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Feature selection is important in many big data applications. Two critical challenges closely associate
with big data. Firstly, in many big data applications, the dimensionality is extremely high, in millions, and
keeps growing. Secondly, big data applications call for highly scalable feature selection algorithms in an
online manner such that each feature can be processed in a sequential scan. We present SAOLA, a Scalable
and Accurate OnLine Approach for feature selection in this paper. With a theoretical analysis on bounds
of the pairwise correlations between features, SAOLA employs novel pairwise comparison techniques and
maintain a parsimonious model over time in an online manner. Furthermore, to deal with upcoming features
that arrive by groups, we extend the SAOLA algorithm, and then propose a new group-SAOLA algorithm
for online group feature selection. The group-SAOLA algorithm can online maintain a set of feature groups
that is sparse at the levels of both groups and individual features simultaneously. An empirical study using a
series of benchmark real data sets shows that our two algorithms, SAOLA and group-SAOLA, are scalable on
data sets of extremely high dimensionality, and have superior performance over the state-of-the-art feature
selection methods.
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General Terms: Classifier Design and Evaluation, Feature Evaluation and Selection
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1. INTRODUCTION

In data mining and machine learning, the task of feature selection is to choose a
subset of relevant features and remove irrelevant and redundant features from high-
dimensional data towards maintaining a parsimonious model [Guyon and Elisseeff
2003; Liu and Yu 2005; Xiao et al. 2015; Zhang et al. 2015]. In the era of big data
today, many emerging applications, such as social media services, high resolution im-
ages, genomic data analysis, and document data analysis, consume data of extremely
high dimensionality, in the order of millions or more [Wu et al. 2014; Zhai et al. 2014;
Chen et al. 2014; Yu et al. 2015a; Yu et al. 2015b]. For example, the Web Spam Corpus
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2011 [Wang et al. 2012] collected approximately 16 million features (attributes) for
web spam page detection, and the data set from KDD CUP 2010 about using educa-
tional data mining to accurately predict student performance includes more than 29
million features. The scalability of feature selection methods becomes critical to tackle
millions of features [Zhai et al. 2014].

Moreover, in many applications, feature selection has to be conducted in an online
manner. For example, in SINA Weibo, hot topics in behavior in Weibo keep changing
daily. When a novel hot topic appears, it may come with a set of new keywords (a.k.a.
a set of features). And then some of the new keywords may serve as key features to
identify new hot topics. Another example is feature selection in bioinformatics, where
acquiring the full set of features for every training instance is expensive because of the
high cost in conducting wet lab experiments [Wang et al. 2013]. When it is impossible
to wait for a complete set of features, it is practical to conduct feature selection from
the features available so far, and consume new features in an online manner as they
become available.

To search for a minimal subset of features that leads to the most accurate predic-
tion model, two types of feature selection approaches were proposed in the literature,
namely, batch methods [Brown et al. 2012; Woznica et al. 2012; Javed et al. 2014] and
online methods [Wu et al. 2013; Wang et al. 2013]. A batch method requires loading
the entire training data set into memory. This is obviously not scalable when handling
large-scale data sets that exceed memory capability. Moreover, a batch method has to
access the full feature set prior to the learning task [Wu et al. 2013; Wang et al. 2013].

Online feature selection has two major approaches. One assumes that the number of
features on training data is fixed while the number of data points changes over time,
such as the OFS algorithm [Hoi et al. 2012; Wang et al. 2013] that performs feature se-
lection upon each data instance. Different from OFS, the other online method assumes
that the number of data instances is fixed while the number of features changes over
time, such as the Fast-OSFS [Wu et al. 2013] and alpha-investing algorithms [Zhou
et al. 2006]. This approach maintains a best feature subset from the features seen so
far by processing each feature upon its arrival. Wang et al. [Wang et al. 2013] further
proposed the OGF'S (Online Group Feature Selection) algorithm by assuming that fea-
ture groups are processed in a sequential scan. It is still an open research problem to
efficiently reduce computational cost when the dimensionality is in the scale of millions
or more [Wu et al. 2013; Zhai et al. 2014].

In this paper, we propose online feature selection to tackle extremely high-
dimensional data for big data analytics, our contributions are as follows.

— We conduct a theoretical analysis to derive a low bound on pairwise correlations
between features to effectively and efficiently filter out redundant features.

— With this theoretical analysis, we develop SAOLA, a Scalable and Accurate OnLine
Approach for feature selection. The SAOLA algorithm employs novel online pair-
wise comparisons to maintain a parsimonious model over time. We analyze the upper
bound of the gap of information gain between selected features and optimal features.

— To deal with new features that arrive by groups, we extend the SAOLA algorithm,
namely, the group-SAOLA algorithm. The group-SAOLA algorithm can online yield
a set of feature groups that is sparse between groups as well as within each group for
maximizing its predictive performance for classification.

— An extensive empirical study using a series of benchmark data sets illustrates that
our two methods, both SAOLA and group-SAOLA, are scalable on data sets of ex-
tremely high dimensionality, and have superior performance over the state-of-the-art
online feature selection methods.
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The rest of the paper is organized as follows. Section 2 reviews related work. Section
3 proposes our SAOLA algorithm, and Section 4 presents the group-SAOLA algorithm.
Section 5 reports our experimental results. Finally, Section 6 concludes the paper and
our future work.

2. RELATED WORK

Given a set of input features on a training data set, the problem of feature selection is
to select a subset of relevant features from input features without performance degra-
dation of prediction models. There are two types of feature selection approaches pro-
posed in the literature, namely, the batch methods and the online methods.

Standard batch methods can be broadly classified into three categories: filter, wrap-
per and embedded methods. A wrapper method performs a forward or backward strat-
egy in the space of all possible feature subsets, using a classifier of choice to evaluate
each subset. Although this method has high accuracy, the exponential number of pos-
sible subsets makes the method computationally expensive in general [Kohavi and
John 1997]. The embedded methods attempt to simultaneously maximize classifica-
tion performance and minimize the number of features used based on a classification
or regression model with specific penalties on coefficients of features [Tibshirani 1996;
Weston et al. 2000; Zhou et al. 2011].

A filter method is independent of any classifiers, and applies evaluation measures
such as distance, information, dependency, or consistency to select features [Dash and
Liu 2003; Forman 2003; Peng et al. 2005; Song et al. 2012; Liu et al. 2014]. Then the
filter methods build a classifier using selected features. Due to their simplicity and low
computational cost, many filter methods have been proposed to solve the feature se-
lection problem, such as the well-established mRMR (minimal-Redundancy-Maximal-
Relevance) algorithm [Peng et al. 2005] and the FCBF (Fast Correlation-Based Filter)
algorithm [Yu and Liu 2004]. Recently, Zhao et al. [Zhao et al. 2013] proposed a novel
framework to consolidate different criteria to handle feature redundancies. To bring
almost two decades of research on heuristic filter criteria under a single theoretical
interpretation, Brown et al. [Brown et al. 2012] presented a unifying framework for
information theoretic feature selection using an optimized loss function of the condi-
tional likelihood of the training labels.

To deal with high dimensionality, Tan et al. [Tan et al. 2010; Tan et al. 2014] pro-
posed the efficient embedded algorithm, the FGM (Feature Generating Machine) algo-
rithm, and Zhai et al. [Zhai et al. 2012] further presented the GDM (Group Discovery
Machine) algorithm that outperforms the FGM algorithm.

Group feature selection is also an interesting topic in batch methods, and it selects
predictive feature groups rather than individual features. For instance, in image pro-
cessing, each image can be represented by multiple kinds of groups, such as SIF'T for
shape information and Color Moment for color information. The lasso method (Least
Absolute Shrinkage and Selection Operator) was proposed by Tibshirani [Tibshirani
1996] for shrinkage and variable selection, which minimizes the sum of squared errors
with the L, penalty on the sum of the absolute values of the coefficients of features.
Based on the lasso method, Yuan and Lin [Yuan and Lin 2006] proposed a group lasso
method to select grouped variables for accurate prediction in regression. Later, the
sparse group lasso criterion as an extension of the group lasso method, was proposed
by Friedman et al. [Friedman et al. 2010], which enables to encourage sparsity at the
levels of both features and groups simultaneously.

It is difficult for the standard batch method to operate on high dimensional data
analytics that calls for dynamic feature selection, because the method has to access all
features before feature selection can start.
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Online feature selection has two research lines. One assumes that the number of fea-
tures on training data is fixed while the number of data points changes over time [Hoi
et al. 2012]. Recently, Wang et al. [Wang et al. 2013] proposed an online feature selec-
tion method, OFS, which assumes data instances are sequentially added.

Different from OFS, the other online approach assumes that the number of data
instances is fixed while the number of features changes over time. Perkins and
Theiler [Perkins and Theiler 2003] firstly proposed the Grafting algorithm based on
a stagewise gradient descent approach. Grafting treats the selection of suitable fea-
tures as an integral part of learning a predictor in a regularized learning framework,
and operates in an incremental iterative fashion, gradually building up a feature set
while training a predictor model using gradient descent. Zhou et al. [Zhou et al. 2006]
presented Alpha-investing which sequentially considers new features as additions to
a predictive model by modeling the candidate feature set as a dynamically generated
stream. However, Alpha-investing requires the prior information of the original fea-
ture set and never evaluates the redundancy among the selected features.

To tackle the drawbacks, Wu et al. [Wu et al. 2010; Wu et al. 2013] presented the
OSF'S (Online Streaming Feature Selection) algorithm and its faster version, the Fast-
OSFS algorithm. To handle online feature selection with grouped features, Wang et
al. [Wang et al. 2013] proposed the OGF'S (Online Group Feature Selection) algorithm.
However, the computational cost inherent in those three algorithms may still be very
expensive or prohibitive when the dimensionality is extremely high in the scale of
millions or more.

The big data challenges on efficient online processing and scalability motivate us to
develop a scalable and online processing method to deal with data with extremely high
dimensionality.

3. THE SAOLA ALGORITHM FOR ONLINE FEATURE SELECTION
3.1. Problem Definition

In general, a training data set D is defined by D = {(d;,¢;),1 <i < N}, where N is the
number of data instances, d; is a multidimensional vector that contains num P features,
and ¢; is a class label within the vector of the class attribute C. The feature set F' on D
is defined by F = {Fy, Fs, - -+, Fump }- The problem of feature selection on D is to select
a subset of relevant features from F' to maximize the performance of prediction models.
The features in F' are categorized into four disjoint groups, namely, strongly relevant,
redundant, non-redundant, and irrelevant features [Kohavi and John 1997; Yu and Liu
2004], and the goal of feature selection is to remove redundant or irrelevant features
from F while keeping strongly relevant or non-redundant features. The mathematical
notations used in this paper are summarized in Table 1.

Definition 3.1 (Irrelevant Feature). [Kohavi and John 1997] F; is an irrelevant fea-
ture to C, if and only if VS C F \ {F;} and Vf;,V¢;, Vs for which P(S = s, F; = f;) > 0
and P(C =¢|S =s,F; = f;) = P(C =¢)|S =s). [

Definition 3.2 (Markov Blanket [Koller and Sahami 1995]). A Markov blanket of
feature F;, denoted as M C F'\ {F;} makes all other features independent of F; given
M, thatis, VY € F\ (M U{F;}) s.t. P(F;|M,Y) = P(F;|M). ]

By Definition 3.2, a redundant feature is defined by [Yu and Liu 2004] as follows.

Definition 3.3 (Redundant Feature). A feature F; € F is a redundant feature and
hence should be removed from F, if it has a Markov blanket within F. [ ]
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Table I. Summary on mathematical notations

Notation Mathematical meanings

D training data set

F input feature set on D

C the class attribute

N the number of data instances
numP the number of features

G the set of feature groups

L the conditional likelihood

l the conditional log-likelihood

G, a group of features

Wy, the set of selected groups at time ¢;
S, M,S", ¢ feature subsets within F

XY, Z a single feature (Y € F, X € F,Z € F)

T4y Yi, Ziy Ci

an assignment of values for X, Y, Z, and C

an assignment of a set of values of S

d; a numP-dimensional data instance

F; a N-dimensional feature vector

fi a data value of I}

SZF») S:i denote the feature subset selected at time ¢;

[ | S}, [returns the size of S},

P(.].) P(C]S) denotes the posterior probability of C conditioned on S
6 relevance threshold

L the limitation of the maximum subset size

«a significant level for Fisher’s Z-test

p p-value

A5

We also denote D by D = {F;,C},1 < i < numP, which is a sequence of features that
is presented in a sequential order, where F; = {fi, fo,..., fnv}' denotes the i'" feature

containing N data instances, and C' denotes the vector of the class attribute.

If D is processed in a sequential scan, that is, one dimension at a time, we can process
high-dimensional data not only with limited memory, but also without requiring its
complete set of features available. The challenge is that, as we process one dimension
at a time, at any time ¢;, how to online maintain a minimum size of feature subset
S;. of maximizing its predictive performance for classification. Assuming S C F is the
feature set containing all features available till time ¢;_1, S7._, represents the selected
feature set at ¢;_;, and F; is a new coming feature at time ¢;, our problem can be
formulated as follows:

Sy = argrréi,n{|5’| : 8" = argmax P(C[()}.

CC{Sy,_,UFR}

We can further decompose it into the following key steps:

o)

— Determine the relevance of F; to C. Firstly, we determine whether Eq.(2) holds or not.

P(C|F;) = P(C).

(2)

If so, F; cannot add any additional discriminative power with respect to C, thus F;
should be discarded. Hence, Eq.(2) indicates a new feature F; that is completely use-
less by itself with respect to C. If Eq.(2) does not hold, we further evaluate whether
F; carries additional predictive information to C' given S}, _, that is, whether Eq.(3)

below holds. If Eq.(3) holds, F; has a Markov blanket in S}, , and thus F; should still

be discarded.
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— Calculate S;, with the inclusion of Fj. Once F; is added to S}, at time t;, S;,={S}, ,
F;}, we then solve Eq.(4) to prune S;, to satisfy Eq.(1).
S} = argmax P(C|(). 4)

¢CSy,

Accordingly, solving Eq.(1) is decomposed to how to sequentially solve Eq.(2) to Eq.(4)
at each time point. Essentially, Eq.(3) and Eq.(4) deal with the problem of feature
redundancy.

3.2. Using Mutual Information to Solve Eq.(1)

To solve Eq.(1), we will employ mutual information to calculate correlations between
features. Given two features Y and Z, the mutual information between Y and Z is
defined as follows.

I(Y:Z)=H(Y) - H(Y|Z). (5)
The entropy of feature Y is defined as
H(Y) = =3y,ev P(y:) log, P(yi)- (6)
And the entropy of Y after observing values of another feature 7 is defined as
H(Y|Z) = =%.,ezP(2;)Zy,ev P(yilzi) logy P(yi]2i), (")

where P(y;) is the prior probability of value y; of feature Y, and P(y;|z;) is the posterior
probability of y; given the value z; of feature Z. According to Eq.(6) and Eq.(7), the joint
entropy H(X,Y) between features X and Y is defined as follows.

H(X,)Y) = —Y,exXy,ey P, y:) logg P(xi,y;)
—Yap,exP(xi)logy P(x;) — (=X4,ex Xy, ey P24, yi) logy P(yi|x;))
H(X) + HY|X).

From Equations (5) to (8), the conditional mutual information is computed by

I(X:;Y|Z) = H(X|Z) - H(X|YZ)

H(X,Z)+ H(Y,Z) - H(X,Y,Z) — H(Z). ©

Why can we use mutual information to solve Eq.(1)? Based on the work of [Brown
et al. 2012], Eq.(1) is to identify a minimal subset of features to maximize the con-
ditional likelihood of the class attribute C. Let S = {Sp U S5} represent the feature
set containing all features available at time ¢, where Sy indicates the set of selected
features and S; denotes the unselected features. Assuming p(C|Sy) denotes the true
class distribution while ¢(C|Sy) represents the predicted class distribution given Sy,
then Eq.(1) can be reformulated as L(C|Sy, D) = ngl q(c*|Sk), where L(C|Sy, D) de-
notes the conditional likelihood of the class attribute C given Sy and D. The conditional
log-likelihood of L(C|Sy, D) is calculated as follows.

N
1
((C|Sy, D) = NZIOM(C’CIS}J) (10)
By the work of [Brown et al. 2012], Eq.(lO) can be re-written as follows.
V4 k|SO C | 0 1 o k| gk 11
(C1So, D Zl D F[SE) +*ZI @155 +N;10gp<c sf A
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To negate Eq.(11) and use E,, to represent statistical expectation, the following
equation holds!.

3 _ p(CkISé“)} { P(C}“S’“)} { k k}
0(C|Se, D) Emy{log 2(FISh) + Eyyq log P(FI5E) E.y< logp(c|S™) (12)

In Eq.(12), the first term is a likelihood ratio between the true and predicted class
distributions given Sy, averaged over the input data space. The second term equals
to I(C;S5|Sp), that is, the conditional mutual information between C' and Sj, given
Sp [Brown et al. 2012]. The final term is H(C|S), the conditional entropy of C given all
features, and is an irreducible constant.

Definition 3.4 (Kullback Leibler distance [Kullback and Leibler 1951]). The Kull-
back Leibler distance between two probability distributions P(X) and Q(X) is defined

as KL(P(X)[|Q(X)) = Sy,ex P(x) log 523 = By log {53 - n
Then Eq.(12) can be re-written as follows.
Jim —6(CSp, D) = KL(p(C|Sp)[|4(C159)) + 1(C; S51S) + H(C|S) (13)

We estimate the distribution ¢(c*|S¥) using discrete data. The probability of a value
ck of C, p(C = c¥) is estimated by maximum likelihood, the frequency of occurrences
of {C' = ¢*} divided by the total number of data instances N. Since the Strong Law
of Large Numbers assures that the sample estimate using ¢ converges almost surely
to the expected value (the true distribution p), in Eq.(13), KL(p(C|Se)||q(C|Se)) will
approach zero with a large NV [Shlens 2014].

Since I(C; S) = I(C; Sy) + I1(C; S5|Sy) holds, minimizing I(C; S;|Sy) is equivalent to
maximizing I(C;Sy). Accordingly, by Eq.(13), the relationship between the optima of
the conditional likelihood and that of the conditional mutual information is achieved
as follows.

arngaXL(C\Sg,D) = argnéinI(C’;SﬂSg) (14)
0 0

Eq.(14) concludes that if I(C'; S5|Sp) is minimal, then L(C|Sy, D) is maximal. There-
fore, using mutual information as a correlation measure between features, we propose
a series of heuristic solutions to Eq.(2), Eq.(3), and Eq.(4) in the next section.

3.3. The Solutions to Equations (2) to (4)

We can apply Definitions 3.2 and 3.3 to solve Eq.(3) and Eq.(4). However, it is com-
putationally expensive to use Definitions 3.2 and 3.3 when the number of features
within S}, is large. Due to evaluating whether F; is redundant with respect to S}, |

using the standard Markov blanket filtering criterion (Definitions 3.2 and 3.3), it is
necessary to check all the subsets of S}, (the total number of subsets is 99411y to

determine which subset subsumes the predlctlve information that F; has about C, i.e.,
the Markov blanket of F;. If such a subset is found, F; becomes redundant and is re-
moved. When handling a larger number of features, it is computationally prohibitive
to check all the subsets of S}, |

Accordingly, methods such as greedy search are a natural to address this problem.
In the work of [Wu et al. 2013], a k-greedy search strategy is adopted to evaluate
redundant features. It checks all subsets of size less than or equal to . (1 < ¢ <[5}, |),

where © is a user-defined parameter. However, when the size of Sf | is large, it is still

1 Please refer to Section 3.1 of [Brown et al. 2012] for the details on how to get Eq.(11) and Eq.(12).
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computationally prohibitive to evaluate the subsets of size up to .. Moreover, selecting
a proper value of . is difficult. Therefore, those challenges motivate us to develop a
scalable and online processing method to solve Eq.(3) and Eq.(4) for big data analytics.

In this section, to cope with computational complexity, we propose a series of heuris-
tic solutions for Equations (2) to (4) using pairwise comparisons to calculate online the
correlations between features, instead of computing the correlations between features
conditioned on all feature subsets.

3.3.1. Solving Eq.(2). Assuming S}, is the selected feature subset at time ¢, ;, and

at time ¢;, a new feature F; comes, to solve Eq.(2), given a relevance threshold § (we
will provide the detailed discussion of the parameter ¢ in Section 3.4.3), if I(F;; C) > §
(0 <6 < 1), F; is said to be a relevant feature to C; otherwise, F; is discarded as an
irrelevant feature and will never be considered again.

3.3.2. Solving Eq.(3). If F; is a relevant feature, at time ¢;, how can we determine
whether F; should be kept given S}, , that is, whether I(C; F;|S}, ) =0?If3Y € S}, |
such that I(F;; C|Y)) = 0, it testifies that adding F; alone to S}, | does not increase the
predictive capability of S}, . With this observation, we solve Eq.(3) with the following
lemma.

Lemmal I(X;Y|Z) > 0. [

Lemma 2 With the current feature subset S}, | at time #; ; and a new feature F; at
time ¢;, if Y € S}, such that I(F}; C|Y)) = 0, then I(F;;Y) > I(F}; C).

Proof. Considering Eq.(5) and Eq.(9), the following holds.

I(F3;C) + I(F;Y[C)

F; F;|C) + H(F;|C) — H(F;|[YC)

= W) RO (15)
I(F;Y)+ I(F;C|Y) = H(F;) — HF|)Y)+ H(F;|Y) — H(F;|YC) (16)
= H(F;)— H(F;|YC).
By Equations (15) and (16), the following holds.
I(F;CY) = I(F;C) + I[(F; Y|C) — I(F;Y). (17)
With Eq.(17), if I(F;; C|Y) = 0 holds, we get the following,
I(F;Y)=I(F;C)+ I(F;Y|C). (18)
Using Eq.(18) and Lemma 1, the bound of I(F;;Y") is achieved.
I(F;Y) > I(F;0). (19)

[

Lemma 2 proposes a pairwise correlation bound between features to testify whether
a new feature can increase the predictive capability of the current feature subset.
Meanwhile, if I(F;; C|Y) = 0 holds, Lemma 3 answers what the relationship between

I(Y;C) and I(F;; C) is.

Lemma 3 With the current feature subset S;, | at time ¢;_; and a new feature F; at
time ¢;, 3Y € Sy, ,if I(Fi; C|Y') = 0 holds, then I(Y C) > I(F; C).

Proof. With Eq (9), we get 1(Y; F;|C) = I(F;;Y|C). With Eq.(18) and the following
equation,

I(Y;C|F;) — I(Y;C) = I(Y; F}|C) — I(F;;Y). (20)
we get the following,
I(Y;C|F;) = I(Y;C) — I(F; C).
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Case 1:if I(Y; C|F;) = 0, then the following equation holds.

I(Y;C) = I(F;0). (21)

Case 2: if I(Y; C|F;) > 0, we get the following.
I(Y;C) > I(F;O). (22)
By Eq.(21) and Eq.(22), Lemma 3 is proven. |

According to Lemma 3, we can see that if I(Y;C|F;) = 0 and I(F;;C|Y) = 0, then
I(Y; C) exactly equals to I(F;;C). F; and Y can replace each other. In Lemma 3, if we
only consider Case 2, by Lemma 2, with the current feature subset S;,_| at time ¢, ;

and a new feature F; at time ¢;, 3Y" € S;_ ,if I(F;; C]Y') = 0 holds, then the following
is achieved.

I(Y;C) > I(F;C) and I(F;;Y) > I(F;; C). (23)

With Eq.(23), we deal with Eq.(3) as follows. With a new feature F; at time ¢;, 3Y €
S3._,,if Eq.(23) holds, then F; is discarded; otherwise, F; is added to S7, | .

3.3.3. Solving Eq.(4). Once F; is added to S}, | at time ¢;, we will check which features
within S} can be removed due to the new inclusion of F;. If 3Y° € S}, such that
I(C;Y|F;) = 0, then Y can be removed from Sy, .

Similar to Eq.(17) and Eq.(18), if I(C;Y |F;) = 0, we have I(Y; F;) > I(Y;C). At the
same time, if I(C;Y|F;) = 0, similar to Eq.(22), we can get,

I(F;C) > 1I(Y;C). (24)
With the above analysis, we get the following,
I(F;C) > 1(Y;C) and I(Y; F;) > I(Y;C). (25)

Accordingly, the solution to Eq.(4) is as follows. With the feature subset S}, at time
t;and F; € S}, if 3Y € S} such that Eq.(25) holds, then Y can be removed from 57 .

3.4. The SAOLA Algorithm and An Analysis

Using Eq.(23) and Eq.(25), we propose the SAOLA algorithm in detail, as shown in
Algorithm 1. The SAOLA algorithm is implemented as follows. At time ¢;, as a new
feature F; arrives, if I(F;, C') < § holds at Step 5, then F; is discarded as an irrelevant
feature and SAOLA waits for a next coming feature; if not, at Step 11, SAOLA evalu-
ates whether F; should be kept given the current feature set Sy, . If 3Y € S, | such
that Eq.(18) holds, we discard F; and never consider it again. Once F; is added to S}, |

at time t;, S; | will be checked whether some features within S} can be removed

due to the new inclusion of F;. At Step 16, if Y € S} such that Eq.(20) holds, Y is
removed.

3.4.1. The Approximation of SAOLA. To reduce computational cost, the SAOLA algorithm
conducts a set of pairwise comparisons between individual features instead of condi-
tioning on a set of features, as the selection criterion for choosing features. This is es-
sentially the idea behind the well-established batch feature selection algorithms, such
as mRMR [Peng et al. 2005] and FCBF [Yu and Liu 2004]. Due to pairwise compar-
isons, our algorithm focuses on finding an approximate Markov blanket (the parents
and children of the class attribute in a Bayesian network [Aliferis et al. 2010]) and does
not attempt to discover positive interactions between features (there exists a positive
interaction between F; and F; with respect to C' even though F; is completely useless
by itself with respect to C, but F; can provide significantly discriminative power jointly
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ALGORITHM 1: The SAOLA Algorithm.
1: Input: F;: predictive features, C: the class attribute;
d: a relevance threshold (0 < 6 < 1),
S, ,: the selected feature set at time #;_1;
Output: S7;: the selected feature set at time ;

2: repeat

3 get a new feature F; at time ¢;;

4:  /*Solve Eq.(2)*/

5. if I(F;;C) < ¢ then

6: Discard F;;

7 Go to Step 21;

8: endif

9: for each feature Y € S;, | do

10: /*Solve Eq.(3)*/

11: if [(YV;C) > I(F;;C) & I(F};Y) > I(F;; C) then
12: Discard F;;

13: Go to Step 21;

14: end if

15: /*Solve Eq.(4)*/

16: if I(Fi;C) > I(Y;C) & I(F;Y) > I(Y;C) then
17: St:71 = St:71 — Y,

18: end if

19: end for

20: Sz: = St:—l @] Fz,

21: until no features are available
22: Output S;;

with F; [Jakulin and Bratko 2003; Zhao and Liu 2007]). In the following, we will dis-
cuss the upper bound of the gap of information gain between an approximate Markov
blanket and an optimal feature set for feature selection.

Given a data set D, by Definition 3.2 in Section 3.1, if we have the optimal feature
subset M € S, that is the Markov blanket of C' at time ¢;, and Sy € S is the feature
set selected by SAOLA, and S; represents {S \ Sy}, then according to the chain rule of
mutual information, we get I((Sg, Sg); C) = I(Sp; C) + I(C; S5|Sp). Thus, when Sy takes
the values of the optimal feature subset M, which perfectly captures the underlying
distribution p(C|M), then I(C; S;|Sy) would be zero. By Eq.(13), we get the following.

—(C|S9, D) = KL(p(C|5)[|a(C|S0)) + 1(C; 55/ 50) + H(C|S)
< KL(p(C1So)llq(C[Sp)) + 1(C; M) + H(C|S)

Meanwhile, in Eq.(26), the value of KL(p(C|Sy)|lg(C|Ss)) depends on how well
g can approximate p, given the selected feature set Sy. By Eq.(13) in Section 3.2,
KL(p(ClS)|lq(C|Sy)) will approach zero as N — oo. Therefore, the upper bound of
the gap of information gain between the selected features and optimal features can be
re-written as Eq.(27). Closer Sy is to M, smaller the gap in Eq.(27) is.

lim —(C|Ss, D) < I(C; M) + H(C|S) @7
— 00

(26)

Our empirical results in Section 5.4 have validated that the gap between an op-
timal algorithm (exact Markov blanket discovery algorithms) and SAOLA, is small
using small sample-to-ratio data sets in real-world. Furthermore, SAOLA (pairwise
comparisons) is much more scalable than exact Markov blanket discovery algorithms
(conditioning on all possible feature subsets) when the number of data instances or
dimensionality is large.
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3.4.2. Handling Data with Continuous Values. Finally, for data with discrete values, we
use the measure of mutual information, while for data with continuous values, we
adopt the best known measure of Fisher’s Z-test [Peia 2008] to calculate correlations
between features. In a Gaussian distribution, Normal(u, ), the population partial cor-
relation p(r,y|s) between feature F; and feature Y given a feature subset S is calculated

as follows.
» B —((Xrys) ey
F;Y|S) — _ _
X T () Den (Cpys) vy
In Fisher’s Z-test, under the null hypothesis of conditional independence between F;
and Y given S, pp,y|s) = 0. Assuming « is a given significance level and p is the p-value
returned by Fisher’s Z-test, under the null hypothesis of the conditional independence
between F; and Y, F; and Y are uncorrelated to each other, if p > «a; otherwise, F;
and Y are correlated to each other, if p < «. Accordingly, at time t, a new feature F;
correlated to C is discarded given S/, ,if 3Y € S}, | s.t. py.c > pr, c and py,F, > pr, c.

(28)

3.4.3. The Parameters of SAOLA. In Algorithm 1, we discuss the parameters used by the
SAOLA algorithm in detail as follows.

— Relevance threshold ¢. It is a user-defined parameter to determine relevance thresh-
olds between features and the class attribute. We calculate symmetrical uncer-
tainty [Press et al. 1996] instead of I(X,Y’), which is defined by

2I(X,Y)
HX)+H(Y)

The advantage of SU(X,Y) over I(X,Y) is that SU(X,Y) normalizes the value of
I(X,Y) between 0 and 1 to compensate for the bias of I(X,Y’) toward features with
more values. In general, we set 0 < § < 1.

— Correlation bounds of I(F;;Y). According to Eq.(23) and Eq.(25), at Steps 11 and 16
of the SAOLA algorithm, I(F;;C) and I(Y;C) (min(I(F;; C),I(Y;C))) are the corre-
lation bounds of I(F;;Y), respectively. To further validate the correlation bounds, at
Steps 11 and 16, by setting I(Y'; C) and I(F;; C) to max(I(F;; C), I(Y; C)) respectively,
we can derive a variant of the SAOLA algorithm, called SAOLA-max (the SAOLA-
max algorithm uses the same parameters as the SAOLA algorithm, except for the
correlation bounds of I(F;;Y) in Steps 11 and 16). We will conduct an empirical study
on the SAOLA and SAOLA-max algorithms in Section 5.5.1.

— Selecting a fixed number of features. For different data sets, using the parameters
or §, SAOLA returns a different number of selected features. Assuming the number of
selected features is fixed to k, to modify our SAOLA to select k features, a simple way
is to keep the top k features in the current selected feature set S}, w1th the highest
correlations with the class attribute while dropping the other features from S} after
Step 20 in Algorithm 1.

3.4.4. The Time Complexity of SAOLA. The major computation in SAOLA is the compu-
tation of the correlations between features (Steps 5 and 11 in Algorithm 1). At time
t;, assuming the total number of features is up to numP and |S;} | is the number of the
currently selected feature set, the time complexity of the algorithm is O(numP|S} |).
Accordingly, the time complexity of SAOLA is determined by the number of features
within |57 |. But the strategy of online pairwise comparisons guarantees the scalability
of SAOLA, even when the size of |S; | is large.

Comparlng to SAOLA, Fast-OSFS employs a k-greedy search strategy to filter out
redundant features by checklng feature subsets for each feature in S} . At time ¢;,

the best time complexity of Fast-OSFS is O(|S}, |L1951), where o/5%! denotes all subsets

SU(X,Y) =
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of size less than or equal to « (1 <+ < |5}, |) for checking. With respect to Alpha-
investing, at time ¢;, the time complexity of Alpha-investing is O(numP|S; |?). Since
Alpha-investing only considers adding new features but never evaluates the redun-
dancy of selected features, the feature set S} always has a large size. Thus, when the
size of candidate features is extremely high and the size of | S} | becomes large Alpha-
investing and Fast-OSFS both become computationally intensive or even prohibitive.
Moreover, how to select a suitable value of « for Fast-OSFS in advance is a hard prob-
lem, since different data sets may require different . to search for a best feature subset.

4. A GROUP-SAOLA ALGORITHM FOR ONLINE GROUP FEATURE SELECTION

The SAOLA algorithm selects features only at the individual feature level. When the
data possesses certain group structure, the SAOLA algorithm cannot directly deal with
features with group structures. In this section, we extend our SAOLA algorithm, and
propose a novel group-SAOLA algorithm to select feature groups which are sparse at
the levels of both features and groups simultaneously in an online manner.

4.1. Problem Definition

Suppose G = {G1,Ga,--,Gi, -+, Grumc} represents numG feature groups without
overlapping. We denote D by D = {G;,C},1 < i < numG}, which is a sequence of fea-
ture groups that is presented in a sequential order. If we process those numG groups
in a sequential scan, at any time ¢;, the challenge is how to simultaneously optimize
selections within each group as well as between those groups to achieve a set of groups,
,., containing a set of selected groups that maximizes its predictive performance.

Assuming G;_; C G is the set of all feature groups available till time ¢;,_; and G; is
a new coming group at time ¢;, our problem can be formulated as follows:

Uy, = argmaxg, cqq,_,uc,} P(ClGe)

s.t. (29)
(a)VF; € G;,G; C ¥y, P(C|G \{F} F) # P(CIG- \ {Fi})

(B)VG; C W, P(CWy, \ Gy, Gy) # P(ClUy, \ Gy).
Eq. (29) attempts to yield a solution at time ¢; that is sparse at the levels of both

intra-groups (constraint (a)) and inter-groups (constraint (b)) simultaneously for max-
imizing its predictive performance for classification.

Definition 4.1 (Irrelevant groups). If 3G; C G s.t. I(C; G;) = 0, then G; is considered
as an irrelevant feature group. [

Definition 4.2 (Group redundancy in inter-groups). If 3G; C G s.t. I(C; G;|G\ G;)
0, then G; is a redundant group.

Definition 4.3 (Feature redundancy in intra-groups). VF; € G;,if 35 C G; \ {F;} s.
I(C; F;|S) = 0, then F; can be removed from G,.

™ om

With the above definitions, our design to solve Eq. (29) consists of three key steps:
at time t¢;, firstly, if G; is an irrelevant group, then we discard it; if not, secondly, we
evaluate feature redundancy in G; to make it as parsimonious as possible at the intra-
group level; thirdly, we remove redundant groups from the currently selected groups.
The solutions to those three steps are as follows.

— The solution to remove irrelevant groups.
At time ¢, if group G; C G comes, if VF; € G; s.t. I(C; F;) = 0 (or given a relevance
threshold d, I(C; F;) < § (0 < § < 1), then G; is regarded as an irrelevant feature
group, and thus it can be discarded.
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— The solution to determine group redundancy in inter-groups.
Assume U, is the set of groups selected at time ¢;_; and G; is a coming group at time
t;. If‘VF‘Z S Gi,HFj S Gj,and Gj C \I/ti s.t. I(F],C) > I(FZ, C) and I(FJ,FZ) > I(FZ, C),
then G, is a redundant group, and then can be removed.

— The solution to feature redundancy in intra-groups.
If G; is not a redundant group, we further prune G; to make it as parsimonious as
possible using Theorem 1 in Section 3.2.2. If 3F; € G, s.t. 3Y € G; \ {F;},I[(Y;C) >
I(F;;C) and I(F};Y) > I(F;; C) holds, then F; can be removed from G;.

4.2. The Group-SAOLA Algorithm

With the above analysis, we propose the Group-SAOLA algorithm in Algorithm 2.
In Algorithm 2, from Steps 5 to 8, if G; is an irrelevant group, it will be discarded. If
not, Step 11 and Step 16 prune G; by removing redundant features from G;. At Step
22 and Step 26, the group-SAOLA removes both redundant groups in {¥;, , UG;} and
redundant features in each group currently selected. Our Group-SAOLA algorithm can
online yield a set of groups that is sparse between groups as well as within each group
simultaneously for maximizing its classification performance at any time ¢;.

5. EXPERIMENT RESULTS
5.1. Experiment Setup

We use fourteen benchmark data sets as our test beds, including ten high-dimensional
data sets [Aliferis et al. 2010; Yu et al. 2008] and four extremely high-dimensional
data sets, as shown in Table II. The first ten high-dimensional data sets include two
biomedical data sets (hiva and breast-cancer), three NIPS 2003 feature selection chal-
lenge data sets (dexter, madelon, and dorothea), and two public microarray data sets
(lung-cancer and leukemia), two massive high-dimensional text categorization data
sets (ohsumed and apcj-etiology), and the thrombin data set that is chosen from KDD
Cup 2001. The last four data sets with extremely high dimensionality are available at
the Libsvm data set website?.

In the first ten high-dimensional data sets, we use the originally provided training
and validation sets for the three NIPS 2003 challenge data sets and the hiva data
set, and for the remaining six data sets, we randomly select instances for training and
testing (see Table II for the number instances for training and testing.). In the news20
data set, we use the first 9996 data instances for training and the rest for testing while
in the urll data set, we use the first day data set (url1) for training and the second day
data set (url2) for testing. In the 2dd2010 and webspam data sets, we randomly select
20,000 data instances for training, and 100,000 and 78,000 data instances for test-
ing, respectively. Thus, as for the lung-cancer, breast-cancer, leukemia, ohsumed, apcj-
etiology, thrombin, kdd10, and webspam data sets, we run each data set 10 times, and
report the highest prediction accuracy and the corresponding running time and num-
ber of selected features. Our comparative study compares the SAOLA algorithm with
the following algorithms:

— Three state-of-the-art online feature selection methods: Fast-OSFS [Wu et al. 2013],
Alpha-investing [Zhou et al. 2006], and OFS [Wang et al. 2013]. Fast-OSFS and
Alpha-investing assume features on training data arrive one by one at a time while
OFS assumes data examples come one by one;

— Three batch methods: one well-established algorithm of FCBF [Yu and Liu 2004], and
two state-of-the-art algorithms, SPSF-LAR [Zhao et al. 2013] and GDM [Zhai et al.
2012].

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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ALGORITHM 2: The group-SAOLA Algorithm.

1: Input: G;: feature group; C: the class attribute;
d: a relevance threshold (0 < 6 < 1);
W,, ,:the set of selected groups at time ¢;_1;
Output: U, : the set of selected groups at time ¢;;
repeat
A new group G; comes at time ¢;;
/*Evaluate irrelevant groups*/
if VF; € Gi,I(Fi; C) < 6 then
Discard G;
Go to Step 39;
end if
9: /*Evaluate feature redundancy in G;*/
10:  for j=1to |G;| do

11: if3Y € {G;, — {F;}},1(Y;C) > I(F;;C) & I(Y; F;) > I(F}; C) then
12: Remove F; from Gj;

13: Continue;

14: end if

15: /*Otherwise*/

16: if I(F;;C) > I(Y;C) & I(Fj;Y) > I(Y;C) then

17: Remove Y from G;;

18: end if

19:  end for
20: /*Evaluate group redundancy in {¥;, , UG;}*/
21:  forj=1to |V, ,|do

22: if 3F, € G; CVy, ,, IF; € Gy, I(FZ'; C) > ](Fk;C) & ](Fi;Fk) > ](Fk;C) then
23: Remove Fj, from G;;

24: end if

25: /*Otherwise*/

26: if I(Fy; C) > I(F;; C) & I(Fy; Fi) > I(F;; C) then
27: Remove F; from G;;

28: end if

29: if G; is empty then

30: \Ijti—l = \Ilti—l — GJ,

31: end if

32: if G; is empty then

33: Break;

34: end if

35: end for

36: if G, is not empty then

37: \I/ti = \I’t171 UGy

38: endif

39: until no groups are available
40: Output U,,;

The algorithms above are all implemented in MATLAB except for the GDM algo-
rithm that is implemented in C language. We use three classifiers, KNN and J48 pro-
vided in the Spider Toolbox3, and SVM* to evaluate a selected feature subset in the
experiments. The value of k£ for the KNN classifier is set to 1 and both SVM and KNN
use the linear kernel. All experiments were conducted on a computer with Intel(R)
i7-2600, 3.4GHz CPU, and 24GB memory. In the remaining sections, the parameter

3http:/ /people.kyb.tuebingen.mpg.de/spider/
4http:/ /www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table Il. The benchmark data sets

Dataset Number of features | Number of training instances | Number of testing instances
madelon 500 2,000 600
hiva 1,617 3,845 384
leukemia 7,129 48 24
lung-cancer 12,533 121 60
ohsumed 14,373 3,400 1,600
breast-cancer 17,816 190 96
dexter 20,000 300 300
apcj-etiology 28,228 11,000 4,779
dorothea 100,000 800 300
thrombin 139,351 2,000 543
news20 1,355,191 9,996 10,000
urll 3,231,961 20,000 20,000
webspam 16,609,143 20,000 78,000
kdd2010 29,890,095 20,000 100,000

0 for SAOLA is set to 0 for discrete data while the significance level a for SAOLA is
set to 0.01 for Fisher’s Z-test for continuous data (the effect of § and o on SAOLA was
given in Section 5.4.3.). The significance level is set to 0.01 for Fast-OSFS, and for
Alpha-investing, the parameters are set to the values used in [Zhou et al. 2006].

We evaluate SAOLA and its rivals based on prediction accuracy, error bar, AUC, sizes
of selected feature subsets, and running time. In the remaining sections, to further
analyze the prediction accuracies and AUC of SAOLA against its rivals, we conduct
the following statistical comparisons.

— Paired t-tests are conducted at a 95% significance level and the win/tie/lose (w/t/l1 for
short) counts are summarized.

— To validate whether SAOLA and its rivals have no significant difference in prediction
accuracy or AUC, we conduct the Friedman test at a 95% significance level [Demsar
2006], under the null-hypothesis, which states that the performance of SAOLA and
that of its rivals have no significant difference, and calculate the average ranks using
the Friedman test (how to calculate the average ranks, please see [Demsar 2006].).

— When the null-hypothesis at the Friedman test is rejected, we proceed with the Ne-
menyi test [Demsar 2006] as a post-hoc test. With the Nemenyi test, the perfor-
mance of two methods is significantly different if the corresponding average ranks
differ by at least the critical difference (how to calculate the critical difference, please
see [Demsar 20061].).

We organize the remaining parts as follows. Section 5.2 compares SAOLA with on-
line feature selection algorithms. Section 5.3 gives a comparison of SAOLA with batch
feature selection methods, Section 5.4 compares SAOLA with Markov blanket dis-
covery methods, and Section 5.5 conducts an analysis of the effect of parameters on
SAOLA. Section 5.6 compares Group-SAOLA with its rivals.

5.2. Comparison of SAOLA with Three Online Algorithms

5.2.1. Prediction Accuracy, Running Time and the Number of Selected Features of SAOLA. Since
Fast-OSFS and Alpha-investing can only deal with the first ten high-dimensional data
sets in Table IT due to high computational cost, we compare them with SAOLA only
on the first ten high-dimensional data sets. Accordingly, in the following tables, the
notation “-” denotes an algorithm fails to a data set because of excessive running time.

The OFS algorithm is a recently proposed online feature selection method. Since
OFS uses a user-defined parameter k to control the size of the final selected feature
subset, we set k, i.e., the number of selected features to the top 5, 10, 15 ,..., 100 fea-
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Table IIl. Prediction accuracy (J48)

Dataset SAOLA | Fast-OSFS | Alpha-investing | OFS

dexter 0.8133 0.8200 0.5000 0.5667
lung-cancer 0.9500 | 0.9000 0.8333 0.8667
hiva 0.9661 0.9635 0.9635 0.9635
breast-cancer | 0.7917 0.8854 0.7187 0.8333
leukemia 0.9583 | 0.9583 0.6667 0.9583
madelon 0.6083 0.6100 0.6067 0.6367
ohsumed 0.9437 0.9450 0.9331 0.9431
apcj-etiology | 0.9872 | 0.9868 0.9828 0.9872
dorothea 0.9343 0.9371 0.9343 0.9371
thrombin 0.9613 | 0.9595 0.9613 0.9374
news20 0.8276 | - - 0.7332
urll 0.9744 | - - 0.9720
kdd10 0.8723 | - - 0.8577
webspam 0.9611 - - 0.9689
w/t/l - 1/8/1 5/5/0 5/7/2

Table IV. Prediction accuracy (KNN)

Dataset SAOLA | Fast-OSFS | Alpha-investing | OFS

dexter 0.7600 0.7800 0.5000 0.5400
lung-cancer 0.9833 0.9667 0.9167 0.8500
hiva 0.9635 0.9635 0.9531 0.9661
breast-cancer | 0.8646 0.8542 0.6875 0.6979
leukemia 0.9167 0.7917 0.6250 0.8750
madelon 0.5617 0.5283 0.5767 0.6433
ohsumed 0.9275 0.9306 0.9325 0.9431
apcj-etiology 0.9793 0.9702 0.9851 0.9872
dorothea 0.9200 0.9457 0.7400 0.9086
thrombin 0.9374 0.9300 0.9371 0.9411
news20 0.7755 - - 0.6884
urll 0.9627 - - 0.9607
kdd10 0.8780 - - 0.7755
webspam 0.9532 - - 0.9516
w/t/l - 4/4/72 6/3/1 7/5/2

Table V. Prediction accuracy (SVM)

Dataset SAOLA | Fast-OSFS | Alpha-investing | OFS

dexter 0.8500 0.8100 0.5000 0.5000
lung-cancer 0.9833 0.9500 0.9167 0.7833
hiva 0.9635 0.9635 0.9635 0.9635
breast-cancer | 0.8750 0.8854 0.7188 0.7812
leukemia 0.9583 0.7500 0.6667 0.8333
madelon 0.6217 0.6227 0.6383 0.6117
ohsumed 0.9431 0.9438 0.9431 0.9431
apcj-etiology 0.9872 0.9872 0.9872 0.9872
dorothea 0.9286 0.9371 0.9086 0.9029
thrombin 0.9116 0.9116 0.9153 0.9245
news20 0.8721 - - 0.4993
urll 0.9645 - - 0.9681
kdd10 0.8727 - - 0.8852
webspam 0.9123 - - 0.8897
w/t/l - 3/6/1 5/4/1 8/4/2

tures, then selecting the feature set with the highest prediction accuracy as the report-
ing result.

Tables III, IV, and V summarize the prediction accuracies of SAOLA against Fast-
OSFS, Alpha-investing, and OFS using the KNN, J48 and SVM classifiers. The
win/tie/loss (w/t/l for short) counts of SAOLA against Fast-OSFS, Alpha-investing, and
OFS are summarized in Tables III, IV, and V. The highest prediction accuracy is high-
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lighted in bold face. Tables VI and VII give the number of selected features and run-
ning time of SAOLA, Fast-OSFS, Alpha-investing, and OFS. We have the following
observations.

(1) SAOLA vs. Fast-OSFS. With the counts of w/t/l in Tables III and V, we observe
that SAOLA is very competitive with Fast-OSFS. In Table IV, we can see that SAOLA
is superior to Fast-OSFS. Fast-OSFS selects fewer features than SAOLA on all data
sets as shown in Table VI. The explanation is that Fast-OSFS employs a k-greedy
search strategy to filter out redundant features by checking the feature subsets in the
current feature set for each feature while SAOLA only uses pairwise comparisons. But
as shown in Table VII, this strategy makes Fast-OSFS very expensive in computa-
tion and even prohibitive on some data sets, such as apcj-etiology and the last four
extremely high-dimensional data sets of Table II, as the size of the current feature set
is large at each time point.

(2) SAOLA vs. Alpha-investing. From Tables III to V, we can see that SAOLA outper-
forms Alpha-investing on most data sets using the three classifiers. Alpha-investing se-
lects many more features than SAOLA on ohsumed, apcj-etiology, dorothea, and throm-
bin since Alpha-investing only considers to add new features but never evaluates the
redundancy of selected features. An exception is that Alpha-investing only selects one
feature on the dexter data set. A possible explanation is that the dexter data set is a
very sparse real-valued data set. Furthermore, Alpha-investing is less efficient than
SAOLA as shown in Table VII.

Table VI. Number of selected features

Dataset SAOLA | Fast-OSFS | Alpha-investing | OFS
dexter 21 9 1 85
lung-cancer 35 6 7 60
hiva 12 5 48 10
breast-cancer | 46 7 2 10
leukemia 17 5 2 45
madelon 3 3 4 65
ohsumed 65 11 297 10
apcj-etiology 75 67 634 10
dorothea 63 5 113 60
thrombin 20 9 60 40
news20 212 - - 85
urll 64 - 100
kdd10 180 - 90
webspam 51 - 85

To validate whether SAOLA, Fast-OSF'S, and Alpha-investing have no significant
difference in prediction accuracy, with the Friedman test at 95% significance level,
under the null-hypothesis, which states that the performance of SAOLA and that of
Fast-OSFS and Alpha-investing have no significant difference, with respect to J48 in
Table III, the average ranks for SAOLA, Fast-OSFS, and Alpha-investing are 2.35,
2.40, and 1.25 (the higher the average rank, the better the performance), respectively.
The null-hypothesis is rejected. Then we proceed with the Nemenyi test as a post-hoc
test. With the Nemenyi test, the performance of two methods is significantly different
if the corresponding average ranks differ by at least the critical difference. With the
Nemenyi test, the critical difference is up to 1.047. Thus, with the critical difference
and the average ranks calculated above, the prediction accuracy of SAOLA and that
of Fast-OSF'S have no significant difference, but SAOLA is significantly better than
Alpha-investing.

As for the KNN classifier, the average ranks for SAOLA, Fast-OSFS, and Alpha-
investing are 2.45, 1.85, and 1.705 in Table IV, respectively. Meanwhile, as for SVM
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in Table V, the average ranks for SAOLA, Fast-OSFS, and Alpha-investing are 2.30,
2.25, and 1.45, respectively. Using KNN and SVM, the null-hypothesis cannot be re-
jected, and thus, the prediction accuracy of SAOLA and that of Fast-OSFS and Alpha-
investing have no significant difference.

In summary, in prediction accuracy, SAOLA is very competitive with Fast-OSFS,
and is superior to Alpha-investing. Furthermore, Fast-OSFS and Alpha-investing can-
not deal with extremely high-dimensional data sets due to computational cost while
SAOLA is accurate and scalable.

Table VII. Running time (seconds)

Dataset SAOLA | Fast-OSFS | Alpha-investing | OFS
dexter 3 4 6 1
lung-cancer 6 4 2 1

hiva 1 36 7 1
breast-cancer | 5 4 3 1
leukemia 2 2 1 0.1
madelon 0.1 0.1 0.1 0.1
ohsumed 6 343 497 9
apcj-etiology 22 > 3 days 9,781 100
dorothea 58 375 457 10
thrombin 63 18,576 291 40
news20 944 - - 1,572
urll 200 - - 1,837
kdd10 1,056 - - 28,536
webspam 1,456 - - 18,342

(3) SAOLA vs. OFS. With Tables III to V, we evaluate whether the performance of
SAOLA and that of OFS have no significant difference in prediction accuracy using the
Friedman test at 95% significance level. For the J48 and SVM classifiers, we observe
the same average ranks for SAOLA and OFS, 1.64 and 1.36, respectively. Regarding
SVM, the average ranks for SAOLA and OFS are 1.61 and 1.39, respectively. Accord-
ingly, although SAOLA is better than OFS on prediction accuracy using the w/t/l counts
and the average ranks, SAOLA and OFS have no significant difference in prediction
accuracy.

However, from Table VI, we can see that SAOLA selects fewer features than OSF on
all data sets except for hiva, breast-cancer, ohsumed, apcj-etiology, news20, and kdd 10.
Moreover, Table VII gives the running time of SAOLA and OFS. As for OFS, we
record the running time of the feature subset with the highest accuracy as its run-
ning time. SAOLA is faster than OFS, except for the dorothea and thrombin data sets.
The dorothea and thrombin data sets only include 800 samples and 2000 samples,
respectively. When the number of data samples becomes large and the number of fea-
tures of training data is increased to millions, OFS become very costly, and SAOLA is
still scalable and efficient. The explanation is that the time complexity of SAOLA is de-
termined by the number of features within the currently selected feature set, and the
strategy of online pairwise comparisons makes SAOLA very scalable, even when the
size of the current feature set is large. Moreover, setting a desirable size of a feature
set selected by OFS in advance is a non-trivial task.

5.2.2. AUC and Error Bar of SAOLA. In this section, we further evaluate SAOLA and the
three online algorithms using the error bar and AUC metrics.

Table VIII reports the average AUC of J48, KNN and SVM for each algorithm. Us-
ing the w/t/l counts, we can see that our SAOLA is better than Fast-OSFS and Alpha-
investing. To further validate whether SAOLA, Fast-OSFS, and Alpha-investing have
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Table VIII. AUC of SAOLA, Fast-OSFS, and Alpha-investing

Dataset SAOLA | Fast-OSFS | Alpha-investing
dexter 0.8088 0.8033 0.5000
lung-cancer 0.9407 0.9286 0.8298
hiva 0.5349 0.5229 0.5326
breast-cancer | 0.8111 0.7996 0.5303
leukemia 0.9404 0.8811 0.6543
madelon 0.5972 0.5883 0.6072
ohsumed 0.5559 0.6244 0.5503
apcj-etiology 0.5256 0.5250 0.4987
dorothea 0.7297 0.8219 0.6453
thrombin 0.7849 0.7913 0.8026
average rank | 2.6 2.1 1.3
w/t/l - 5/3/2 6/2/2

12 T T T T T

[ IsAaoLA [ OFS

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dataset

Fig. 1. The AUC of SAOLA and OFS (the labels of the x-axis from 1 to 14 denote the data sets: 1. dexter; 2.
lung-cancer; 3. hiva; 4. breast-cancer; 5. leukemia; 6. madelon; 7. ohsumed; 8. apcj-etiology; 9. dorothea; 10.
thrombin; 11. news20; 12. urll; 13. kdd10; 14. webspam)

no significant difference in AUC, with the Friedman test, the null-hypothesis is re-
jected, and the average ranks calculated for SAOLA, Fast-OSF'S, and Alpha-investing
are 2.6, 2.1, and 1.3, respectively.

Then we proceed with the Nemenyi test as a post-hoc test. With the Nemenyi test,
the performance of two methods is significantly different if the corresponding average
ranks differ by at least the critical difference. With the Nemenyi test, the critical dif-
ference is up to 1.047. Accordingly, the AUC of SAOLA and that of Fast-OSFS have no
significant difference, but SAOLA is significantly better than Alpha-investing.

Figure 1 shows the average AUC of J48, KNN and SVM and its standard deviation
for SAOLA and OFS. We can see that SAOLA outperforms to OFS on all 14 data sets.

From Table VIII and Figure 1, we can conclude that none of SAOLA, Fast-OSFS,
Alpha-investing, and OFS can effectively deal with highly class-imbalanced data sets,
such as hiva, apcj-etiology, and ohsumed.

Finally, we give the error bars of SAOLA, Fast-OSFS, Alpha-investing,
and OFS. Since we randomly select instances from the lung-cancer, breast-
cancer, leukemia, ohsumed, apcj-etiology, thrombin, kdd10, and webspam data sets
for training and testing, we only report the error bars of the four online algorithms
on those eight data sets using the SVM classifier. For each data set, we randomly run
each algorithm 10 times, and then compute the average prediction accuracy and the
corresponding standard deviation. Figure 2 plots the average prediction accuracy and
an error bar that denotes a distance of the standard deviation above and below this
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Fig. 2. The error bars of SAOLA, Fast-OSFS, Alpha-investing, and OFS

average prediction accuracy on each data set. Figure 2 shows that SAOLA achieves
a higher average prediction accuracy and a lower standard deviation than Alpha-
investing and OFS while being highly comparable with Fast-OSFS. This further con-
firms that SAOLA is very competitive with Fast-OSFS and superior to Alpha-investing
and OFS.

5.2.3. Stability of SAOLA. The stability of feature selection is one of the criteria to mea-
sure the performance of a feature selection algorithm by quantifying the ‘similarity’
between two selected feature sets, and was first discussed by Kalousis et al. [Kalousis
et al. 2007]. In this section, we employ the measure proposed by Yu et al. [Yu et al.
2008] to evaluate the stabilities of SAOLA, Fast-OSFS, Alpha-investing, and OFS.
This measure constructs a weighted complete bipartite graph, where the two node
sets correspond to two different feature sets, and weights assigned to the arcs are the
normalized mutual information between the features at the nodes, also sometimes re-
ferred to as the symmetrical uncertainty. The Hungarian algorithm is then applied to
identify the maximum weighted matching between the two node sets, and the overall
similarity between two sets is the final matching cost.

To evaluate the stabilities, each data set was randomly partitioned into five folds,
each fold containing 1/5 of all the samples. SAOLA and its rivals under comparison
were repeatedly applied to four out of the five folds. This process was repeated 30
times to generate different subsamples for each data set. Then the average stabilities
over 30 subsamples on each data set are as the results of SAOLA, Fast-OSFS, Alpha-
investing, and OFS.

Figure 3 shows the stabilities of SAOLA, Fast-OSFS, and Alpha-investing (we do
not plot the stability of Alpha-investing on the dexter data set, since Alpha-investing
only selects one feature on the dexter data set.). We can see that the Alpha-investing
algorithm is the most stable feature selection algorithm among the three online meth-
ods. The explanation is that the Alpha-investing algorithm only considers adding fea-
tures while never removes redundant features. SAOLA and Fast-OSFS aim to select
a minimum subset of features necessary for constructing a classifier of best predictive
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Fig. 3. The stabilities of SAOLA, Fast-OSFS, and Alpha-investing (The labels of the x-axis from 1 to 10
denote the data sets: 1. dexter; 2. lung-cancer; 3. hiva; 4. breast-cancer; 5. leukemia; 6. madelon; 7. ohsumed;
8. apcj-etiology; 9. dorothea; 10. thrombin)
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Fig. 4. The stabilities of SAOLA and OFS (The labels of the x-axis from 1 to 14 denote the data sets: 1.
dexter; 2. lung-cancer; 3. hiva; 4. breast-cancer; 5. leukemia; 6. madelon; 7. ohsumed; 8. apcj-etiology; 9.
dorothea; 10. thrombin; 11.news20; 12. url; 13. kdd10; 14. webspam)
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accuracy and discard features which are relevant to the class attribute but highly cor-
related to the selected ones. Among a set of highly correlated features, different ones
may be selected under different settings of SAOLA and Fast-OSFS. Therefore, from
Figure 3, we can see that SAOLA is very competitive with Fast-OSFS.

Meanwhile, from Figure 4, we can observe that SAOLA is more stable than OFS.
Such observation illustrates that even if OFS can select large subsets of features, it is
still less stable than SAOLA. The possible explanation is that OFS assumes that data
examples come one by one while SAOLA assume that features on training data arrive
one by one at a time.

5.2.4. The Effect of Large Data Sets on SAOLA. To evaluate the effect of large data sets
on SAOLA, we use the data sets, connect-4 (60,000/7,557 objects and 126 attributes)
(note: 60,000/7,557 objects denote 60,000 data instances for training while 7,557 ones
for testing), ijecnnl (190,000/1,681 objects and 22 attributes), covtype (571,012/10,000
objects and 54 attributes), poker (1,020,000/5,010 objects and 11 attributes), and real-
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Fig. 5. Prediction accuracy of SAOLA, Fast-OSFS, Alpha-investing, and OFS

sim (70,000/2,309 objects and 20,958 attributes) from the machine learning data set
repository 5.

Table IX gives the running time of SAOLA and its rivals. In Table IX, “-” denotes
that an algorithm fails to the data set due to the high computational cost (exceeding
three days). We can see that SAOLA is more scalable to deal with data with large
numbers of data instances than Fast-OSFS, Alpha-investing, and OFS. Furthermore,
Figure 5 gives the prediction accuracy of the four algorithms using the SVM classifier.
Since Fast-OSF'S fails on the connect-4 and real-sim data sets while Alpha-investing
cannot run on the real-sim data set, Figure 5 does not plot the prediction accuracies of
Fast-OSFS and Alpha-investing on those data sets. SAOLA is better than Fast-OSFS
and OFS and competitive with Alpha-investing on prediction accuracy.

Table IX. Running time of SAOLA and its three rivals (in seconds)

Dataset SAOLA | Fast-OSFS | Alpha-investing | OFS
connect-4 | 2 - 38 310
ijennl 0.45 2 0.75 2
covtype 13 15,324 48 8,846
poker 0.26 0.42 0.92 10
real-sim 1,223 - - 1,013

5.3. Comparison with the Three Batch Methods

5.3.1. Running Time, the Number of Selected Features, and Prediction Accuracy of SAOLA.
Since FCBF and SPSF-LAR can only deal with the first ten high-dimensional data
sets in Table II, in the following tables and figures, we compare FCBF and SPSF-LAR
with our proposed algorithm only on those ten high-dimensional data sets in terms
of size of selected feature subsets, running time, and prediction accuracy. The infor-
mation threshold for FCBF is set to 0. We set the user-defined parameter Kk, i.e., the
number of selected features to the top 5, 10, 15 ,..., 65 features for the SPSF-LAR al-
gorithm, choose the feature subsets of the highest prediction accuracy, and record the
running time and the size of this feature set as the running time and the number of
selected features of SPSF-LAR, respectively.

We also select the GDM algorithm [Zhai et al. 2012] which is one of the most re-
cent batch feature selection methods in dealing with very large dimensionality. The
GDM algorithm is an efficient embedded feature selection method using cutting plane
strategy and correlation measures as constraints to minimize the correlation among
the selected features. GDM uses a user-defined parameter to control the size of the
final selected feature subset. We set the selected feature subset sizes to the top 10,

Shttp://mldata.org/repository/data/
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Fig. 7. Running time (the labels of the x-axis are the same as the labels of the x-axis in Figure 6.)

20, 30, ..., 260 features for the GDM algorithm, report the running time of the feature
subset with the highest accuracy as the running time of GDM, and choose the highest
prediction accuracies achieved among those selected feature subsets.

From Figure 6, we can conclude that FCBF selects the most features among SAOLA,
FCBF and SPSF-LAR while SAOLA and SPSF-LAR are similar to each other. As
shown in Figure 7, we can observe that SAOLA is the fastest algorithm among SAOLA,
FCBF and SPSF-LAR while SPSF-LAR is the slowest. The explanation is that the time
complexity of the algorithm is O(numP|S} |) where numP is the number of features
and |S} | is the number of selected features at time ¢;, while the time complexity of
SPFS-LAR is O(numPNk + Nk3) where N is the number of data samples and & the
number of selected features.

The computational costs of SAOLA and FCBF are very competitive since both of
them employ pairwise comparisons to calculate the correlations between features. But
when the number of data instances or the number of features is large, SAOLA is faster
than FCBF, such as on ohsumed, apcj-etiology, dorothea, and thrombin. A possible
reason is that SAOLA online evaluates both the new coming features (Step 11) and
the current feature set (Step 16) at each time point to make the selected feature set
as parsimonious as possible, since the size of the selected feature set at each time
point is the key to determine the running time of SAOLA. With the same information
threshold §, FCBF prefers to selecting more features than SAOLA.

Figure 8 shows the running time of SAOLA against GDM. Since GDM is imple-
mented in C++, we developed a C++ version of SAOLA for the comparison with GDM,
in addition to its Matlab version. In Figure 8, we only give the last four data sets
with extremely high dimensionality in Table II, since on the the first ten data sets, the
running time of both SAOLA and GDM is no more than ten seconds. We can see that
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Fig. 9. Number of selected features (The labels of the x-axis from 1 to 14 denote the data sets: 1. dexter; 2.
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although GDM is a wrapper-like feature selection method, both GDM and SAOLA are
very efficient to handle extremely high-dimensional data sets. Except for the news20
data set, SAOLA is a little faster than GDM. On the sparse data sets, SAOLA is faster
than GDM, while on the dense data sets, such as the news20 data set, GDM is faster
than SAOLA. Finally, Figure 9 reports the number of selected features of SAOLA com-
paring to GDM. Except for the breast-cancer data set, SAOLA selects fewer features
than GDM to achieve the very competitive prediction accuracy with GDM.

Finally, Tables X to XII report the prediction accuracies of SAOLA against FCBF,
SPSF-LAR, and GDM. With the counts of w/t/l in the last rows of Tables X to XII, we
can see that even without requiring the entire feature set on a training data set in ad-
vance, SAOLA is still very competitive with FCBF, SPSF-LAR and GDM in prediction
accuracy.

Using the Friedman test at 95% significance level, for J48, the average ranks for
SAOLA, FCBF and SPSF-LAR are 2.05, 1.90, and 2.05, respectively. For KNN, the
average ranks for SAOLA, Fast-OSF'S, and SPSF-LAR are 1.90, 2.25 and 1.85, respec-
tively, while regarding SVM, the average ranks are 2.15, 1.65, and 2.20. Thus, with the
Friedman test at 95% significance level, using KNN, J48 and SVM, the null-hypothesis
cannot be rejected, and thus SAOLA, FCBF and SPSF-LAR have no significant differ-
ence in prediction accuracy. Accordingly, we conclude that the performance of SAOLA
is highly comparable to that of FCBF and SPSF-LAR.

With regard to the prediction accuracies of SAOLA and GDM, we can see that our
algorithm is very competitive with GDM on J48, KNN, and SVM. With the Friedman
test at 95% significance level, for J48, the average ranks for SAOLA and GDM are 1.32
and 1.68, respectively. As for KNN, the average ranks for SAOLA and GDM are 1.39
and 1.61, respectively. Using KNN and J48, the null-hypothesis cannot be rejected,
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Table X. Prediction accuracy (J48)

Dataset SAOLA | FCBF SPSF-LAR | GDM

dexter 0.8133 0.8567 | 0.8700 0.9100
lung-cancer 0.9500 0.9500 | 0.9833 0.9833
hiva 0.9661 0.9661 | 0.9635 0.9661
breast-cancer | 0.7917 0.8125 | 0.8958 0.4792
leukemia 0.9583 0.9583 | 0.9583 1.0000
madelon 0.6083 0.6067 | 0.6183 0.5833
ohsumed 0.9437 0.9444 | 0.9431 0.9438
apcj-etiology 0.9872 0.9866 | 0.9872 0.9879
dorothea 0.9343 0.9314 | 0.9029 0.9371
thrombin 0.9613 0.9576 | 0.9558 0.7300
news20 0.8276 - - 0.7354
urll 0.9744 - - 0.9765
kdd10 0.8723 - - 0.8779
webspam 0.9611 - - 0.9617
wi/t/l - 0/8/2 1/5/4 4/7/3

Table XI. Prediction accuracy (KNN)

Dataset SAOLA | FCBF SPSF-LAR | GDM

dexter 0.7600 0.7967 | 0.7233 0.9100
lung-cancer 0.9833 0.9500 | 0.9833 0.9833
hiva 0.9635 0.9609 | 0.9635 0.9661
breast-cancer | 0.8646 0.8333 | 0.8229 0.4792
leukemia 0.9167 1.0000 | 1.0000 1.0000
madelon 0.5617 0.5767 | 0.5633 0.5833
ohsumed 0.9275 0.9300 | 0.9113 0.9438
apcj-etiology 0.9793 0.9826 | 0.9803 0.9879
dorothea 0.9200 0.9200 | 0.8857 0.9371
thrombin 0.9374 0.9429 | 0.9650 0.7300
news20 0.7755 - - 0.7354
urll 0.9627 - - 0.9765
kdd10 0.8780 - - 0.8779
webspam 0.9532 - - 0.9617
w/t/l - 2/5/3 47472 3/5/6

Table Xll. Prediction accuracy (SVM)

Dataset SAOLA | FCBF SPSF-LAR | GDM

dexter 0.8500 0.5400 | 0.6400 0.9100
lung-cancer 0.9833 0.9800 | 0.9833 0.9833
hiva 0.9635 0.9635 | 0.9635 0.9661
breast-cancer | 0.8750 0.8750 | 0.8854 0.4792
leukemia 0.9583 0.9167 | 0.9167 1.0000
madelon 0.6217 0.5933 | 0.7900 0.5833
ohsumed 0.9431 0.9431 | 0.9431 0.9438
apcj-etiology 0.9872 0.9872 | 0.9872 0.9879
dorothea 0.9286 0.9171 | 0.9029 0.9371
thrombin 0.9116 0.9116 | 0.9153 0.7300
news20 0.8721 - - 0.7354
urll 0.9645 - - 0.9765
kdd10 0.8727 - - 0.8779
webspam 0.9123 - - 0.9617
wi/t/l - 4/6/0 3/5/2 4/6/4

accordingly, the SAOLA and GDM do not have significant difference in prediction ac-
curacy.

As for SVM, the null-hypothesis is rejected, and the average ranks for SAOLA and
GDM are 1.25 and 1.75, respectively. Then we proceed with the Nemenyi test as a post-
hoc test. With the Nemenyi test, the critical difference is up to 0.5238. Thus, with the
critical difference and the average ranks calculated above, GDM is significantly better
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than SAOLA. From the results above, we can see that the GDM algorithm is inferior
to SAOLA on some data sets, such as thrombin and news20, since those data sets are
very sparse. However, Fisher’s Z-test and information gain employed by SAOLA can
deal with those spare data sets well.

In summary, our SAOLA algorithm is a scalable and accurate online approach. With-
out requiring a complete set of features on a training data set before feature selection
starts, SAOLA is very competitive with the well-established and state-of-the-art FCBEF,
SPSF-LAR, and GDM methods.

5.3.2. AUC and Error Bar of SAOLA. In this section, we compare SAOLA with the three
batch algorithms using the error bar and AUC metrics.

Table XIll. AUC of SAOLA, FCBF, and SPSF-LAR

Dataset SAOLA | FCBF SPSF-LAR
dexter 0.8088 0.7311 | 0.7611
lung-cancer 0.9407 0.9475 | 0.9639
hiva 0.5349 0.5347 | 0.5335
breast-cancer | 0.8111 0.8120 | 0.8466
leukemia 0.9404 0.9737 | 0.9737
madelon 0.5972 0.5962 | 0.7537
ohsumed 0.5559 0.5741 | 0.5613
apcj-etiology 0.5256 0.5473 | 0.4987
dorothea 0.7297 0.6775 | 0.7218
thrombin 0.7849 0.7938 | 0.8382
average rank | 1.8 1.95 2.15
w/t/l - 3/4/3 2/3/5

Table XIII reports the average AUC of J48, KNN and SVM for each algorithm. Using
the w/t/l counts, we can see that our SAOLA is very competitive with FCBF and SPSF-
LAR. To further validate with the Friedman test and the null-hypothesis, the average
ranks calculated for SAOLA, FCBF and SPSF-LAR are 1.8, 1.95, and 2.15, respectively.
Accordingly, the AUC of SAOLA and that of FCBF and SPSF-LAR have no significant
difference.

Figure 10 shows the average AUC of J48, KNN and SVM and its standard deviation
for SAOLA and GDM. From Figure 10, GDM outperforms SAOLA on most data sets,
but the AUC of SAOLA is highly comparable to that of GDM. Moreover, we can see
that none of these algorithms, SAOLA, FCBF, SPSF-LAR, and GDM, can effectively
deal with highly class-imbalanced data sets.
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Fig. 11. The error bars of SAOLA, FCBF, SPSF-LAR, and GDM

We give the error bars of SAOLA, FCBF, SPSF-LAR, and GDM using SVM classifiers
(on the lung-cancer, breast-cancer, leukemia, ohsumed, apcj-etiology, thrombin, kdd 10,
and webspam data sets) as shown in Figure 11. From Figure 11, SAOLA is very com-
petitive with FCBF. Although GDM and SPSF-LAR achieve a higher prediction accu-
racy and a lower standard deviation than SAOLA, our SAOLA is highly comparable
with those two batch methods.

5.4. Comparison with Markov Blanket Discovery Algorithms

In this section, we compare SAOLA and FCBF (discovery of approximate Markov blan-
kets) with two state-of-the-art exact Markov blanket discovery algorithms, IAMB (In-
cremental Association Markov Blanket) [Tsamardinos and Aliferis 2003] and MMMB
(Max-Min Markov Blanket) [Tsamardinos et al. 2006]. The IAMB algorithm finds
Markov blankets conditioned on the selected feature set currently, while the MMMB
algorithm discovers Markov blankets conditioned on all possible feature subsets of the
selected feature set currently®. Under certain assumptions (sufficient number of data
instances and reliably statistical tests), IAMB and MMMB can return the Markov
blanket of a given target feature [Pena et al. 2007; Aliferis et al. 2010]. Using the four
NIPS2003 feature selection challenge data sets, arcene (100 data instances, 10,000
features), dexter (300 data instances, 20,000 features), dorothea (800 data instances,
100,000 features), and gisette (6,000 data instance, 5,000 features), we empirically
study SAOLA, FCBF, IAMB, and MMMB using SVM, KNN, and J48.

From Table XIV to Table XVI, we can see that using small sample-to-feature ratio
data sets, such as arcene, dexter, dorothea, SAOLA and FCBF are competitive with
IAMB and MMMB, and even better than IAMB and MMMB sometimes. The expla-
nation is that the number of data instances required by IAMB to identify a Markov
blanket is at least exponential in the size of the Markov blanket since TAMB considers
a conditional independence test to be reliable when the number of data instances in D
is at least five times the number of degrees of freedom in the test. MMMB mitigates

5We implement IAMB and MMMB using the package of Causal Explorer at http:/www.dsl-
lab.org/causal_explorer/.
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Table XIV. Predicition and AUC of SAOLA, FCBF, IAMB, and MMMB (SVM)

Dataset Prediction Accuracy AUC

SAOLA | FCBF | IAMB | MMMB | SAOLA | FCBF | JAMB | MMMB
arcene 0.6600 0.5600 | 0.6000 | 0.6700 | 0.6526 0.500 0.5917 | 0.6664
dorothea | 0.9286 0.9171 | 0.9343 | - 0.6455 0.5735 | 0.7799 | -
dexter 0.8500 | 0.5400 | 0.7600 | 0.8467 0.8500 | 0.5400 | 0.7600 | 0.8467
gisette 0.8950 0.554 0.9340 | 0.9820 0.8950 0.5540 | 0.9340 | 0.9820

Table XV. Predicition and AUC of SAOLA, FCBF, IAMB, and MMMB (KNN)

Dataset Prediction Accuracy AUC

SAOLA | FCBF | IAMB | MMMB | SAOLA | FCBF | IAMB | MMMB
arcene 0.6900 | 0.5900 | 0.5800 | 0.6200 0.6867 | 0.5804 | 0.5714 | 0.6096
dorothea | 0.9200 | 0.9200 | 0.9143 | - 0.7063 | 0.6932 | 0.6113 | -
dexter 0.7600 0.7967 | 0.6600 | 0.8233 | 0.7600 0.7967 | 0.6600 | 0.8233
gisette 0.8600 0.8920 | 0.9300 | 0.9690 0.8600 0.8920 | 0.9300 | 0.9690

Table XVI. Predicition and AUC of SAOLA, FCBF, IAMB, and MMMB (J48)

Dataset Prediction Accuracy AUC

SAOLA | FCBF | TAMB | MMMB | SAOLA | FCBF | IAMB | MMMB
arcene 0.5600 0.5500 | 0.5800 | 0.6000 0.5463 0.5252 | 0.5714 | 0.5966
dorothea | 0.9343 0.9314 | 0.9371 | - 0.7536 0.7258 | 0.7683 | -
dexter 0.8133 0.8567 | 0.7833 | 0.8767 0.8133 0.8567 | 0.7833 | 0.8767
gisette 0.8960 0.9130 | 0.9260 | 0.9420 0.8960 0.9130 | 0.9260 | 0.9420

this problem to some extent. But the performance of IAMB and MMMB may be inferior
to SAOLA and FCBF as the sample-to-feature ratio becomes very small. Furthermore,
as the size of a Markov blanket becomes large, MMMB is very slow due to expensive
computation costs, such as on the dorothea data set (the running time exceeds three
days). But on the gisette data set, due to the large number of data instances, IAMB and
MMMB are significantly better than SAOLA and FCBF, but MMMB and IAMB take
much more running time, especially MMMB. Those empirical results conclude that the
performance of SAOLA is very close to that of IAMB and MMMB on small sample-to-
feature ratio data sets, but SAOLA is much more scalable than IAMB and MMMB on
data sets with both many data instances and extremely high dimensionality.

Table XVII. Number of selected features and running time of SAOLA, FCBF, IAMB, and MMMB

Dataset Number of selected features Running time

SAOLA | FCBF | ITAMB | MMMB | SAOLA | FCBF | TAMB | MMMB
arcene 22 31 3 5 3 3 5 12
dorothea | 63 96 6 - 58 78 479 -
dexter 21 55 4 11 3 5 38 74
gisette 22 37 9 308 10 8 131 13,483

5.5. Analysis of the Effect of Parameters on SAOLA

5.5.1. Analysis of Correlation Bounds. In Section 3.3, we set the derived the correlation
bound of I(F;;Y) to min(I(F;;C),I1(Y;(C)). In this section, we investigate SAOLA us-
ing the opposite bound, i.e., max(I(F;;C),I1(Y;C)), which we term the SAOLA-max
algorithm. In the experiments, SAOLA-max uses the same parameters as SAOLA.

Table XVIII shows the prediction accuracies of SAOLA and SAOLA-max. With the
summary of the w/t/l counts in Table XVIII, we can see that SAOLA is very competitive
with SAOLA-max in prediction accuracy. With the Friedman test at 95% significance
level, As for SVM, SAOLA gets the higher average rank than SAOLA-max. For KNN,
the null-hypothesis cannot be rejected. The average ranks calculated from the Fried-
man test for SAOLA and SAOLA-max are 1.46 and 1.54, respectively. With respect to
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Fig. 12. The AUC of SAOLA and SAOLA-max (The labels of the x-axis from 1 to 14 denote the data sets: 1.
lung-cancer; 2. breast-cancer; 3. ohsumed; 4. apcj-etiology; 5. dorothea; 6. thrombin; 7. news20; 8. madelon;
9. dexter; 10. hiva; 11. leukemia; 12. urll; 13. kdd10; 14. webspam)

J48, the average ranks for SAOLA and SAOLA-max are 1.43 and 1.57, respectively.
The Friedman test testifies that SAOLA and SAOLA-max have no significant differ-
ence in prediction accuracy, although SAOLA-max gets the higher average ranks using
the J48 and KNN classifiers.

Table XVIII. Prediction accuracy

KNN J48 SVM

Dataset SAOLA | SAOLA-max | SAOLA | SAOLA-max | SAOLA | SAOLA-max
dexter 0.7600 0.8000 0.8133 0.8300 0.8500 0.8800
lung-cancer 0.9833 0.9500 0.9500 0.9500 0.9833 1.0000
hiva 0.9635 0.9505 0.9661 0.9557 0.9635 0.9635
breast-cancer | 0.8646 0.8854 0.7917 0.8125 0.8750 0.8645
leukemia 0.9167 1.0000 0.9583 0.9583 0.9583 0.8750
madelon 0.5617 0.5617 0.6083 0.6083 0.6217 0.6217
ohsumed 0.9275 0.9256 0.9437 0.9437 0.9431 0.9431
apcj-etiology 0.9793 0.9807 0.9872 0.9870 0.9872 0.9872
dorothea 0.9200 0.9171 0.9343 0.9257 0.9286 0.9029
thrombin 0.9374 0.9484 0.9613 0.9503 0.9116 0.9153
news20 0.7755 0.7592 0.8276 0.8295 0.8721 0.4993
urll 0.9627 0.9732 0.9744 0.9761 0.9645 0.9614
kdd2010 0.8780 0.8766 0.8723 0.8751 0.8727 0.8727
webspam 0.9532 0.9546 0.9611 0.9635 0.9123 0.8798
Ave rank 1.46 1.54 1.43 1.57 1.61 1.39
wi/t/l - 4/5/5 - 2/10/2 - 5/7/2

Moreover, Figure 12 shows the average AUC of J48, KNN and SVM and its standard
deviation for SAOLA and SAOLA-max. We can see that SAOLA and SAOLA-max are
very competitive with each other on all 14 data sets.

However, on the running time, Table XIX shows that SAOLA is much more effi-
cient than SAOLA-max on all data sets, especially on those of extremely high di-
mensionality. In Table XIX, we can also see that SAOLA selects fewer features than
SAOLA-max. The explanation is that SAOLA-max uses a bigger relevance thresh-
old (92 = max(I(X;C),I(Y;C)) for removing redundant features than SAOLA (5, =
min(I(X;C),I(Y;C)). Clearly, the larger the relevance threshold d,, more features are
added to the current feature set (see Steps 11 and 16 of Algorithm 1).

Compared to SAOLA-max, we can conclude that it is accurate and scalable to use
the correlation bound, d; = min(I(X;C),I(Y;C) in the SAOLA algorithm, for pairwise
comparisons to filter out redundant features.

Finally, we evaluate the stabilities of SAOLA and SAOLA-max using the stability
measure proposed by Yu et al. [Yu et al. 2008]. Each data set was randomly partitioned
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Table XIX. Running time and Number of selected features

Dataset Running time (seconds) | Number of selected features
SAOLA | SAOLA-max | SAOLA SAOLA-max
dexter 3 3 21 39
lung-cancer 6 62 35 260
hiva 1 3 12 58
breast-cancer 5 40 46 93
leukemia 2 4 17 70
madelon 0.1 0.1 3 3
ohsumed 6 8 65 89
apcj-etiology 22 38 75 105
dorothea 58 327 63 516
thrombin 63 497 20 498
news20 944 2,100 212 449
urll 200 526 64 346
kdd2010 1,056 2,651 180 193
webspam 1,456 11,606 51 165
0.9 S
[ ]sAoLA
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Stability
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Fig. 13. The stabilities of SAOLA and SAOLA-max (The labels of the x-axis from 1 to 14 denote the data
sets: 1. dexter; 2. lung-cancer; 3. ohsumed; 4. apcj-etiology; 5. news20; 6. breast-cancer; 7. madelon; 8.
leukemia ; 9. kdd10; 10. webspam; 11. hiva; 12. dorothea; 13. thrombin; 14. url)

into five folds, each fold containing 1/5 of all the samples. SAOLA and SAOLA-max
were repeatedly applied to four out of the five folds. This process was repeated 30 times
to generate different subsamples for each data set. Then the average stabilities over 30
subsamples on each data set are as the results of SAOLA and SAOLA-max. Figure 13
shows the stabilities of SAOLA and SAOLA-max. We can conclude that SAOLA is very
competitive with SAOLA-max on the measure of stability, although SAOLA-max can
select large subsets of features.

5.5.2. The Effect of Input Order of Features. Since the dimensions are presented in a se-
quential scan, does the input order of the features have an impact on the quality of
the selected feature set? To evaluate the effect on the SAOLA algorithm, we generate
30 trials in which each trial represents a random ordering of the features in the in-
put feature set. We apply the SAOLA algorithm to each randomized trial and report
the average prediction accuracies and standard deviations (accuracy+deviation) in Ta-
ble XX (in the following sections, we only give the prediction accuracy of SAOLA using
KNN and J48, since the prediction accuracy of SAOLA using SVM is very similar to
that of SAOLA using KNN.).

On the last eight very high-dimensional data sets, the results in Table XX confirm
that varying the order of the incoming features does not affect much the final outcomes.
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Table XX. Average prediction accuracy and standard deviation of SAOLA

Dataset KNN (accuracy+tdeviation) | J48 (accuracy+tdeviation)
ohsumed 0.9389+0.0039 0.9444+0.0002
apcj-etiology 0.9824+0.0008 0.9871+0.0002
dorothea 0.9193+0.0095 0.9345+0.0044
thrombin 0.9498+0.0072 0.9501+0.0021
kdd10 0.8759+0.0025 0.8682+0.0066
news20 0.7694+0.0052 0.8194+0.0041
urll 0.9557+0.0107 0.9729+0.0023
webspam 0.9502+0.0035 0.9618+0.0035

Our explanation is that with various feature orders, Steps 11 and 16 of Algorithm 1
can select the feature with the highest correlation with the class attribute among a set
of correlated features and remove the corresponding correlated features of this feature.

The only difference is that in some feature orders, the final feature subset may in-
clude some weakly relevant features. For example, assuming at time ¢, F; arrives and
has only one feature Y that satisfies Eq.(18) in the input features, and Y arrived before
F; and has stayed in the currently selected feature set S; . Then F; can be removed
at time ¢ given Y. But if F; arrives before Y, and Y is removed before F;’s arrival, F;
cannot be removed later and may be kept in the final feature set. This also explains
why there is a little fluctuation of standard deviations in Table XX.

Table XXI. Prediction Accuracy

Dataset KNN 448

«=0.01 a=0.05 «=0.01 a=0.05
madelon 0.5617 0.5717 0.6083 0.5416
ohsumed 0.9275 0.9394 0.9437 0.9437
apcj-etiology 0.9793 0.9838 0.9872 0.9873
news20 0.7755 0.7749 0.8276 0.8276
urll 0.9627 0.9642 0.9744 0.9744
kdd2010 0.8780 0.8678 0.8723 0.8723
webspam 0.9532 0.9493 0.9611 0.9611

5.5.3. The Effect of § and a. The SAOLA algorithm has two versions: SAOLA with infor-
mation gain for discrete data and SAOLA with Fisher’s Z-test for continuous data. For
both versions, SAOLA needs to set a relevance threshold (¢ in Algorithm 1) in advance
to determine whether two features are relevant. For discrete data, we set 11 different
relevance thresholds for SAOLA and tuned ¢ using cross validation on the dorothea
and thrombin data sets. From Figure 14, we can see that in the term of prediction
accuracy, the relevance thresholds do not have a significant impact on the SAOLA
algorithm.

For Fisher’s Z-test, the relevance threshold is the significance level, «, and is always
set to 0.01 or 0.05. Table XXI shows the results of SAOLA under the different signifi-
cance levels. It is clear that a significant level does not impose a significant impact on
the SAOLA algorithm either.

5.6. Comparison of Group-SAOLA with OGFS and Sparse Group Lasso

In this section, we compare our group-SAOLA algorithm with the state-of-the-art on-
line group feature selection methods, OGFS [Wang et al. 2013] and a well-established
batch group feature selection method, Sparse Group Lasso [Friedman et al. 2010]. As
for the first ten high-dimensional data sets in Table II, from dexter to thrombin, we ran-
domly separated each data set into 100 feature groups without overlapping, while for
the last four data sets with extremely high dimensionality, each data set was randomly
separated into 10,000 feature groups without overlapping. For parameter settings of
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Fig. 14. Prediction accuracies on varied relevance thresholds (the top figure with J48 while the bottom
figure with KNN)

the Sparse Group Lasso algorithm, \; € [0.01,0.1] and A\, € [0.01,0.1]. For the group-
SAOLA algorithm, the parameters, ¢ for discrete data and « for continuous data, are
the same as the SAOLA algorithm. In the following comparisons, since the prediction
accuracy of SAOLA using SVM has no significant difference than that of SAOLA using
KNN and J48, we only report the prediction accuracy of SAOLA using KNN and J48.

In this section we compare group-SAOLA with OGFS and Sparse Group Lasso in
terms of prediction accuracy, sizes of selected feature subsets, number of selected
groups, and running time on the 14 high-dimensional data sets in Table II. We re-
peated this process 10 times to generate different sets of feature groups of each data
set. The results as shown in Table XXII, Table XXIII, Figures 15 to 18 are the average
ones on those 10 sets of feature groups.

Table XXII summarizes the prediction accuracies of Group-SAOLA against OGFS
and Sparse Group Lasso using the KNN and J48 classifiers. The highest prediction
accuracy is highlighted in bold face. Table XXIII illustrates the running time, sizes
of selected feature subsets, and numbers of selected groups of Group-SAOLA against
OGFS and Sparse Group Lasso. In Tables XXII and XXIII, SGLasso is the abbrevia-
tion for Sparse Group Lasso.

5.6.1. Comparison of Group-SAOLA with OGFS. In this section we compare OGFS with
group-SAOLA on the 14 high-dimensional data sets in Table II, and the results are
as shown in Tables XXII to XXIII, Figures 15 to 18. In Tables XXII, from the the
win/tie/lose counts in the last rows of the table, we observe that Group-SAOLA never
loses against OGF'S on all of the 14 high-dimensional data sets.

To evaluate whether the prediction accuracy of group-SAOLA and that of OGFS
have no significant difference, using the Friedman test, for the J48 classifier, the null-
hypothesis is rejected, and the average ranks for group-SAOLA and OGF'S are 1.8929
and 1.1071, respectively. Then we proceed with the Nemenyi test as a post-hoc test,
and the critical difference is up to 0.6885. The difference between 1.8929 and 1.1071
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Table XXII. Prediction Accuracy
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Dataset J48 KNN

group-SAOLA | OGFS | SGLasso | group-SAOLA | OGFS | SGLasso
dexter 0.8427 0.5556 0.8800 0.7947 0.5487 0.7067
lung-cancer 0.9500 0.9017 0.9833 0.9584 0.9167 0.9333
hiva 0.9661 0.9602 0.9609 0.9630 0.9471 0.9479
breast-cancer 0.6656 0.6000 0.6667 0.6531 0.6385 0.6667
leukemia 0.9583 0.7292 0.9583 0.9833 0.7792 1.0000
madelon 0.6117 0.5153 0.6533 0.5317 0.4922 0.5967
ohsumed 0.9439 0.9430 0.9431 0.9052 0.9142 0.9431
apcj-etiology 0.9872 0.9872 0.9872 0.9788 0.9790 0.9818
dorothea 0.9365 0.9029 0.9314 0.9183 0.8691 0.9143
thrombin 0.9591 0.9396 0.9558 0.9376 0.9420 0.9632
news20 0.8188 0.5303 - 0.7501 0.5058 -
urll 0.9715 0.6333 - 0.9553 0.6089 -
kdd10 0.8714 0.8787 - 0.8764 0.8758 -
webspam 0.9341 0.7620 - 0.9376 0.9376 -
w/t/l - 10/4/0 0/7/3 - 9/5/0 3/2/5

Table XXIII. Running time and Number of selected features/groups

Dataset Running time (seconds) Number of selected features/groups

group-SAOLA | OGFS | SGLasso | group-SAOLA OGFS | SGLasso
dexter 2 4 69 21/19 72/49 56/40
lung-cancer 9 2 1,752 23/19 91/61 384/41
hiva 2 1 734 5/5 47/38 55/19
breast-cancer 8 3 275 8/7 111/61 | 2,775/30
leukemia 3 1 18 16/14 66/47 61/28
madelon 0.1 0.1 27 2/2 15/13 5/2
ohsumed 2 6 64 17/16 61/43 385/28
apcj-etiology 34 34 210 47/33 44/44 44/12
dorothea 23 22 112 41/27 126/67 135/6
thrombin 39 1,015 1,015 7/5 691/84 691/70
news20 2,154 1,054 - 140/140 | 192/192 -
url 306 3,598 - 29/29 73/73 -
kdd10 395 | 39,213 - 52/52 | 133/132 -
webspam 3,013 | 20,718 - 17/17 | 401/395 -

is bigger than this critical difference, then group-SAOLA is significantly better than
OGFS in prediction accuracy.

For the KNN classifier, the null-hypothesis cannot be rejected. The average ranks
for group-SAOLA and OGFS are 1.75 and 1.25, respectively. Accordingly, for KNN,
group-SAOLA and OGF'S have no significant difference in prediction accuracy.

Figure 15 gives the error bars (the left figure) and AUC (the right figure) of group-
SAOLA and OGFS using the KNN classifier. We can see that group-SAOLA clearly
outperforms OGFS using the AUC and error bar metrics.

Furthermore, Table XXIII illustrates that group-SAOLA is faster than OGFS on
most data sets. When the number of features increases to millions and the number of
feature groups becomes large, OGFS becomes very costly, but our group-SAOLA is still
scalable and efficient. The explanation is that the time complexity of group-SAOLA is
determined by the number of features within the currently selected feature groups,
and the strategy of online redundancy detection within the currently selected feature
groups makes group-SAOLA very scalable. Meanwhile, from Table XXIII, we observe
that group-SAOLA selects fewer features than OGFS. From the selected numbers of
groups and selected numbers of features, we can see that group-SAOLA not only se-
lects the smaller number of feature groups, but also achieves more sparsity of within
groups than OGFS.
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Fig. 15. The error bars and AUC of group-SAOLA and OGFS (The labels of the x-axis from 1 to 14 denote
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Fig. 16. Accuracies and numbers of selected groups of three algorithms (KNN)

Figure 16 gives the results of the numbers of selected groups and the corresponding
prediction accuracy for group-SAOLA, and OGF'S using the KNN classifier on the 14
data sets in Table II. The best possible mark for each graph is at the upper left cor-
ner, which selects the fewest groups with the highest prediction accuracy. We can see
that group-SAOLA selects fewer groups while gets higher prediction accuracies than
OGFS on all the 14 data sets in Table II, except for the ohsumed data set. However,
on the ohsumed data set, on the prediction accuracy, group-SAOLA is very competitive
with OGFS.

Figure 17 gives the results of the numbers of selected groups and the corresponding
prediction accuracy for Group-SAOLA and OGFS using the J48 classifier. We can see
that Group-SAOLA selects fewer groups while gets higher prediction accuracies than
OGFS on all the fourteen data sets.

5.6.2. Comparison of Group-SAOLA with Sparse Group Lasso. Since Sparse Group Lasso’
can only deal with the first ten high-dimensional data sets in Table II due to high
computational costs, in this section we compare it with group-SAOLA on those first
ten high-dimensional data sets.

"The codes are available at http://yelab.net/software/SLEP/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable and Accurate Online Feature Selection for Big Data A:35

0.9 1 1 0.8
3 3 IS 2 % A g breast-cancer | 3| % A
é 0.8 50.95 * 50.95 5 07 EO 9
8 3 g go. 3o »
< o7 dexter g oo e} Zoo hiva z * A g | reukema
2oe Sogs| lung-cancer Soss 506 o 508
o O |g o £ £ 0
[
05 % o8 S0 “ o5 %07
10 20 30 40 50 0 50 100 0 20 40 0 50 100 0 20 40
Number of selected groups ~ Number of selected groups ~ Number of selected groups ~ Number of selected groups ~ Number of selected groups
1 1 1
> > >
g A madelon go - 800 qorotea | £ apj-etiology | §
Gos| ¥ e kL O3 2B # 3 N
< €09 b o9 O S0.95
2 05 Ols ohsumed 207 2 £ thrombin o
S So.85 s S5 g
2 e 306 g K
£ o g g i
04 %08 *os “ 08 %09
0 5 10 15 0 20 40 60 0 20 40 60 0 50 100 0 50 100
Number of selected groups Number of selected groups Number of selected groups Number of selected groups Number of selected groups
1 1
> > > >
2 ogF news20 g * url g f kdd10 O g K webspam
3 509 E 509
8 8 gos g
g 07 £ 8 4 O OGFs
= =08 c 08
S 06 k] So7 S O 3 group-SAOLA
§ 05 O § 0.7 £ So7 /\  Sparse Group LASSO
[ L o L
@
04 S og Olay, S o6
140 160 180 200 20 40 60 80 50 100 150 0 200 400
Number of selected groups Number of selected groups Number of selected groups Number of selected groups

Fig. 17. Accuracies and numbers of selected groups of three algorithms (J48)
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Fig. 18. The error bars and AUC of group-SAOLA and Sparse Group Lasso (The labels of the x-axis from
1 to 10 denote the data sets: 1. dexter; 2. lung-cancer; 3. hiva; 4. breast-cancer; 5. leukemia; 6. madelon; 7.
ohsumed; 8. apcj-etiology; 9. dorothea; 10. thrombin)

With Table XXII, using the Friedman test, for the J48 classifier, the null-hypothesis
cannot be rejected, and the average ranks for group-SAOLA and Sparse Group Lasso
are 1.5 and 1.5, respectively. For the KNN classifier, the null-hypothesis is accepted,
and the average ranks for group-SAOLA and Sparse Group Lasso are 1.6 and 1.4,
respectively. Accordingly, for the J48 and KNN classifiers, group-SAOLA and Sparse
Group Lasso have no significant difference in prediction accuracy. Furthermore, Ta-
ble XXIII shows that group-SAOLA is much faster than Sparse Group Lasso, and
group-SAOLA selects fewer features than Sparse Group Lasso.

Figure 18 gives the AUC (the left figure) and error bars (the right figure) of group-
SAOLA and Sparse Group Lasso using the KNN classifier. Figure 18 illustrates that
group-SAOLA is very competitive with Sparse Group Lasso using the AUC and error
bar metrics.

Figures 16 and 17 give the results of the numbers of selected groups and the cor-
responding prediction accuracy for group-SAOLA and Sparse Group Lasso using the
KNN and J48 classifiers, respectively. The best possible mark for each graph is at the
upper left corner. We can see that group-SAOLA prefers to select few groups, in com-
parison to Sparse Group Lasso. Meanwhile, group-SAOLA is very competitive with
Sparse Group Lasso in terms of prediction accuracy.
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In summary, the group-SAOLA algorithm is a scalable and accurate online group
feature selection approach. This validates that without requiring a complete set of
feature groups on a training data set before feature selection starts, group-SAOLA is
very competitive comparing to the well-established the Sparse Group Lasso algorithm.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the SAOLA algorithm, a scalable and accurate online ap-
proach to tackle feature selection with extremely high dimensionality. We conducted
a theoretical analysis and derived a lower bound of correlations between features for
pairwise comparisons, and then proposed a set of online pairwise comparisons to main-
tain a parsimonious model over time. To deal with the group structure information in
features, we extended the SAOLA algorithm, and then proposed a novel group-SAOLA
algorithm to deal with features that arrive by groups. The group-SAOLA algorithm
can online maintain a set of feature groups that is sparse between groups and within
each group simultaneously.

Using a series of benchmark data sets, we compared the SAOLA and group-SAOLA
algorithms with state-of-the-art online feature selection methods and well-established
batch feature selection algorithms. The empirical study demonstrated that the SAOLA
and group-SAOLA algorithms are both scalable on data sets of extremely high di-
mensionality, have superior performance over state-of-the-art online feature selection
methods, and are very competitive with state-of-the-art batch feature selection meth-
ods in prediction accuracy, while much faster in running time.

In this work, we have used online pairwise comparisons to calculate the correlations
between features without further exploring positive feature interactions between fea-
tures. Moreover, from the AUC results reported in the work, we can see that SAOLA
and its rivals, including the three online algorithms and three batch methods, cannot
effectively deal with class-imbalanced data. Thus, we will further explore the follow-
ing directions in online feature selection: efficient and effective methods to discover
positive feature interactions between features, and accurate and scalable online algo-
rithms to handle class-imbalanced data.

Meanwhile, our empirical studies have validated that SAOLA (using pairwise com-
parisons) is competitive with IAMB and MMMB (using multiple comparisons). To con-
duct thoroughly theoretical analysis and empirical studies on why pairwise feature
correlations (instead of conditioning on all possible feature subsets) may be sufficient
in practice deserve further exploration in our future work.
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