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Abstract—Crime is classically “unpredictable”.  It is not 

necessarily random, but neither does it take place 

consistently in space or time.  A better theoretical 

understanding is needed to facilitate practical crime 

prevention solutions that correspond to specific places and 

times.  In this study, we discuss the preliminary results of 

a crime forecasting model developed in collaboration with 

the police department of a United States city in the 

Northeast. We first discuss our approach to architecting 

datasets from original crime records. The datasets contain 

aggregated counts of crime and crime-related events 

categorized by the police department.  The location and 

time of these events is embedded in the data. Additional 

spatial and temporal features are harvested from the raw 

data set.  Second, an ensemble of data mining 

classification techniques is employed to perform the crime 

forecasting. We analyze a variety of classification methods 

to determine which is best for predicting crime “hotspots”.  

We also investigate classification on increase or 

emergence.  Last, we propose the best forecasting 

approach to achieve the most stable outcomes.  The result 

of our research is a model that takes advantage of implicit 

and explicit spatial and temporal data to make reliable 

crime predictions. 

Categories and Subject Descriptors—H.2.8 

[DATABASE MANAGEMENT]; Database Applications – 

Data Mining; Spatial Databases and GIS 

General Terms—Experimentation 

Keywords—Classification; Spatial Data Mining; Crime 

Forecasting 

I. INTRODUCTION 

Crime is neither systematic nor entirely random.  It 
ebbs and flows with cycles of human behavior, but 
particular places are crime attractors.  It is critical to 
identify the spatial and temporal patterns for a better 
understanding of crime events and to theorize their 
correlates.  Using maps and time series data, practical 
crime prevention solutions can be developed that 
correspond to specific places and times.  Spatial data 
mining is a uniquely qualified field to enable the 
analysis necessary to develop effective crime 
forecasting. 

It is only within the last few decades that the 
technology necessary to make spatial data mining a 
practical solution for wide audiences of law enforcement 
officials has become affordable and available.  Now it is 
quite reasonable, and common in fact, for larger police 
departments to have adequate computer hardware, data 

analysis software, and mapping tools that enable 
visualization of dense spatial data.  It is also a recent 
development that the quantities of quality data needed to 
see the patterns in crime events over the course of 
significant socioeconomic cycles has been available.  
That too is now something that most police departments 
have available.  Furthermore, technologists skilled in 
spatial data mining are now emerging.  

The United States National Institute for Justice (NIJ) 
has sponsored research into crime mapping and 
forecasting for a number of years including a recent 
award to the University of Massachusetts at Boston.  As 
part of the University’s NIJ funded research, this paper 
focuses primarily on property crime which is identified 
as a research priority for the police department in a 
particular United States city in the Northeast.  The goal 
of the project is to explore a methodology for reliably 
predicting the location, time, and/or likelihood of future 
residential burglary.  Herein, you will find a review of 
the preliminary results of the University’s collaboration 
with the city’s police department.  Due to the sensitivity 
of the data, the city will not be named. 

First, we discuss how to generate architected data 
sets from original crime records.  The architected data 
sets contain the aggregated counts of different types of 
crimes and related events as categorized by the city’s 
police department.  Spatial and temporal information 
pertaining to the crime data is embedded in these 
architected data sets.  Second, several sophisticated data 
mining classification techniques are chosen to perform 
the crime forecasting.  Finally, we analyze which 
classification approach is potentially the best method for 
predicting whether residential burglary will happen.  We 
call an affirmative prediction a “hotspot”.  Along with 
occurrence prediction, we also explore predicting 
whether the crime will emerge or increase at certain 
locations.  We say that this location is “heating up”.  Our 
experimental results demonstrate that through numerous 
combinations of classification methods and data feature 
sets, the best forecasting approach can be determined.  
Furthermore, our research provides a valuable look at 
the nature of how crime patterns organize and originate 
as well as how they exist in space and time. 

This research paper is made up of the following 
consecutive sections: Data Generation, describes the 
data set; Approach Architecture, details the feature 
construction and data manipulation; Experimental 
Results, explores our analysis; Conclusion, reviews our 
research findings; and Deployment, discusses the 
motivation for our research and its intended use. 
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II. DATA GENERATION 

The data used for this research was gleaned from a 
variety of city agencies.  Each original data entry is a 
record for an individual crime or related event.  Each 
record contains the type of event, the location in 
longitude and latitude, and the time and date of the 
incident. Before any data mining can begin, a 
preprocessing is needed to make it suitable for 
classification. 

A. Data Grid 

A police-department requirement for the deployment 
of this crime prediction model is that it forecast 
residential burglary over space and time.   Accordingly, 
the model classifies burglaries monthly across a uniform 
grid.   The grid divides the city into checkerboard-like 
cells. Within each cell, data is aggregated into six 
categories including Arrest, Commercial Burglary, 
Foreclosure, Motor Vehicle Larceny, Residential 
Burglary, and Street Robbery.  Each cell is populated on 
a monthly basis.  

Two resolutions of data were researched.  One 
measured 24-by-20 square grid cells, the other 41-by-40.  
The cells in the 24-by-20 grid measure approximately 
one-half mile square.  In the 41-by-40 grid, the distance 
is just over one-quarter mile square.  In both cases, each 
monthly data set is a matrix of the six previously 
mentioned categories.  The finer resolution allows the 
grid to be interrogated with a more detailed eye toward 
the spatial information inherent in the dataset.  
Conversely, the lower resolution has the effect of 
generalizing the spatial knowledge. 

B. Empty Grid Cells 

Empty grid cells have to be removed from the 
datasets because they have a detrimental yet counter 
intuitive side effect. They improve the performance of 
the classifiers. It is easy for any given classifier to 
correctly predict that nothing will happen in an empty 
grid cell.  This “intelligence” is truly artificial.  

An empty grid cell is defined as lacking any count in 
that cell in any of the investigated categories over the 
entire timeframe being analyzed. The majority of empty 
grid cells have two explanations.  One, the boundaries of 
the city aren’t rectangular like the grid being used is, and 
two, there are many areas within the city limits such as 
airport runways, bodies of water, and public open spaces 
where these events simply don’t happen.  The result is 
empty grid cells that have to be removed. 

III. APPROACH ARCHITECTURE 

The approach for our forecast model is classification.   
Mathematically, classification is the process of learning 
a function f that maps each attribute of a set X={x1, x2, 
… , xn} to a predefined class label y. A chosen algorithm 
works routinely to develop a model from the set of 
labeled data input.  Classification creates the model that 
best relates the attribute set to the class label of the data.  

In the primary classification of this study, if the attribute 
set of category counts maps to a grid cell with at least 
one residential burglary, that set is labeled a “hotspot”.  
Under an alternate classification, if the attributes map to 
a cell with an increasing number of burglaries, they are 
said to be “heating-up”. 

The attribute set used in this study is based on the 
Broken Windows Theory [1].  Accordingly, related 
categories of events are used to describe Residential 
Burglary.  As previously noted, these categories are 
Arrest, Commercial Burglary, Foreclosure, Motor 
Vehicle Larceny, Residential Burglary, and Street 
Robbery.  An explanation for how those events may 
affect Residential Burglary can be described by the 
following two factors: 

1) Social norms and conformity:  This sociological 

and social-psychological term has been defined as "the 

rules that a group uses for appropriate and inappropriate 

values, beliefs, attitudes and behaviors.  The customary 

rules of behavior that coordinate our interactions with 

others" [2]. Hence, we add Street Robbery, Motor 

Vehicle Larceny, and Commercial Burglary for the 

feature set. 

2) Social signaling and signal crime:  Signal crime 

is based on the theory that certain crimes may act as a 

"signal" to a neighborhood that it is at risk [3]. 

Examples commonly given are bus shelters, 

foreclosures, and drug dealers. Hence, we add 

Foreclosure and Offender Arrest data for the feature set. 
In criminological theory, offenders monitor other 

people and their environment to find opportunities for 
criminal activity. A disordered environment which has 
other crime incidents residential mobility is more likely 
to send the signal that this is a place to conduct crimes 
without being caught.  

Considering this rationale, we use the basic attribute 
set and grid structure previously described to build a 
complex group of features out of the original crime data.  
These features become the modified attribute set 
employed in our classifications.   They are designed to 
leverage and maximize the spatial and temporal qualities 
of the data set.  

B. Feature Construction 

1) Leveraging Temporal Knowledge (The t-Month 

Approach):  The basic premise here is that a Residential 

Burglary that happened in one month can be described 

by events that came before it.  In particular, a 

Residential Burglary is described by previous counts of 

Arrests, Commercial Burglaries, Foreclosures, Motor 

Vehicle Larcenies, Residential Burglaries, and Street 

Robberies.   For instance, February’s Residential 

Burglaries can be described by the events that happened 

in January, March can be described by February, and so 

on. 



We can use events in January and February as 
training data, and then rely on March as test data.  In the 
training process, we assume January events predict 
Residential Burglaries in February. For each area Ri (one 
of those grid cells), the six attributes of each set Xi = {x1, 
x2, … , x6} (the set of event counts) in January will be 
used as training features, and Residential Burglary in 
February will be used as the training label yi. Similarly, 
test data is constructed of the six attributes in March, and 
the test labels for evaluation of the classification are the 
Residential Burglaries that happen in April. 

Fig. 1 illustrates a simplified training sample that has 
three crimes as its features. Each row indicates the count 
of three different crimes on the same 2-by-2 grid.  Let 
crime 1 be used as the class label. For the top left grid 
cell, R1, red cells are its three features, X1 = {4, 2, 7}, 
and the green cell is its label, y1 = 1.  Similarly we can 
have training samples for the other three grid cells at top 
right, bottom left, and bottom right: R2 = { X2 ={3, 1, 8}, 
y2 = 2} , R3 = { X3 ={2, 0, 4}, y3 = 3},  and R4 = {X4 ={0, 
0, 1}, y4 = 0}.  In our study, we define a hotspot as a grid 
cell that has at least one incident of Residential 
Burglary.  In this example R1, R2 and R3 are hotspots 
while R4 is not.  In a t-month based feature set where t = 
1, R1 is represented by a vector X1 with label y1. 

A t-month vector, when t ≥ 2, is achieved by 
concatenating previous month’s vectors. In Fig. 2, the 2-
month based feature set for cell R1 in February, call it 
X21, consists of twelve features from January and 
February (highlighted in green) with a label from March 
(highlighted in yellow). Therefore, R1 = {X21 = {4, 2, 7, 
1, 4, 1}, y21 = 0}.  

The t-month approach has the effect of decreasing 
the training sample size as the number of concatenated 
month increases. With twelve months of data, twelve 
sets of 1-month-based vectors can be produced; eleven 
sets of 2-month-based vectors can be produced, and so 
on.  The total sets of t-month-based vectors, S, can be 
calculated with this function, S = Y - t + 1, where Y is the 
total months of available data. Later on in our 
experiments, these vectors sets are used to form training 
datasets as well as test datasets for classification. 

2) Maximizing Spatial Knowledge (Neighborhood 

Averaging):  Spatial autocorrelation, a primary tenant of 

the study of spatial data, indicates “characteristics at 

proximal locations appear to be correlated, either 

positively or negatively.” [4] Recognizing that events in 

each grid cell may be influenced by neighboring cells, 

an eight-neighborhood average, known as the Moore 

neighborhood,[5] is used in our study to store one grid’s 

spatial neighborhood knowledge. We count how many 

neighbors a grid has, calculate the total count of each 

event in the neighborhood, including the grid in 

question, and calculate the average count for the 

neighborhood.  The average is calculated in the standard 

way by dividing the total count by the number of 

neighbors plus 1. 

C. Balancing Data 

One challenge in crime prediction, similar to other 
rare event prediction, is that hotspots and cold spots are 
unbalanced. That is cold spots are much more prevalent 
than hotspots.  In our dataset, this is especially true with 
the higher resolution 41-by-40 grid.  This has the result 
of confusing the necessary measures of precision, recall, 
and F1.   In particular, the F1 score of hotspots is far 
lower than the F1 score of cold spots because the 
classifiers are well trained on cold spots. The calculation 
on F1 score in our study is defined as follows: 

 
 

   
                    

                
       

 
 
 

           
  

     
     

 
 
 

        
  

      
     

 
 
 

                                

(                         )  

 

 

                                 

(                          )     

 

 

                                 

(                           )  

 
Figure 1. Examples of how to construct features class labels 

using a 2-by-2 data grid. 

 
Figure 2. Examples of how to construct features class labels 

using a 2-by-2 data grid. 

 



To resolve this issue, we adjust the weight of 
hotspots and cold spots. By increasing the weight of 
hotspots based on the ratio between hotspots and cold 
spots, the data set can be balanced before the 
classification process. The weight function is defined by 
the following: 
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For example, if there are 100 hotspots and 400 cold 

spots in one training data set, the weight of hotspots will 
be set as 400/100 = 4, and the weight of cold spots will 
be set as 1. Therefore, the weight of each data entry in 
the training dataset is reset before the whole training 
dataset is used to train the classifier. As a result, a 
misclassified hotspot will result in greater penalty 
compared to a misclassified cold spot. This guides the 
chosen classifier to focus on hotspot classification. 

It should be noted that even though this increases the 
F1 score of hotspot classification, the overall accuracy 
of the prediction is decreased because of the resulting 
misclassification of cold spots. We accept the trade off 
on accuracy to have a higher F1 score on hotspots as the 
police department understandably has a greater vested 
interest in knowing that an area will be a hotspot. 

IV. EXPERIMENTAL RESULTS 

Our experiments include several classifiers:  One 
Nearest Neighbor (1NN) and a location constrained 
variation, Decision Tree (J48), Support Vector Machine 
(SVM) with radial basis function as the kernel type, 
Neural Network (Neural) with 2-layer network, and 
Naive Bayes (Bayes) [6]. 

A. 1NN as a Baseline 

We employ a traditional 1NN and a variation with a 
location constraint.  These classification methods 
establish a baseline upon which subsequent methods are 
measured. In the traditional approach, the algorithm 
finds the most similar data vector entry using Euclidean 
distance. The formula is defined as follows: 

 
Let Xi be a vector with p features such that 

Xi = (xi1, xi2, … , xip ). Let n be the total number 
of input samples and let d be the distance 
between each sample. The Euclidean distance d 
between two grid cells, Xi and Xl, where (i, l = 
1, 2, … , p) is defined as: 
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In the standard approach, the algorithm searches the 

entire dataset, without regard for location or time, for the 

first grid cell with the shortest Euclidean distance.  
When the search is location constrained, time 
differences are still allowed, but the algorithm limits the 
search to the grid with the same location.  

Fig. 3 clearly shows the location constrained 
algorithm gives a better result in precision, recall, F1, 
and overall accuracy, where 

 

          
                             

                          
  

The experiment illustrated in Fig. 3 makes use of a 
1-month based feature set, and the 24-by-20 data grid.  
The classifiers are trained on 11 months of data, and 
tested on one. 

It can be said that 1NN makes a simple assumption, 
namely that similar circumstances must result in similar 
outcomes.  The location constrained 1NN, however, is 
not so naive.  It capitalizes on the well-known notion 
that spatial data is heavily influenced by its place.  
Separate the notion and our analysis of this particular 
dataset from its mathematical explanation, and what a 
location constrained 1NN algorithm tells you is what 
any law enforcement official might:  neighborhoods well 
known for residential burglary in the past are likely to 
experience residential burglary in the future.  Where the 
1NN establishes naive baseline, the location constrained 
version establishes a wise one that far more 
sophisticated algorithms find difficult to overcome. 

B. Performance Comparison 

The following tables (Table I, Table II) detail the 
experimental results of four different classifiers using t-
month-based features where t = 1, 2, … , 10. As 
mentioned previously, there are S sets of t-month-based 
vectors produced during the feature construction 
process. In these tables, the 24-by-20 data grid is used. 
The test set is always the last of those S sets of vectors, 
and the remainders are used as the training set. 
  

1NN as Baseline 

 

Figure 3. 1NN results with and without the location constraint. 



J48, Neural, and SVM classifiers consistently 
outperform the naive 1NN approach. Moreover, Neural 
often performs slightly better than J48 and SVM. This 
shows the strength of neural networks when modeling 
complex systems. 

Another interesting finding which is notable not 
because of its success, but rather its failure, is that the 
Neural approach fails dramatically at the 8-month point.  
This suggests that the algorithm may be picking up on 
some kind of seasonal pattern that it does not quite know 
what to do with.  Indeed, the data shows that the eighth 
month in the data set experiences a low point in 
residential burglary. 

Introducing the Naïve Bayes classifier to our 
experiment, we make an assumption similar to that made 
when using the location constrained 1NN.  We claim 
that where residential burglary has occurred once there 
is a higher chance of it happening again. Our 
experiments show that our assumption is valid.  Using 
the Naive Bayes classifier yields better results than 
Neural Networks. The results are illustrated in Fig. 4.  A 
9-month-based feature set is used in experiment 
illustrate by Fig. 4 because it yielded the highest 
accuracy and F1 in previous experiments.  The 24-by-20 
data grid is used in this experiment. 

A “Leave-One-Month-Out” (LOMO) approach is 
adopted this time. Instead of running the classification 
only once on one set of training and test data, the LOMO 
approach is used to run the classification on S - 1 sets.  
Recall that the number of vector sets used in the t-month 
approach can be expressed as S = Y - t + 1, where Y is 
the total months of available data and t is the number of 
months concatenated in the feature vectors.  The LOMO 
approach works as follows. When t = 9 and Y = 12, we 
have S = 4.  This means that there are 4 sets of vectors, 
si, where i = 1, 2, ... , 4, with 9-month-based features 
produced during the feature construction. With S = 4, 
three groups of training and test data can be paired as 
following: {s1 as training, s2 as test}, {s2 as training, s3 
as test}, and {s3 as training, s4 as test}. As a result, three 

classification runs can be performed with these three 
pairs of datasets.  

 

C. Classification Comparison 

Two final classifications, predicting hotspots and 
increases, are performed on the two investigated dataset 
resolutions, 24-by-20 and 41-by-40.  The classifications 
use two feature sets, one that incorporates the calculated 

TABLE II. F1 ON CLASSIFICATIONS USING DIFFERENT CLASSIFIERS 

WITH T-MONTH-BASED FEATURES, WHERE T = 1, 2, ... , 10. 

 
 

TABLE I. ACCURACY (%) ON CLASSIFICATIONS USING DIFFERENT 

CLASSIFIERS WITH T-MONTH-BASED FEATURES, WHERE T = 1, 2, … , 10. 

 

Accuracy 9-month LOMO 

 
 

F1 9-month LOMO 

 
 

Figure 4. Accuracy and F1 scores using SVM, J48, Neural, 1NN, and 

Bayes. 



neighborhood spatial feature set and one that does not. 
With two different feature sets, and two different 
classifications we have the following four different 
scenarios:  

 
41 - ORG - HOT, 41 - NB - HOT, 41 - ORG - INC, 41 - NB - INC 

 

In these abbreviated labels, 41 refers to the 41-by-40 
data set, ORG and NB differentiate between the original 
feature set and the one with explicit spatial features 
added, and HOT and INC indicate the two 
classifications predicting hotspots and increases.  The 
labels can be seen in results obtained from 
experimentations on these four scenarios, depicted in 
Fig. 5. For simplicity of demonstration, we average the 
accuracy and F1 score yield from the five different 
classifiers, 1NN, J48, Neural, SVM, and Naïve Bayes. 

Regarding the 41-by-40 data set, the charts indicate 
that the accuracy of predicting increases is a little higher 
than predicting hotspots. When considering F1 scores, 
predicting increases on average is about 10% lower than 
predicting hotspots. This indicates many more non-
increase grid cells than increase cells in the data set. The 
ratio is about 5 to 1. As a result, even when balancing 
the data, the classifiers used in our experiment are 
affected. The higher accuracy on predicting increases is 
due to the classifiers being more accurate at detecting 
the larger number of non-increase grid cells. We also 
find that using spatial features helps achieve higher 
accuracy when predicting hotspots. Surprisingly, these 
features do not help predict increase, except when using 
1-month-based features. 

Using the 24-by-20 data set we recognized the same 
observation which is that adding spatial features 
improves the prediction only when fewer month features 
are concatenated in the t-month approach. We assume 
that this is simply a natural characteristic of the 
classifiers (i.e. adding more features in the training data 
makes the classification process more complicated and 
less reliable). Consequently, the results can’t be 
improved upon once the number of features reaches a 
certain threshold.  A possible solution to this issue 
would be to select a smaller group of the most valuable 
features.  More investigation is needed to identify which 
features will prove most useful. 

D. Ensemble Learning (Voting) 

In an attempt to stabilize our results as well as to 
further improve classifier performance, the voting 
method is adopted. The basic idea of voting is to use 
multiple classifiers trained on the same data set. Then, 
the label of an instance is decided by majority vote from 
the classifiers. For example, if two out of three 
classifiers predict one grid as a hotspot, then the grid is 
labeled as a hotspot. 

In our experiment, a heterogeneous set of classifiers 
are selected to perform the voting: SVM, Neural, and 
Bayes. These classifiers exhibit a varying ability to 
detect subtleties in the data.  As expected, the voting 
effect does stabilize the outcomes somewhat. Fig. 6 
illustrates the results. 

Figure 5. Accuracy and F1 scores using the 41-by-40 grid dataset. (ORG-without spatial features. NB-with spatial feature. HOT-predict hotspots. 

INC-predict heating up hotspots.) 



V. CONCLUSION 

A. Location Constraint and Spatial Knowledge 

Three results in our experiments point to the value of 
leveraging the spatial knowledge inherent in the crime 
data set.  The first and most obvious is the success of the 
simple 1NN classifier modified with a location 
constraint.  Finding the most similar circumstance within 
the same neighborhood proved more effective than 
finding it within the entire city.  The second indicator is 
the success and stability of the probability-based Naive 
Bayes classifier.  The basic logic of the location 
constrained 1NN is not unlike that of Naive Bayes: 
namely that what has happened in a particular place in 
the past is likely to recur.  The third result pointing to 
spatial knowledge is in the 24-by-20 grid data.  Our 
success measures are consistently higher when using the 
lower resolution data set.  We believe this is specifically 
due to each grid cell exhibiting a broader spatial 
knowledge.  The challenge of future research will be to 
locate the optimum point at which spatial knowledge is 
most keen. 

B. Classification 

An overall observation on every classification 
method employed that is particularly interesting is that 
the more complex algorithms don’t vastly improve upon 
a simple and straight forward, location-constrained, 
nearest neighbor approach.  See Fig. 7 for a summary  

of several of our previously conducted classifications. 
The chart legend is ordered by descending F1 score.  
Our location-constrained nearest neighbor (LC-1NN 1-
month) approach using a 1-month based feature set is 
second only to the Neural Network approach (Neural 9-
month) using a 9-month based feature set. 

C. Grid Size 

After the experiments on two different data grids, 
24-by-20 and 41-by-40, we concluded that the 24-by-20 
grid consistently gives us better results than 41-by-40 
grid (Fig. 8). Better performance in coarse resolution 
indicates that insufficient information can be collected 

Figure 6.  Accuracy and F1 scores of using voting with 41-by-40 

grid data, 6-month based features, and the LOMO approach to 

make 17 predictions.  The charts show that voting stabilizes the 
outcomes somewhat. 

Figure 7.  Overall classification results. Best performance of 

classifier using different training sets. 

Figure 8.  Accuracy and F1 scores of using two different grid 

sizes. The charts show that the 24-by- 20 grid always achieves 

better results than the 41-by-40 grid. 

Best Overall Classifier Performance 



on a finer granularity. The finer grid represents the crime 
counts of a small area resulting in crime counts that are 
much lower than in the larger grids. The lower counts 
appear to inhibit the classifiers. 

D. Predicting Hotspot Increases 

Predicting that burglary will increase in the next 
month is somehow more difficult than predicting a 
hotspot using either data resolution. In this city, where 
crime patterns appear to be fairly stable, the initiative of 
predicting an increase would be more useful than just 
knowing where the crime will happen. Future research 
might focus on improving the increase prediction. 

VI. DEPLOYMENT 

Currently, we are in the process of preparing to 
deploy this system for the police department. Work 
conducted until this point was funded by a planning 
grant which enabled us to apply data mining techniques 
to the historical data.  With additional funding, we will 
be able to incorporate these techniques into the routine 
work of the crime analysts within the department. 

A major barrier faced in preparing our experiments 
was that all of the data used were not actually housed in 
the police department.  We had to collect and combine 
data from a variety of city agencies.  To be able to use 
current data to make future predictions, we will have to 
automate systems that bring the data from these other 
agencies together and then classify it for the police 
department promptly.  Unfortunately, data from local 
governments is often not readily accessible or well 
organized. 

Once these data sharing systems are in place, we 

have developed a plan with the police department to 

disseminate the results of the prediction models.  

Command staff will use the predictions from these data 

as tools for resource allocation decisions which are made 

on a weekly and sometimes daily basis depending on 

city needs. Specifically, predictions will be provided to 

police executives to make staffing decisions during 

weekly deployment meetings.  Given the low violent 

crime rate of this city, command staff are able to make 

deployment decisions based on intelligence.  They have 

been unable to use the same intelligence to allocate 

resources to address property crime.  Property crime 

comprises more than 70 percent of crimes reported to 

the police but receives little media or research attention.  

Accordingly, at the urging of the police department, our 

analyses began with residential burglary.  In the future, 

we intend to expand our work to include motor vehicle 

theft as well violent crimes, such as street robbery and 

assault. 
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