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ABSTRACT

Reliable tornado forecasting with a long-lead time can
greatly support emergency response and is of vital impor-
tance for the economy and society. The large number of
meteorological variables in spatiotemporal domains and the
complex relationships among variables remain the top diffi-
culties for a long-lead tornado forecasting.

Standard data mining approaches to tackle high dimen-
sionality are usually designed to discover a single set of fea-
tures without alternating options for domain scientists to
select more reliable and physical interpretable variables.

In this work, we provide a new solution to use the concept
of multiple Markov boundaries in local causal discovery to
identify multiple sets of the precursors for tornado forecast-
ing. Specifically, our algorithm first confines the extremely
large feature spaces to a small core feature space, then it
mines multiple sets of the precursors from the core feature
space that may equally contribute to tornado forecasting.
With the multiple sets of the precursors, we are able to re-
port to domain scientists the predictive but practical set of
precursors.

An extensive empirical study is conducted on eight bench-
mark data sets and the historical tornado data near Okla-
homa City, OK in the United States. Experimental results
show that the tornado precursors we identified can help to
improve the reliability of long-lead time catastrophic tor-
nado forecasting.

Categories and Subject Descriptors

1.5.4 [Pattern Recognition]: Applications-Weather Fore-
casting
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1. INTRODUCTION

1.1 Tornado Forecasting

A tornado is one of the most powerful, unpredictable and
destructive weather phenomena on Earth. Tornado disas-
ters result in billions of dollars of damages each year and
cause more loss of life than most other weather-related haz-
ards. For example, in the year of 2013, 811 confirmed tor-
nadoes cause 55 fatalities and damages up to $3.6 billion in
the United States'. Reliable tornado forecasts with a long-
lead time can greatly support emergency response and are
of vital importance for the economy and society. Currently
National Weather Service (NWS) issues tornado warnings
based on “detection”: a tornado threat is broadcasted after
being observed, either on-site or through radars [3]. Sim-
ulation based warning systems can increase the prediction
lead time up to several hours, but most of the predictions
are false alarms [15].

Comparing to other domains like electronic advertising,
the success of big data-induced process in studying the
weather system is limited [7, 19]. Among all the reasons
accounting for the slow progress, for data-driven methods
trying to model weather dynamics the main difficulty lies
in addressing the high dimensionality and the complex re-
lationships among variables. The number of meteorologi-
cal variables contributing to tornadoes, from the Cartesian
product between the spatial and temporal domains, is enor-
mous. Tornadoes are usually developed from thunderstorms
and the quasi-geostrophic theory [8] demonstrates that the
development of storm events requires a coupling between
upper and lower levels of the atmosphere. The atmospheric
variables related to this vary both horizontally and vertically
and have complex relationships between each other. Even
the most efficient Monte Carlo methods will suffer from com-
putational infeasibility for such high dimensional and com-
plex data sets.

Dimension reduction is the standard machine learning ap-
proach to deal with high dimensionality [10, 20, 21]. These
methods usually report a single subset of features without
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alternative options. In our study, the tornado precursors
identified are meteorological predictor variables with certain
spatial and temporal information, but due to the complex
interactions within the variables, the problems of only iden-
tifying a single choice precursors are as follows.

(1) Key interpretable precursors may be missed. Due to
spatial and temporal adjacency, many precursors contain
equivalent information for prediction, because these precur-
sors are not physically independent of one another. For
example, when there is a dropping in sea level pressure
(anomalously low sea level pressure is an important charac-
teristic of atmospheric regimes, which may lead to extreme
precipitations), at the same location there must also be con-
vergence of the winds near the surface and divergence of the
winds at the top of the atmosphere. Also, the field of pres-
sure vertical velocity may be strongly negative. In this case,
the low level winds, high level winds, and vertical motions
in the same location are considered equivalent precursors. A
typical feature selection method will only identify one of the
three equivalent precursors, the others will not be reported
to the domain scientists.

(2) The precursors identified may be considered imprac-
tical. It is useful to explore alternative cost-effective but
equally effective solutions in the cases where different precur-
sors may have different costs/utilities associated with their
acquisition/quality in a forecasting model at the next step.
For instance, although the three precursors mentioned in the
above example are considered as equivalent precursors, com-
pared to high level and low level winds, vertical motion is a
noisy and unreliable precursor. Using vertical motion as a
precursor in a prediction model introduces extra uncertainty.
Accordingly, if we know all of the three precursors contain-
ing equivalent information for forecasting, we can select the
low level winds or high level winds for reliable prediction.

1.2 Multiple Markov Boundaries for Tornado
Forecasting

It is an important yet new research topic to identify mul-
tiple Markov boundaries from data using Bayesian inference
in the domain of causal discovery [17]. A Bayesian network
is presented by a directed acyclic graph G and a joint prob-
ability distribution P over a set of features F' [11]. If every
conditional independence entailed by G is present in P, G
is said to be faithful to P [11]. If a data distribution and
an underlying Bayesian network which models that domain
are faithful to each other, the Markov boundary of a node
is unique and contains its parents, children, and the parents
of the children (spouses) [11, 1]. In the past decade, peo-
ple focused on identification of a single Markov boundary
under the faithfulness assumption for causal discovery [1,
18]. However, tornado and other many real-world data dis-
tributions often violate the faithfulness condition due to var-
ious factors, such as (but not limited to) small sample size,
noise in data, and hidden variables. Thus the Bayesian net-
works built from such data often contains multiple Markov
boundaries [12, 17]. Developing methods of discovery of
multiple Markov boundaries would improve the discovery of
the underlying mechanisms to avoid overlooking key causal
variables, and thus this can be useful to explore alterna-
tive cost-effective but equally effective solutions in prediction
in applications where different variables may have different
costs/utilities associated with their acquisition/quality.
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1.3 Our Contributions

Our contributions to tornado forecasting are below.

e To cope with high-dimensionality, we define a new
concept of a core feature space to represent the fea-
ture space of all possible Markov boundaries of a tar-
get variable, and then confine mining multiple Markov
boundaries to this core feature space instead of the
original entire feature space.

To discover this core feature space from distributed
feature data sets, we process distributed feature data
sets in a sequential scan without loading the whole
tornado data set in memory in advance. Specifically,
we process each distributed tornado data set one at a
time, and features in each set are processed one-by-one
in a sequential scan.

We design and implement the MB-DEA algorithm, to
discover multiple Markov Boundaries from Distributed
fEature dAta for tornado forecasting. MB-DEA firstly
discovers the core feature space from which multiple
Markov boundaries are mined.

We apply the MB-DEA algorithm to study the histori-
cal tornado data near Oklahoma City, OK. Our empir-
ical study includes 810,000 features of 35 years data.
We are able to identify physically meaningful and prac-
tical tornado precursors which may lead to reliable and
long-lead time of catastrophic tornado forecasting.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 describes the tornado
data set and Section 4 proposes the MB-DEA algorithm, re-
spectively. Section 5 reports our experimental results on
tornado forecasting. Finally, Section 6 concludes the paper.

2. RELATED WORK

We will give a brief review of tornado forecasting and
multiple Markov boundaries in this section. Tornadoes are
usually developed within thunderstorms and most tornado
warning systems are based on the prediction of thunder-
storms [3]. One official National Weather Service product
is the tornado watch, which is based on weather forecast-
ing model outputs and observations, with a lead time up to
several hours. Simulations of supercell thunderstorms are
performed in [16] with the aim of discovering precursors of
tornadoes. Such process usually resulted in a large num-
ber of false alarms (false positives) because only very few
storms would produce tornadoes. A three-dimensional (in
space and time) object identification algorithm is applied
in [4] for forecasting tornado path lengths through the pre-
dictions of hourly maximum updraft helicity as a measure
of storm severity. In [13] the authors implement principal
component analysis (PCA) on the outputs from a simula-
tion model (the Weather Research and Forecasting model),
and build a tornado prediction model using supported vec-
tor machine with the PCA results. They have achieved an
accuracy of 0.7 with a one day lead time.

Causal discovery is of fundamental and practical interest
in many areas of science and technology [11]. Global causal
induction attempts to learn a complete Bayesian network
over all features on training data. However, global causal
induction is not scalable and cannot even handle thousands



of features [5]. Local causal discovery aims to learn a local
causal structure closely related to a target feature of inter-
est, i.e., a Markov boundary of a target feature of interest.
If a joint probability distribution satisfies the faithful con-
dition, it is guaranteed to have a unique Markov boundary
for every node in a Bayesian network [1]. Accordingly, in
the past decade, most of the existing algorithms of local
causal discovery focused on identification of a single Markov
boundary under the faithfulness assumption [1, 12, 18].

However, many real-world data distributions often vio-
late the faithfulness condition due to small sample sizes,
noise in data, and hidden variables, and thus contain multi-
ple Markov boundaries [12, 17, 22]. Algorithms of multiple
Markov boundaries attempts to discover all Markov bound-
aries of a target feature containing in data without missing
causative variables [17]. Among the most notable advances
in the field of discovery of multiple Markov boundaries are
the KIAMB algorithm and the TIE* algorithm [17]. Pena et
al. [12] proposed a stochastic Markov boundary algorithm,
called KIAMB by employing a stochastic search heuristic
that repeatedly disrupts the order in which features are se-
lected for inclusion into a Markov boundary with the proba-
bility p at each round, thereby introducing a chance of identi-
fying alternative Markov boundaries of a target feature. The
limitation is that we do not know how many iterations the
KIAMB algorithm needs to run because the exact number
of Markov boundaries of a target feature is unknown and
varies in different data. To solve this problem, Statnikov
et al. [17] recently proposed the TIE* (Target Information
Equivalence) algorithm and proved that TIE* can discover
all Markov boundaries under the non-faithful condition.

Integrating the drawbacks of the existing work for long-
lead tornado forecasting and multiple Markov boundaries, it
provides a natural choice to find multiple precursors for long-
lead tornado prediction using multiple Markov boundaries.
However, both the KIAMB and TIE* algorithms focus on
mining multiple Markov boundaries from data on a single
feature set. With the real-world tornado data, the KIAMB
and TIE* algorithms face the challenges of both very high
dimensionality and multiple feature sets. This motivates us
to further investigate new algorithms of multiple Markov
boundaries for long-lead tornado prediction.

3. THE TORNADO DATA SET

The tornado data set contains eight explanatory variables
and tornado information near Oklahoma City, OK, one of
the most tornado-prone areas in the United States. All the
explanatory variables are sampled at the spatial domain of
90°F to 357.5°F and 0°N to 90°N with a horizontal res-
olution of 2.5° x2.5° (totally 2,700 locations) and a daily
temporal resolution for the months of March, April and May
(MAM, when the highest frequency of violent tornadoes oc-
curs in the studied area) for the years 1979-2013. The tor-
nado study area near Oklahoma City is located in the spatial
region of 261.25° F —263.75° ' and 33.75° N —36.25° N. The
eight variables at different levels (Table 1) are selected from
the NCEP-NCAR Reanalysis data set [9] by the domain
scientists (co-authors of the paper) for the study. In partic-
ular, the Relative Humidity data only goes from 1000hPa
to 300hPa because the amount of water in the upper tropo-
sphere was thought to be negligible when the dataset was
designed. Two variables only have one single level (for Sea
Level Pressure, the values represent the surface level; for
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Precipitable Water, the values are column integrated from
all the levels). A particular day of the tornado study area is
labeled as a positive instance if one or more EF'1(Enhanced
Fujita scale [6]) or above tornadoes are reported, otherwise
a negative instance. In total there are 98 tornado days (pos-
itive instances) out of the 3,045 days study period.

We set our “look ahead” days as 5. For example, to fore-
cast tornado situations at tomorrow (day0) in the study
area, we will look at the explanatory variables from today
(day-1) back to previous five days (day-5). The tornado
data set presents two characteristics of a difficult task:

e Extremely high dimensionality. With such a setting,
the total number of precursors (features) for one in-
stance is 810,000 in the tornado data set (e.g., the
variable of Relative Humidity has 8 levels, 5 days, and
2700 locations. In total there are 8 x 5 x 2700=108, 000
features). Any existing algorithm of multiple Markov
boundaries cannot cope with such large number of fea-
tures.

Distributed feature data. The whole tornado data set
is large (more than 13GB in total), and thus we have
the data distributed in eight data sets according to
the eight explanatory variables and one class attribute
set. On average each explanatory variable set still has
more than 100, 000 features. Mining multiple Markov
boundaries from multiple feature data sets is an un-
touched research topic.

4. MACHINE LEARNING FORMULA-

TION

In this section, we discuss the MB-DEA algorithm for tor-
nado forecasting. The algorithm tackles the discovery of
multiple Markov Boundaries from Distributed fEature dAta.
The design of the MB-DEA algorithm consists of (1) finding
the core feature space from the distributed tornado data,
and (2) mining multiple Markov boundaries from the core
feature space.

4.1 Notations and Definitions

Given a training data set D containing N training in-
stances and M features, we define a distributed feature data
set as that D is vertically divided into W feature blocks
without overlapping features between each block, that is,
D = {Bi,Bs,---,Bw} which is distributed in W files.
F; (1 <4 < M) is an feature within B; (1 < 7 < W)
and C is the class attribute. Let P be a joint probability
distribution on a set of random variables F' via a directed
acyclic graph G. We call the triplet (F,G, P) a Bayesian
network if (F,G, P) satisfies the Markov condition: every
variable is conditionally independent of any subset of its
non-descendant variables given its parents [11].

In the rest of the paper, the terms “variable” and “feature”
are used interchangeably. To measure the statistical rela-
tionships between features, we adopt the measure of mutual
information [14]. Given two variables X and Y, the mutual
information between X and Y is defined as follows.

I(X;Y) = H(X) — HX|Y)
where H(Y) and H(Y|Z) are computed as follows.

— 3 (P(a:) logy (P (1))

z;€X

(1)

H(X) 2



Table 1: Meteorological variables

Name

Level(hPa)

Temperature
Geopotential Height
Meridional Wind

Zonal Wind

Pressure Vertical Velocity
Relative Humidity

Sea Level Pressure
Precipitable Water

200,250,300,400,500,600,700,850,925,1000
200,250,300,400,500,600,700,850,925,1000
200,250,300,400,500,600,700,850,925,1000
200,250,300,400,500,600,700,850,925,1000
200,250,300,400,500,600,700,850,925,1000
300,400,500,600,700,850,925,1000

H(X|Y) ==Y P(y;) Y (P(xily;)logy(P(xily;)) (3)

y;EY z;€X

From Equations (1) to (3), the conditional mutual informa-
tion is computed by

I(X;Y|Z)
= H(X|Z) - H(X|YZ)
P(zjyr|z:)

S0P X0 3 Pleamle)og, o

zZ;€Z z;€X YR EY
(4)

The lower cases x;, ¥;, and z; in the above equations de-
note possible values that the variables X, Y and Z take.

DEFINITION 1 (FAITHFULNESS). [11] Give a Bayesian
network (F,G, P), G is faithful to P over F if and only if
every independence present in P is entailed by G and the
Markov condition. P is faithful if and only if there exists a

directed acyclic graph G such that G is faithful to P. u
DEFINITION 2 (MARKOV BOUNDARY). [11] If a
Bayesian network satisfies the faithfulness, the Markov

boundary of any node T in this Bayesian network is unique
with the set of parents, children and spouses (the parents of
the children of T) of T n

However, if a Bayesian network does not satisfy the faith-
fulness, the Markov boundary of any node may not be
unique [17]. We use Theorem 1 to explicitly construct and
verify multiple Markov boundaries when the distribution P
violates the faithful condition.

THEOREM 1. [17] If M By is a Markov boundary of T
that contains a feature set Si, and there exists a subset S
such that M By C (MBl —S1) USQ, ZfI(T7 MB1‘MB2) =0,
then M By is also a Markov boundary of T'. u

In Theorem 1, both M B; and M By are Markov bound-
aries of T, since S1 C M By and S2 C M B2 contain the
equivalent information about 7'

4.2 The Core Feature Space

According to the design of the MB-DEA algorithm, the
key to the algorithm is how to discover the core feature space
from distributed feature data. The core feature space we
are looking for is defined as a feature space that contains all
possible Markov boundaries of a target feature. By theorem
1, we get Corollary 1 below.

COROLLARY 1. Assuming M B; is a Markov boundary of
T and MBy C {MB,\ — {F;} U{F;}}, if I(C; F;|F;) = 0,
M B> is also a Markov boundary of T'. [
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F5 U R(Fs) F, UR(F,)

MB(T)

Fi0 UR(F1o)

CONE

Fi3 UR(F12)

IMB(T)|

CFS(T)=MB(T)U U;=, " R(F;|F; € MB(T))

Figure 1: An example of M B(T) and CFS(T)

DEFINITION 3. Assuming M B(C) is a Markov boundary
of C and F; € M B(C), we define R(F;) as the set of features
that satisfies the term VF; € R(F;) s.t. [(C; F;|F;) =0. m

By Corollary 1 and Definition 3, we define the core feature
space of C' as follows.

DEFINITION 4  (CORE FEATURE SPACE). Assuming
MB(C) is a Markov boundary of C and F; € MB(C), the
core feature space (CFS) of C is defined as

U =)

F;eMB(C)

CFS(C) = {MB(C)U

With Definition 4, our first problem is how to find M B(C')
efficiently. To find M B(C), in general, we can use the exist-
ing single Markov boundary algorithms, such as HITION-
MB [1] and MMMB [18]. For example, assuming a data
set contains 20 features F' = {Fi, Fs,---,Fy} and fea-
ture Fyo is considered as a target feature T, if MB(T) =
{F5, F», F12, Fio}, a Markov blanket of T, is found by
HITION-MB or MMMB and R(F5) = {F1, Fu, Fo}, Figure 1
illustrates the relationships between M B(T') (the left figure)
and CFS(T) (the right figure).

To find the core feature space from distributed feature
data, we further analyze the relationships between features
F; and Fj in Corollaries 2 and 4 as follows.

COROLLARY 2. A feature X is correlated to Y with re-
spect to a feature subset S if I(X;Y]S) > 0.

Proof. By Eq.(4), we can see that the term I(X;Y]S) =
0 holds only when X and Y are conditionally independent
given S. The corollary is proven accordingly. n

COROLLARY 3. If F; is correlated to C and I(C; Fj|F;) =
0 holds, then I(F;,C) > I(F};,C).
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from distributed feature data
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Proof. By I(A; B|C)—1I(A; B) = I(A;C|B)—I(A;C), we
get I(C,FJ|F1) - I(C,F]) = I(C,FZ‘FJ) - I(C,Fl) Since
the term I(C; F};|F;) = 0 hold, then I(C; F;) = I(C; F;|F;)+
I(C; Fj). By Corollary 2, the corollary is proven. u

COROLLARY 4. If both M B and M By C (MB; —{F;})U
{F;} are Markov boundaries of C and I(F;; C|F;) = 0 holds,
then I(Fy; Fj) > max(I(F;; C), I(F;;C)).

Proof.

I(F;; Fi,C) = I(Fy; Fi) + I(Fy; C|F) 5)
= I(F};0) + I(Fy; Fi|C)

Since I(Fj; C|F;) = 0 holds and F; and F; are correlated,
we can get I(F;; F;) > I(F;;C). And at the same time, the
following equation also holds.

= I(F;;C) + I(F;; F5|C)

By Corollary 1, we can also get I(F;;C|F;) = 0. By
Eq.(6), we have I(F;; F;) > I(F;;C). With the equations
(5) and (6), Corollary 4 is proved. L]

By Corollaries 3 and 4, we can get the following.

OBSERVATION 1. If I(Fy; C) > I(Fy; C) and I(F;; Fy) >
maz(I(F;; C), I(F;;C)), then F; is in a Markov boundary of
C (MB(C)), and F} is included by R(F}). L]

4.3 Discovery of Multiple Markov Bound-
aries from Distributed Feature Data

Figure 2 gives the new framework to efficiently find the
core feature space of C from distributed feature data. In
Figure 2, each feature block B; is processed independently
at a time, and as a feature block B; arrives, features in B;
are processed one-by-one in a sequential scan.

As illustrated in Figure 2, we discuss the pseudocode
of the MB-DEA algorithm in Algorithm 1. To achieve a
relatively low computational complexity to deal with high-
dimensional yet distributed tornado data, according to Ob-
servation 1, Corollaries 3 and 4, the MB-DEA algorithm
uses online pairwise comparisons as the selection criterion
for adding features into the core feature space.

In Algorithm 1, R(F;) keeps the set of features correlated
to F; that satisfies Definition 3; R dynamically keeps the
features in ULle (DIR(F;); MB(C) is defined in Definition
4; and CFS(C) denotes the core feature space of C'. Two key

Algorithm 1: The MB-DEA Algorithm
Data: D = {B1,Bs,--- ,Bw};
MB(C) = {};CFS(C) = {} i =0;
§ =maz(I(Y;C),I(F;C))

1 /*Steps 2-25: Mining the core feature space CFS*/
2 for j=1to W do
3 Get-new-feature-set(B;);
4 repeat
5 1 =1+ 1;
6 Get-new-feature(F;, Bj);
7 if I(F;;C) =0 then
8 | Discard Fj; goto step 23;
9 end
10 for each feature Y € MB(C) do
11 if I(Y;C) > I(F;;C) and I(F;;Y) > 6 then
12 RY)=RY) + F;;
14 Goto step 23;
15 end
16 if I(F;;C) > I(Y,C) and I(F;;Y) > § then
17 MB(C) = MB(C) — Y;
19 R=R-RY);
20 end
21 end
22 MB(C) = MB(C) U F;;
23 until F; is the last feature of Bj;
24 end

25 CFS(C)=MB(C)UR

26 /*Steps 27-35: Mining Markov boundaries from CFS*/

27 Use HITION_PC to learn a Markov boundary M B; of
C from D over CFS(C) (the original distribution);

28 Output M By;

29 repeat

30 Generate a data set D, from the embedded

distribution by removing a subset of features within

the discovered Markov boundaries from CFS(C);

31 Use HITION_PC to learn a Markov boundary

M Bpew of C from De;

32 if ace(M Bpew) > acc(M By) then

33 ‘ output M Brew;

34 end

35 until all data sets D. generated have been considered;

stages are given in Algorithm 1. One is to mine CFS(C)
from Steps 2 to 25, and the other is to discover Markov
boundaries from CFS(C) from Steps 27 to 35.

Steps 2 to 25. As a feature set Bj; is achieved, features
within Bj; are processed one-by-one in a sequential scan.
Step 7 is to determine whether a new coming feature F;
is correlated to C; if I(F;;C) > 0, then we consider F; is
correlated to C; otherwise, F; is discarded.

If F; is correlated to C, Step 11 determines whether to
keep F; given the current set M B(C). If not, F; is added to
R and R(Y), respectively. If F; can be added to M B(C') at
Step 11, Step 16 further prunes M B(C) due to F;’s inclu-
sion. If Y in M B(C) is removed, the set R(Y) is removed
from R accordingly. Meanwhile, Y is added to R(F;). With
the MB-DEA algorithm, we can discover $ without any ad-
ditional computation costs.
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Table 2: Summary of the benchmark data sets

Data set f features | § training set | f§ testing set
1 | arcene 10,000 100 100
2 | dexter 20,000 300 300
3 | dorothea 100,000 800 300
4 | colon 2,000 42 20
5 | leukemia 7,129 48 24
6 | lung-cancer 12,533 121 60
7 | ovarian-cancer | 2,190 144 72
8 | thrombin 139,351 2,000 543

Steps 27 to 35. We integrate the TIE* algorithm
into our MB-DEA algorithm to mine Markov boundaries
from the discovered core feature space. The main idea of
TIE* [17] is to first identify a Markov boundary of a target
feature T in the original data distribution and then itera-
tively run a single Markov boundary induction algorithm
from the embedded distributions that are obtained by re-
moving subsets of features from the original Markov bound-
ary in order to identify new Markov boundaries in the origi-
nal distribution. From Steps 27 to 35, with the core feature
space, the TIE* algorithm can search for multiple Markov
boundaries in a smaller feature space.

Step 27 uses a single Markov boundary induction algo-
rithm HITION_PC [1] to learn a Markov boundary, called
M B, from the data set D defined on the feature set
CFS(C) (i-e., in the original distribution). Step 30 gener-
ates a data set D, (the embedded distribution) that removes
a subset of features from C'F'S (Regarding how to generate
an embedded distribution, please see the IGS algorithm in
[17], Pagel8, Figure 9). The motivation is that D. may lead
to identification of a new Markov boundary of T' that was
previously “invisible” to a single Markov boundary induc-
tion algorithm, because it is shielded by another subset of
features within the discovered Markov boundaries. Step 32
uses prediction accuracy as a criterion to verify whether a
discovered feature set from the embedded distribution is a
new Markov boundary or not. If the prediction accuracy of
M Bpew in Step 32 is not less than that of M B1, M Bpew
is also considered as a Markov boundary of C'. Steps 30-
34 are repeated until all data sets D. generated have been
considered.

5. EMPIRICAL STUDY

In this empirical study, since the state-of-the-art multi-
ple Markov boundary discovery algorithm, the TIE* algo-
rithm [17], cannot deal with the high-dimensional yet dis-
tributed tornado data set, we will first validate the effec-
tiveness and efficiency of the MB-DEA algorithm against
the TIE* algorithm using the benchmark data sets, and then
use the MB-DEA algorithm for tornado prediction.

5.1 Experiments on the Benchmark Data Sets

We have chosen eight benchmark data sets as described
in Table 2, which cover a wide range of real-world appli-
cation domains. In Table 2, for the first four NIPS 2003
challenge data sets and the hiva data set from the WCCI
2006 performance prediction challenge, we use the originally
provided training and validation sets; for the other five data
sets we adopt the first 2/3 instances for training and the
last 1/3 instances for testing. As for discrete data sets, we
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Table 3: The F-ratio and MB-ratio
Data set F-ratio MB-ratio
arcene 0.1157 1
dexter 0.0057 -
dorothea 0.0636 1
colon 0.033 0.5
leukemia, 0.0537 1
lung-cancer 0.0.0608 | 1
thrombin 0.0249 -
ovarian-cancer | 0.1685 1

1 — — j 4
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Figure 3: Prediction (classification) accuracies of
MB-DEA against TIE*

use mutual information to compute the correlation between
features while for the continuous data sets, the Fisher’s Z-
test is employed [2] in which the significance level for the
Fisher’s Z-test is set to 0.01. All experiments on the bench-
mark data sets are conducted on a computer with Intel(R)
i7-3770 3.4GHz CPU and 32GB memory.

In our experiments, each training data set in Table 2
is partitioned into ten feature sets evenly to simulate dis-
tributed feature data for MB-DEA while TIE* is directly
implemented on each training data set. TIE* is parame-
terized with HITON_PC [1] as the base Markov blanket in-
duction algorithm, and classification accuracy as a criterion
is used to verify whether a new feature subset is a Markov
boundary or not. The parameter alpha of HITION_PC is
set to 0.01.

In the following figures and tables, we report the compari-
son results of MB-DEA and TIE*. The running time on the
dexter and thrombin data sets exceed 3 days for TIE* and
we do not show the experimental results of TIE* on those
two data sets.

Table 3 reports the F-ratio and MB-ratio. An F-ratio is
the ratio of the number of features of the core feature space
discovered by MB-DEA divided by the number of total fea-
tures on the same data set. An MB-ratio is the ratio of
the number of Markov boundaries discovered by MB-DEA
in the number of Markov boundaries identified by TIE*. In
Table 3, we can see that on each data set, the number of
features within the core feature space is a very small frac-
tion of the total number of features. Furthermore, from the
MB-ration, except for the madelon and thrombin, MB-DEA
discovers the same number of Markov boundaries as TIE* on
the remaining data sets. For the dexter and thrombin data
sets, we do not have their MB-ratios due to long running
time of TIE* and denote them as “”.



Table 4: Efficiency of MB-DEA vs.TIE*(seconds)

Data set TIE* | MB-DEA
arcene 19 6

dexter - 17,091
dorothea 6,465 | 25

colon 5 1
leukemia 15 6
lung-cancer 79 16
thrombin - 24,935
ovarian-cancer | 6 3
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Figure 4: Running time of the discovery of the core
feature space. The labels of the x-axis in both figures
from 1 to 8 denote the data sets:1.arcene, 2.dex-
ter, 3.dorothea, 4.colon, 5.leukemia, 6.lung-cancer,
7.thrombin, 8.ovarian-cancer.

Meanwhile, Figure 3 gives prediction (classification) accu-
racies of MB-DEA against TIE* using the K Nearest Neigh-
bor classifier. We select the highest prediction accuracy
among all of the Markov boundaries discovered by MB-DEA
and TIE*, respectively. From Figure 3, we can see that with
the core feature space, MB-DEA gets the same prediction
accuracy as TIE*. Although MB-DEA does not find all of
Markov boundaries on the colon data set, it still gets the
Markov boundaries with the highest prediction accuracies.

Figure 4 gives the running time of the discovery of the
core feature space from Steps 2 to 25 in Algorithm 1. From
Figure 4, we can see that the computational cost of the dis-
covery of the core feature space is very low due to identifying
the R feature set (see Definition 3) without additional time
costs. Table 4 gives the running time of MB-DEA against
TIE*. From Table 4, we can see that in term of efficiency,
MB-DEA is faster than TIE* on all of ten data sets. From
the dorothea, dexter, and thrombin data sets in Table 4,
with the core feature space, MB-DEA can efficiently deal
with data with very high-dimensionality while TIE* is very
expensive, or even impossible due to its exhaustive search
over the entire feature space.

In summary, with the above results, we can conclude that
the core feature space that the MB-DEA algorithm has dis-
covered is only a small fraction of the entire feature space,
but MB-DEA gets a very promising prediction accuracy with
a reasonable running time. Therefore, the MB-DEA algo-
rithm is a scalable and accurate method to deal with dis-
tributed feature data.
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5.2 Tornado Forecasting

5.2.1 Experiment Setup

Tornadoes are rare events even during the most frequent
months. The positive and negative instances ratio in our
study is about 1:30. We use both accuracy (Equation 7)
and F1 score (Equation 8) as the performance metrics in
our empirical study.

Accuracy = P+ P (7
Y= TPYTN+FP+FN
- 2T P ®)

T 2TP+ FP Y FN

where TP is the number of true positives, FP is the number
of false positives, TN is the number of true negatives, and
FN is the number of false negatives.

We divide the data set into two sets, 30 years (1979-2008,
2,610 days with 81 positive instances) as the training set
and 5 years (2009-2013, 435 days with 17 positive instances)
as the test set. As illustrated in Figure 5, we randomly
under sample the negative instances to achieve class ratios
of positive: negative (P/N) examples that are equal to 1:5,
1:10, 1:20, and 1:25 respectively. At each ratio level we per-
form the random process 10 times and run the MB-DEA
algorithm with the correspondent training data set to iden-
tify tornado precursors from multiple Markov boundaries.
We apply the tornado precursors to the K Nearest Neigh-
bor classifier with K=1 on the test set. The average and
best prediction results are reported in Table 5, in which the
average values are calculated using the best precursors iden-
tified from each training data set. We plot the experimental
results in Figures 6 to 7.

5.2.2 Results and Discussion

Our goal is to identify key interpretable tornado precur-
sors that can latterly be used in forecasting models. As
discussed earlier, we start from a single Markov boundary,
then derive a core feature set from it, eventually identify
the best tornado precursors. The average F1 values of the
best tornado precursor sets are much higher than those of
the initial single Markov boundaries at all the sampling lev-
els (Table 5). The best average forecasting result (average
accuracy=0.93, average F1=0.31) is achieved at the under-
sampling level of P/N ratio 1:20 and the best predicting



Table 5: The average and best prediction results

P/N Ratio Ave. F1 of MB(C) Ave. Size of CFS(C) Ave. Acc. Ave. F1 Best Acc. Best F1

1:5 0.1041 269 0.9097 0.1907 0.9241 0.2667

1:10 0.1333 217 0.9218 0.2440 0.9253 0.2917

1:15 0.1579 233 0.9296 0.2688 0.9448 0.2941

1:20 0.1739 243 0.9255  0.3129 0.9310 0.3478

1:25 0.1778 245 0.9264 0.3018 0.9402 0.3500

Without Undersampling 0.1429 238 - - 0.9218 0.2778

result (accuracy=0.94, F1=0.35) is achieved with P/N ratio
of 1:25, in which we have successfully predicted 7 tornado
events one day ahead out of 17 during the testing period
(MAM 2009-2013, 435 days), with 16 false positives. To the
best of our knowledge, our result among the most promising
tornado forecasting results at daily level compared to the
state-of-the-art algorithms [3].

Figure 6 uses our empirical results to explain how MB-
DEA works. We plot the single Markov Boundary (M B(C)
in Algorithm 1), the core feature set CFS(C), and the tor-
nado precursors (the best Markov boundary according to
the criteria of prediction powers) with respect to the ex-
periment having best prediction results (F1=0.35) in Figure
6. Firstly, the single Markov boundary M B(C) is learned
from the tornado data set (Figure 6a), then the core feature
set CFS(C) is built based on the M B(C) (Figure 6b-6e);
finally, the best Markov boundary according to prediction
powers, is reported (Figure 6f). Different variables in the
core feature set CFS(C) fall into clusters in the spatial do-
mains (blue circles in Figure 6b-6¢). The arrows from Figure
6a to Figure 6d show that how a feature from the field of
Pressure Vertical Velocity helps to generate a cluster of re-
lated features (mostly from the field of Pressure Vertical Ve-
locity and Relative Humidity), and later contributes to the
identification of precursor 12 (Figure 6f). The variables from
the same field closed to each other in the spatial domains
will tend to have similar values due to the spatial autocor-
relation effect [23]. These spatial clusters can be considered
as real-world examples of the CFS(C) illustrated in Figure
2. Our algorithm picks individual precursors out of each
cluster and successfully finds the best combination (Markov
Boundary) according to the forecasting task.

As an algorithm of discovering multiple Markov bound-
aries, MB-DEA is not limited to finding the feature set with
the best prediction result. MB-DEA is able to report differ-
ent precursor sets with similar prediction powers according
to other domain interests. For example, compared to other
variables in the tornado data set, the Pressure Vertical Ve-
locity is considered as a noisy and unreliable variable. In
the feature set with the best prediction result (Figure 6f, b-
set for short), we have two features (No.7 and No.12) from
the field of Pressure Vertical Velocity. From all the MB-
DEA outputs generated from the same input data set, we
are able to find a feature set whose features are all from
fields other than Pressure Vertical Velocity (Figure 7, we
call it the “most reliable” set, or m-set for short.) and have
similar prediction power (F1=0.3265). From Figure 6f and
Figure 7, we find that more than half of the features in the
two sets (No.1,2,3,4,8,10,and 11) are exactly the same, and
others (except No.6) are from the same spatial clusters in the
core feature set. In the m-set instead of Pressure Vertical Ve-
locity, variables from Relative Humidity are selected (No.5

2244

and No.7 in m-set, compared to No.12 and No.7 in b-set, re-
spectively). MB-DEA provides a new approach of bridging
data-driven and knowledge-driven processes for better data
interpretation to be used in various forecasting models.

6. CONCLUSION

The development of reliable tornado forecasting tech-
niques able to provide warnings at a long lead-time is cru-
cial to help human beings better prepare and respond to
disastrous events. In this paper, we propose the MB-DEA
algorithm to identify multiple sets of the precursors for reli-
able tornado forecasting using multiple Markov boundaries.
Our empirical study reveals that the precursors identified
by our algorithm are considered more reliable and practical
than the ones identified by the single Markov boundary dis-
covery algorithm, and lead to advancements in reliable and
long-lead time of catastrophic tornado forecasting.
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