The proposed WDMmethod assigns weight to each sam-
ple based on similarity and dissimilarity to query sample
using labeled training data and unlabeled test data. WDM
is a new semi-supervised method that learns a weighted-
distance metric in order to takes advantage of potential
group structure in data. The main goals of using the weights
are to improve the accuracy and to reduce the sensibility of
the classifier to the number of neighbors. Experiments show
that WDM performs favorably compared to other classifiers
and distance metrics. We provided in-depth analysis of the
parallel GPU implementations of the WDM method. Our
empirical studies showed significant speedup when we com-
pared the parallel GPU implementation to the CPU code.
The Matlab GPU implementation is faster than CPU; how-
ever, its execution time is close to the optimized CPU
version. The small size of intermediate variables and the

time to transfer data between the host and the GPU are main
reasons behind this observation. Also, the execution time of
CUDA implementation is slower than expected due to irreg-
ular memory access. In order to maximize performance,
WDM is implemented by a hybrid approach that use both
CPU and GPU. The parallel implementation of the proposed
method is fast for large input, and it can predict the pattern
accurately when the number of classes is large.

Acknowledgments This study could not completed with the effort
and co-operation of Professor Ming Ouyang from Computer Science
Department of the University of Massachusetts Boston. His comments
greatly improved the manuscript.

References

1. Blake C, Merz CJ (1998) {UCI} repository of machine learning
databases

2. Cai D, He X, Han J (2007) Semi-supervised discriminant analysis.
In: Computer vision, 2007. ICCV 2007. IEEE 11th international
conference on, pp. 1–7. IEEE

3. Chapelle O, Schölkopf B, Zien A et al. (2006) Semi-supervised
learning

4. Coates A, Huval B, Wang T, Wu D, Catanzaro B, Andrew N
(2013) Deep learning with cots hpc systems. In: Proceedings of
the 30th international conference on machine learning, pp 1337–
1345

5. cuBLAS (2015) cuBLAS the nvidia cuda basic linear algebra
subroutines (cublas) library @ONLINE. https://developer.nvidia.
com/cuBLAS

6. Gou J, Du L, Zhang Y, Xiong T (2012) A new distance-weighted
k-nearest neighbor classifier. J Inf Comput Sci 9:1429–1436

7. Guyon I, Gunn S, Ben-Hur A, Dror G (2004) Result analysis of
the nips 2003 feature selection challenge. In: Advances in neural
information processing systems, pp 545–552

8. Higuera C, Gardiner KJ, Cios KJ (2015) Self-organizing feature
maps identify proteins critical to learning in a mouse model of
down syndrome. PloS one 10(6):e0129,126

9. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP (2007)
Subclass mapping: identifying common subtypes in independent
disease data sets

10. Mathworks (2015) Matlab @ONLINE. http://www.mathworks.
com/products/matlab/

11. Mathworks (2015) Matlab parallel toolbox @ONLINE. https://
www.mathworks.com/parallel-computing

12. Mu Y, Ding W, Tao D (2013) Local discriminative dis-
tance metrics ensemble learning. Pattern Recogn 46(8):2337–
2349

13. Mu Y, Lo H, Ding W, Tao D (2014) Face recognition from multi-
ple images per subject. In: Proceedings of the ACM international
conference on multimedia, pp. 889–892. ACM

14. Mu Y, Lo HZ, Ding W, Amaral K, Crouter SE (2014) Bipart:
Learning block structure for activity detection. IEEE Trans Knowl
Data Eng 26(10):2397–2409

15. NVIDIA (2015) CUDA cuda instructions @ONLINE. https://
developer.nvidia.com/cuda-zone

16. NVIDIA (2015) cuDNN nvidia cudnn - gpu accelerated deep
learning @ONLINE. https://developer.nvidia.com/cuDNN

17. Reese J, Zaranek S (2012) Gpu programming in matlab. Math-
works News&Notes Natick, MA: The MathWorks Inc pp. 22–5

Author's personal copy

https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
https://www.mathworks.com/parallel-computing
https://www.mathworks.com/parallel-computing
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuDNN


WDM: weighted distance metric

18. Schölkopf B, Smola AJ (2002) Learning with kernels: Support
vector machines, regularization, optimization, and beyond MIT
press

19. Sugiyama M (2007) Dimensionality reduction of multimodal
labeled data by local fisher discriminant analysis. J Mach Learn
Res 8:1027–1061

20. Tishby N, Pereira FC, Bialek W (2000) The information bottle-
neck method arXiv preprint physics/0004057

21. Weinberger KQ, Saul LK (2009) Distance metric learning for large
margin nearest neighbor classification. J Mach Learn Res 10:207–
244

22. Whitehead N, Fit-Florea A (2011) Precision & performance:
Floating point and ieee 754 compliance for nvidia gpus. rn (A+ B)
21:1–1874919,424

23. Wilkinson JH, Wilkinson JH, Wilkinson JH (1965) The algebraic
eigenvalue problem, vol 87. Clarendon Press, Oxford

24. Xing EP, Jordan MI, Russell S, Ng AY (2002) Distance metric
learning with application to clustering with side-information. In:
Advances in neural information processing systems, pp 505–512

25. Zavrel J (1997) An empirical re-examination of weighted voting
for k-nn. In: Proceedings of the 7th belgian-dutch conference on
machine learning, pp. 139–148. Citeseer

Hamidreza Mohebbi received
his M.S degree from Iran
University of Science and
Technology in 2011. He is
currently pursuing his Ph.D.
degree of Computer Science
at the University of Mas-
sachusetts Boston working on
developing parallel algorithms
for fields like Machine Learn-
ing, Markov Chains and etc.
Hamidreza has worked as a
lecturer in the Payamnour
University of Iran and the
University of Massachusetts
Boston. His research interests

include parallel programming, machine learning, artificial intelligence
and markov chains.

Yang Mu received his B.S.
and Ph.D degree from Jilin
University and University of
Massachusetts Boston in 2008
and 2015 respectively. Prior to
his PhD study, he worked at
Nanyang Technological Uni-
versity as a research assis-
tant. His research interests
include machine learning and
data mining. His papers have
been published on many top
venues such as Pattern Recog-
nition, IEEE TKDE, IEEE T-
SMC part B, ACM SIGKDD,
ACM MM and IEEE ICDM.

Wei Ding received her Ph.D.
degree in Computer Sci-
ence from the University of
Houston in 2008. She is an
Associate Professor of Com-
puter Science in the University
of Massachusetts Boston.
Her research interests include
data mining, machine learn-
ing, artificial intelligence,
computational semantics,
and with applications to
astronomy, geosciences, and
environmental sciences. She
has published more than 105
referred research papers, 1

book, and has 2 patents. She is an Associate Editor of Knowledge
and Information Systems (KAIS) and an editorial board member of
the Journal of Information System Education (JISE), the Journal of
Big Data, and the Social Network Analysis and Mining Journal. She
is the recipient of a Best Paper Award at the 2011 IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), a Best Paper
Award at the 2010 IEEE International Conference on Cognitive Infor-
matics (ICCI), a Best Poster Presentation award at the 2008 ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems (SIGSPAITAL GIS), and a Best PhD Work
Award between 2007 and 2010 from the University of Houston. Her
research projects are sponsored by NIH, NASA, and DOE. She is an
IEEE senior member and an ACM senior member.

Author's personal copy


	WDM: weighted distance metric
	Abstract
	Introduction
	Related work
	Distance metric learning
	GPU acceleration of machine learning algorithms

	The WDM method
	Weighted distance metric learning
	Parallel computation

	Distance metric evaluation
	Classification results
	Sensitivity to the number of neighbors

	Speedup evaluation
	Future directions and conclusion
	Acknowledgments
	References


