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Introduction

Purpose:

 Determine the associations between hydro-climatic variables and the atmospheric / oceanic variables separated by large distances, which are known as the phenomenon of
hydro-climatic teleconnection.

 Discover physically meaningful patterns from big climate databases.

Methodology: develop efficient data-driven approaches with the aid of machine learning, signal processing, and domain knowledge for constrained search.

 Big Data Analytics: extract hydro-climatic variables from large temporal and spatial feature space and formulate the global search for teleconnection signals effect on terrestrial
precipitation as feature selection in machine learning aspect.

 Wavelet Analysis: retrieve the scale-averaged wavelet power to signify the teleconnection signals via a pixel-wise linear lagged correlation analysis.
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Preliminary Results

Data Description Results

Adirondack, NY was chosen as the study area.

Precipitation Data

e Full data product of Global Precipitation Climatology
Center (GPCC-V6).

e 1980-2010
e Spatial resolution: 0.52 x0.5¢
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lag). Figure 1 The comparison among NOAA-Existing Teleconnection Patterns and two different methods’ findings.
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The found index regions:
e Somewhat overlapped.

Refe re n Ce e |Located in or near the area of NOAA ocean Patterns.

Next Step:

e Study how the different regions founded by two methods.
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