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 

Abstract— It has received much attention in recent years to 

use Markov blankets in a Bayesian network for feature selection. 

The Markov blanket of a class attribute in a Bayesian network 

is a unique yet minimal feature subset for optimal feature 

selection if the probability distribution of a data set can be 

faithfully represented by this Bayesian network. However, if a 

data set violates the faithful condition, Markov blankets of a 

class attribute may not be unique. To tackle this issue, in this 

paper, we propose a new concept of representative sets, and then 

design the SGAI (Selection via Group Alpha-Investing) 

algorithm to perform Markov blanket feature selection with 

representative sets for classification. Using a comprehensive set 

of real data, our empirical studies have demonstrated that SGAI 

outperforms the state-of-the-art Markov blanket feature 

selectors and other well-established feature selection methods. 

 
Index Terms—Feature Selection, Representative Sets, 

Markov Blankets, Bayesian Networks 

 

I. INTRODUCTION 

EATURE selection is to select a subset of relevant 

features from an original feature space to improve the 

performance of prediction models in terms of their accuracy, 

efficiency, and model interpretability [1, 2, 14, 26]. With 

respect to a class attribute, an input feature can be classified 

into a strongly relevant, irrelevant, redundant, or non-

redundant feature [11, 29]. The task of feature selection is to 

choose a feature subset including strongly relevant and non-

redundant features. 

Koller and Sahami [10] was the first to introduce Markov 

blankets into feature selection for removing irrelevant or 

redundant features. A Markov blanket (boundary) was first 

invented in a Bayesian network by Pearl [17], and is defined 

as that in a faithful Bayesian network, for every node (feature) 

𝑋 , its Markov blanket is the set of parents, children and 

spouses (parents of the children of 𝑋), as shown in Figure 1.  

 
 

 

Technically, a Bayesian network is presented by a directed 

acyclic graph 𝔾 and a joint probability distribution ℙ over a 

variable set 𝐹 . 𝔾  is faithful to ℙ  if and only if every 

independence present in ℙ is entailed by 𝔾 and the Markov 

condition. A joint probability distribution ℙ is faithful if and 

only if there exists a directed acyclic graph 𝔾 such that 𝔾 is 

faithful to ℙ [17]. If 𝔾 and ℙ are faithful to each other, the 

Bayesian network represented by 𝔾 and ℙ is said to satisfy 

the faithful condition. In principle, a Markov blanket of 

feature 𝑋  is a minimal set of features with the following 

property [10]: for every feature 𝑌 not in the Markov blanket, 

𝑌  and 𝑋  are conditionally independent given the Markov 

blanket of 𝑋. 

Tsamardinos and Aliferis [23] bridged the gap between the 

concepts of feature relevance in feature selection and Markov 

blankets in a Bayesian network for classification, and 

transferred the feature selection problem to the problem of 

discovery of the Markov blanket of a class attribute in a 

faithful Bayesian network. They theoretically proved that if a 

probability distribution can be faithfully represented by a 

Bayesian network (the faithful condition), then the Markov 

blanket of a class attribute in the Bayesian network is not only 

unique, but also the set of strongly relevant features as defined 

by Kohavi and John [11]. Tsamardinos and Aliferis [23] 

proposed the IAMB (Incremental Association-Based Markov 

Blanket) algorithm for optimal feature selection. The IAMB 

algorithm can return a Markov blanket of any target node in 

a Bayesian network without learning a complete Bayesian 

network, even with hundreds of thousands of features. Thus, 

the discovery of Markov blankets from Bayesian networks for 

feature selection has attracted much attention [3, 18, 31].  

More recent variations of IAMB include PCMB (Parent-

Children Markov Blanket) [18], MMMB (Max-Min Markov 

Blanket) [24], and HITON-MB [3]. 
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Fig.1. The Markov blanket (in blue) of the node of “Tuberculosis or Cancer” 

in the Bayesian network of Asia [17]. 
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All the existing studies on Markov blankets typically 

assume that a data distribution and an underlying Bayesian 

network which models the domain are faithful to each other, 

in order to guarantee a target node in a Bayesian network has 

a unique Markov blanket.  However, many data sets from 

real-world applications may violate the faithful condition, and 

this makes Markov blankets of a target feature not unique. For 

instance, in Figure 2, if the Bayesian network is 

parameterized such that X and Y carry equivalent information 

about T, then there may be two Markov blankets of T: { X;A} 

and { Y;A} [21]. We now further explain the existence of 

multiple Markov blankets using two real examples. 

In analysis of real-world high-throughput molecular data, 

due to different gene or biomarker sets performing almost 

equally well in terms of prediction accuracy of phenotypes,  it 

is a ubiquitous phenomenon of the existence of multiple 

Markov blankets in these data sets [21]. 

Another real-world application example is of catastrophic 

flood forecasting [25]. Due to spatial and temporal adjacency, 

many meteorological predictor variables contain equivalent 

information for flood prediction, because these predictor 

variables are not physically independent of one another. For 

example, when there is a dropping in sea level pressure 

(anomalously low sea level pressure is an important 

characteristic of atmospheric regimes, which may lead to 

extreme precipitation clusters), at the same location there 

must also be convergence of the winds near the surface and 

divergence of the winds at the top of the atmosphere. In this 

case, the low level winds, high level winds, and vertical 

motions in the same location are considered equivalent 

meteorological predictor variables.  

Figure 3 investigates this non-faithful problem using a real 

data set of the arcene (a cancer benchmark data set with 100 

instances and 10,000 features) used by the NIPS 2003 feature 

selection challenge. In Figure 3, the state of the art Markov 

blanket feature selection methods IAMB, HITON-MB, 

PCMB and MMMB can only discover a single Markov 

blanket. Different from those four algorithms, KIAMB [18] 

can find multiple sets of Markov blankets, by employing a 

stochastic search heuristic that repeatedly disrupts the order 

in which features are selected for inclusion into a Markov 

blanket with the probability p at each round, thereby 

introducing a chance of identifying alternative Markov 

blankets of a target feature. 

We run KIAMB 100 times to attain 100 Markov blankets 

(the parameter p is set 0.6), respectively. By using the Naïve 

Bayes (NB) and Support Vector Machine (SVM) classifiers, 

Figure 3 gives a summary of the prediction accuracies of 

those 100 Markov blankets and those of the Markov blankets 

selected by IAMB, HITON-MB, PCMB, and MMMB. 

From Figure 3, we can see that the Markov blankets 

identified by IAMB, HITON-MB, PCMB, and MMMB may 

not be the feature subsets that maximize the prediction 

accuracies, compared to the ones discovered by KIAMB.  

The main challenges are as follows to deal with Markov 

blanket feature selection under the non-faithful condition.  

Challenge 1. The number of Markov blankets varies from 

different data sets and may grow exponentially with respect to 

the number of features in the underlying Bayesian network.  

Challenge 2. It is difficult to efficiently identify a best 

feature subset from multiple Markov blankets. It may be time-

consuming or computationally prohibitive to find a best 

Markov blanket that maximizes the predictive power for 

classification from a large, or even exponential number of 

Markov blankets.  

In this paper,  

(1) We propose a new concept of representative sets, 

instead of Markov blankets. We focus on Markov 

blanket feature selection with representative sets, 

instead of an exhaustive search over a large number 

of Markov blankets in real data.  

(2) We propose the SGAI (Selection via Group Alpha-

Investing) algorithm for selecting feature subsets 

from representative sets. Compared to the SRS 

algorithm proposed in our preliminary version [31], 

the SGAI algorithm avoids computing the 

regularization parameters of SRS.  

(3) We have conducted comprehensive experiments 

using 16 data sets and 10 state-of-the-art feature 

selectors to validate the effectiveness and efficiency 

of our method. 

II. RELATED WORK 

Feature selection aims to reduce the computational 

complexity without performance degradation by removing 

irrelevant and redundant features [11, 27]. The major effort is 

to maximize relevance and minimize redundancy among the 

selected features for classification. For instance, the mRMR 

(Minimum Redundancy Maximum Relevance) algorithm 

[19] and the FCBF (Fast Correlation Based Filter) algorithm 

 
 

Fig.3. Accuracy on the arcene data set by exploring the non-faithful problem 

 
 

Fig. 2.  A symbolic example of multiple Markov blankets 
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[29]. Recently, Cheng et al. [6] presented a Fisher-Markov 

filter method to identify a maximally separable feature subset 

using the Fisher’s discriminant analysis and the Markov 

random fields (MRFs). Zhao et al. [31] proposed a framework 

to unify different criteria for handling feature redundancies. 

Brown et al. [4] unified almost two decades of research on 

information theoretic feature selection to an optimization of 

conditional likelihoods.  

Tsamardinos and Aliferis [23] associated Markov blankets 

in faithful Bayesian networks with strongly relevant features 

defined by Kohavi and John [11], and then transferred the 

feature selection task to the discovery of Markov blankets in 

a faithful Bayesian network. Since then, Markov blanket 

feature selection as an emerging successful class of filter 

methods has attracted much attention [3, 18, 30].  

Margaritis and Thrun [14] invented the first yet sound 

algorithm, the GS (Grow/Shrink) algorithm, with the intent to 

find Markov blankets for the purpose of speeding up global 

Bayesian network learning. The GS algorithm requires 

exponential number of instances to the size of the Markov 

blanket, thus impractical for many real data sets.  

To conquer this drawback of the GS algorithm, 

Tsamardinos and Aliferis [23] proposed a modified version of 

the GS algorithm, called the IAMB algorithm for feature 

selection, which guarantees to find the actual Markov blanket 

given enough training data and the method is more sample 

efficient than GS. However, the IAMB algorithm still 

requires a sample size exponential in the size of a Markov 

blanket. Thus, HITON-MB and MMMB were introduced to 

mitigate the problem of data inefficiency. Different from GS 

and IAMB, HITON-MB [3] and MMMB [24] take two steps 

to find the Markov blanket of a target node: (1) discovering 

the parents and children of the target node; and then (2) 

identifying its spouses based on Step 1. As an efficient 

implementation of Step 1, two major algorithms HITON-PC 

[1] and MMPC were introduced [24]. Following the idea of 

MMMB, PCMB [18] was also proposed to conquer the data 

inefficiency problem. 

All these algorithms are well-established only for selecting 

a single Markov blanket under the assumption that probability 

distribution can be faithfully represented by an underlying 

Bayesian network. A naïve approach for handling Markov 

blanket feature selection under non-faithful conditions 

involves first clustering all features into multiple clusters, and 

then randomly sampling a representative from each cluster. 

But this strategy is intractable since the computation is 

intensive for high dimensionality, and features in each cluster 

do not indicate they are correlated in terms of feature 

relevance [13, 28]. Peña et al. [18] proposed a stochastic 

Markov blanket algorithm based on IAMB, called KIAMB, 

which involves running multiple times initialized with a 

random seed. But we do not know how many times the 

KIAMB algorithm need to run to get an optimal feature subset 

for feature selection. Recently, among the most notable 

advances in the field is that Statnikov et al. [21] proposed the 

TIE* (Target Information Equivalence) algorithm that can 

discover all Markov blankets under non-faithful conditions 

and outperforms KIAMB. But TIE* preferentially discovers 

multiple Markov blankets for causal discovery for improving 

the causal induction mechanisms without missing causative 

variables and is not yet customized for feature selection. 

Furthermore, TIE* may be computationally expensive when 

the number of Markov blankets grows exponentially with 

respect to the number of features in the network.  

III. NOTATIONS AND DEFINITIONS 

In the following sections, we will introduce Markov 

blankets, Bayesian networks, and Markov blanket feature 

selection. Table 1 summarizes and explains the notations and 

symbols used in this paper. 

A. Markov Blankets in Feature Selection 

To characterize feature relevance, Kohavi and John [11] 

classified input features into three disjoint feature sets, 

strongly relevant, weakly relevant, and irrelevant subsets. 

Later Yu and Liu [29] divided weakly relevant features into 

redundant features and non-redundant features. 

 
TABLE 1  

SUMMARY ON MATHEMATICAL NOTATIONS 

Notations Mathematical Meanings 

𝐹 an input feature set 

𝐹𝑖, X, Y, T a single feature (attribute) 

𝑓𝑖 a disrete value of 𝐹𝑖 taking 

𝐹 − {𝐹𝑖} a feature subset excluding 𝐹𝑖 

𝑆, V, Z, W a feature subset within F 

𝐶 a class attribute 

𝑀𝑖 a Markov blanket of feature 𝐹𝑖 

𝔾 a directed acyclic graph over F 

ℙ a discrete joint probability distribution over F 

|.| |𝐹| returns the number features in 𝐹 

P(.|.) 𝑃(𝐹𝑖|𝐹𝑗) denotes the posterior probability of 𝐹𝑖 

conditioned on 𝐹𝑗 

ℑ  a seed set of a class attribute 

Ind (X,Y|Z)  X and Y are conditionally independent given Z 

℘(𝐹𝑖)  a set of correlated features of 𝐹𝑖 

𝑃𝑎(. ) 𝑃𝑎(𝐹𝑖) denotes the set of parents of 𝐹𝑖 

𝐶ℎ(. ) 𝐶ℎ(𝐹𝑖) denotes the set of children of 𝐹𝑖 

ℒ(∙) a loss function 

ℛ a set of representive sets 

ℛ𝑖 a representative set 

𝛺.(. )  a regularization term 

𝛽  a set of coefficient vectors 

𝛽𝑖 a coefficient vector corresponding to ℛ𝑖 

𝑊(ℛ𝑖) the weight of ℛ𝑖 

 

Definition 1 (Conditional Independence) Feature 𝐹𝑖 ∈ 𝐹 

is conditionally independent of 𝐹𝑘 ∈ 𝐹  (i ≠ k, i, k = 1 … n) 
conditioned on 𝑆 ⊆ 𝐹 − {𝐹𝑖 ∪ 𝐹𝑘} if 

 

          𝑃(𝐹𝑖|𝐹𝑘, 𝑆) = 𝑃(𝐹𝑖|𝑆).                                         (1) 
 

Definition 2 (Markov Blanket) [10] A Markov blanket of 

feature  𝐹𝑖 , denoted as 𝑀𝑖 ⊂ 𝐹 − {𝐹𝑖   is a minimal set of 

features that makes every other feature independent of 𝐹𝑖 

given 𝑀𝑖, that is,  

 

∀𝐹𝑘  ∈ 𝐹 − (𝑀𝑖 ∪ {𝐹𝑖})   𝑠. 𝑡.  𝑃(𝐹𝑖|𝑀𝑖 , 𝐹𝑘) = 𝑃(𝐹𝑖|𝑀𝑖).    (2) 
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Definition 3 (Redundant Feature) A feature 𝐹𝑖   is 
redundant and hence should be discarded from 𝐹, if it has a 
Markov blanket within 𝐹. 

According to Definition 2, a Markov blanket of a feature 𝐹𝑖 

subsumes the information what 𝐹𝑖 has about a class attribute, 

while the Markov blanket of the class attribute carries 

information what all of the other features have about the class 

attribute. In other words, the Markov blanket of a class 

attribute is the optimal feature subset which should contain 

strongly relevant and non-redundant features [10, 29]. 

B.  Markov Blankets in Bayesian Networks 

Definition 4 (Bayesian network) [17] Let ℙ be a discrete 

joint probability distribution of a set of random nodes 

(features) 𝐹 via a directed acyclic graph 𝔾. We call the triplet 

< 𝐹, 𝔾, ℙ >  a (discrete) Bayesian network if < 𝐹, 𝔾, ℙ > 

satisfies the Markov condition: every node is independent of 

any subset of its non-descendant nodes conditioned on its 

parents. 

With the Markov condition, a Bayesian network encodes 

the joint probability ℙ  over 𝐹  and decomposes ℙ  into a 

product of the conditional probability distributions over each 

node 𝐹𝑖 given its parents 𝑃𝑎(𝐹𝑖) in 𝔾. The joint probability ℙ 

is written as follows. 

              ℙ(𝐹1, 𝐹2, … , 𝐹𝑛) = ∏ ℙ(𝐹𝑖|𝑃𝑎(𝐹𝑖))

𝑛

𝑖=1

                            (3) 

Theorem 1. [17] Let S, V, Z, and W be any four disjoint 

subsets of features from F and a joint probability distribution 

ℙ is strictly positive. Then the following intersection property 

holds in ℙ over the feature set F: 

 

 𝐼𝑛𝑑(𝑆, 𝑉|𝑍⋃𝑊) 𝑎𝑛𝑑 𝐼𝑛𝑑(𝑆, 𝑊|𝑍⋃𝑉) ⇒ 𝐼𝑛𝑑(𝑆, (𝑉⋃𝑊)|𝑍) ())  
 

where the notation Ind (S,V|Z) denotes that two sets of 

features S and V are conditionally independent given a set of 

features Z over the joint probability distribution ℙ. 

 

Theorem 2. [17] If a joint probability distribution ℙ over 

a feature set F satisfies the intersection property, then for 

each 𝐹𝑖 ∈ 𝐹, there exists a unique Markov blanket of 𝐹𝑖. 

 

Definition 5 (Faithfulness) [3, 17] Given a Bayesian 

network  < 𝐹, 𝔾, ℙ > , 𝔾  is faithful to ℙ  over F  iff every 
independence present in ℙ is entailed by 𝔾 and the Markov 

condition. ℙ is faithful iff there exists a directed acyclic graph 

𝔾 such that 𝔾 is faithful to ℙ. 

 

Theorem 3. [17] If ℙ is faithful to 𝔾, then ℙ satisfies the 

intersection property. 

 

With Theorems 2 and 3, we give the definition of Markov 

blankets in a faithful Bayesian network. 

 

Definition 6 (Markov Blanket) [23] In a faithful 

Bayesian network, for every node 𝐹𝑖, its Markov blanket is 

unique with the set of parents, children and spouses of 𝐹𝑖. 

C.  Markov Blanket Feature Selection  

Koller and Sahami [10] is the first to introduce Markov 

blankets to feature selection for removing irrelevant and 

redundant features. They proposed a prototype algorithm for 

Markov Blanket feature selection: let 𝐹 be an input feature 

set, if ∃𝐹𝑖 ∈ 𝐹, there exists a Markov blanket of 𝐹𝑖, 𝐹𝑖 can be 

removed from 𝐹  [10]. However, it was not guaranteed to 

discover the actual Markov blanket and nor could it be scaled 

to high dimensionality [3]. Tsamardinos and Aliferis [23] 

proposed Theorem 4 below to link feature relevance and 

Markov blanket in Bayesian networks for feature selection. 

 

Theorem 4. A feature is strongly relevant to C, iff it 

belongs to the Markov blanket of C in a faithful Bayesian 

network. 

 

Theorem 4 confirms that we can transfer the feature 

selection problem into the task of the discovery of the Markov 

blanket of a class attribute in a faithful Bayesian network.  

IV. SELECTION VIA REPRESENTATIVE SETS 

A. Representative Sets 

When a data set does not satisfy the faithful condition, it 

may contain multiple Markov blankets of a target feature [18, 

21]. Figure 3 illustrates that some feature sets (redundant 

features) discarded by the existing Markov blanket algorithms 

actually carry a stronger predictive ability than the selected 

Markov blankets. Feature redundancy is usually defined by 

means of feature correlation [5, 29], and thus we call those 

redundant yet discarded features as correlated features with 

regard to the selected features, which are defined as follows. 

 

Definition 7 (Correlated Feature)  𝐹𝑘  is called a 

correlated feature of 𝐹𝑖, if  ∀𝑆 ⊆ 𝐹, {𝐹𝑘 , 𝐹𝑖} ∉ 𝑆, 𝑃(𝐹𝑖 |S, 𝐹𝑘)≠
𝑃(𝐹𝑖 |S). 

 

With correlated features, the feature space of possible 

Markov blankets may consist of two parts: features in a 

Markov blanket and their corresponding correlated features. 

Clearly, if we get those two parts of features, it is more 

practical to select a best Markov blanket that maximizes the 

predictive power for classification from this reduced feature 

space than from an entire feature space. With those 

observations, we extend the concept of Markov blankets, and 

then propose the representative sets as the following to 

combat Markov blanket feature selection under the non-

faithful condition. 

  

Definition 8 (Seed Set) A seed set ℑ is defined as the Markov 

blanket of a class attribute in a faithful Bayesian network. 

 

Definition 9 (Representative Set) We define  ℛ =
{ℛ1, ℛ2, … , ℛK}  as K representative sets with respect to K 

features within  ℑ , where each representative set ℛi =  {𝐹𝑖 ∪
℘(𝐹𝑖)} with respect to 𝐹𝑖 ,  𝐹𝑖  belongs to ℑ, and ℘(𝐹𝑖) is a set of 
correlated features with respect to 𝐹𝑖 .  

 

Different from a Markov blanket, each member in a 

representative set ℛi is not a single feature any more, but a 

feature set consisting of a feature 𝐹𝑖 ∈ ℑ and ℘(𝐹𝑖). As for ℑ, 
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we can employ an existing single Markov blanket discovery 

algorithm to get it. The key problem is how to determine 

℘(𝐹𝑖),  𝐹𝑖 ∈ ℑ? Clearly, using Definition 7 to directly search 

for correlated features, it is expensive, or even prohibitive 

since the number of S is exponential in the dimensionality of 

a data set. 

 To calculate ℘(𝐹𝑖), using Bayesian networks, we give our 

main ideas using the following propositions and definitions. 

Given a Bayesian network, assuming 𝑃𝑎(𝐹𝑖) and 𝐶ℎ(𝐹𝑖) are 

the set of parents and children of 𝐹𝑖 , respectively. By the 

Markov condition in Definition 4, we get the following. 

 

Proposition 1. In a Bayesian network< 𝐹, 𝔾, ℙ >, if there 

exists a direct edge between 𝐹𝑖 ∈ 𝐹  and 𝐹𝑘 ∈ 𝐹 , then 𝐹𝑖 

and 𝐹𝑘 are directly correlated to each other. 

      Proof. By the Markov condition in Definition ), if node 

𝐹𝑖 belongs to 𝑃𝑎(𝐹𝑘), then 𝐹𝑖 is independent of any subset of 

its non-descendant nodes conditioned on 𝑃𝑎(𝐹𝑖) , and vice 
versa. Accordingly, 𝐹𝑖  and 𝐹𝑘  are conditionally dependent 

conditioned on any subsets within the remaining nodes in a 

Bayesian network. By Definition 7, the proposition is proved. 

 

Proposition 1 illustrates that two nodes directed linked by 

an edge in a Bayesian network must be directly correlated to 

each other. Thus, the features directly correlated to 𝐹𝑖, that is, 

℘(𝐹𝑖), can be defined in Proposition 2. 

 

Proposition 2. In a Bayesian network< 𝐹, 𝔾, ℙ >, ℘(𝐹𝑖) =
{𝑃𝑎(𝐹𝑖) ∪ 𝐶ℎ(𝐹𝑖)|𝐹𝑖 ∈ 𝐹}. 

 

For a representative set ℛi  of C with respect to Fi, Fk ∈
℘(Fi) satisfies the following. 

 

        ∃𝑆 ∈ ℑ, 𝐹𝑖 ∈ 𝑆, s.t. 𝑃(𝐶|S, 𝐹𝑘)= 𝑃(𝐶|𝑆)                        (5) 
 

Eq.(5) means that the features in ℘(𝐹𝑖)  are masked by 

some feature subsets in ℑ while running the existing single 

Markov blanket algorithms. Clearly, given ℑ = {𝑃𝑎(𝐶) ∪
𝐶ℎ(𝐶)}, there must exist a subset S within ℑ in order to make 

Eq.(5) hold. We get Proposition 3 as follows. 

 

Proposition 3. Given a Bayesian network, the representative 

set ℛi  of C with respect to Fi  is that ℛi = {𝐹𝑖 ∪ ℘(𝐹𝑖)|𝐹𝑖 ∈
𝑃𝑎(𝐶) ∪ 𝐶ℎ(𝐶)}. 

 

Proposition 3 denotes that a representative set ℛi includes 

a parent or a child of the class attribute C, and the set of 

parents and children of this parent or child.  We do not treat a 

spouse in a Markov blanket and its parents and children as a 

representative set because a spouse has already been selected 

in a representative set. For instance, Figure 4 shows the four 

representative sets related to node “T” in the four red groups, 

considering node “T” as the class attribute. We can see that 

spouse “M” is included in one of those representative sets.  

 

 
Fig.4. Representative sets related to node “T” 

B. Selecting Features from Representative Sets 

1) Problem Formulation 

With representative sets, our problem becomes how to 

extract a best subset from representative sets? Different from 

a single feature set, to handle multiple representative sets, we 

need to learn how to simultaneously optimize selections 

within each representative set as well as between those sets to 

achieve a feature subset that maximizes the predictive power 

to the class attribute. Suppose the predictive power of a 

feature subset to the class attribute C is measured by a loss 

function ℒ(∙) , and  ℛ = {ℛ1, ℛ2, … , ℛK}  represents K 

representative sets with respect to K features within ℑ. Each 

element ℛi (i = 1 … K) in ℛ incorporates the ith feature in ℑ 

and its corresponding correlated features.  

The first step of our solution is to identify which 

representative sets have the most predictive power to C, and 

we formulate this step as follows. 

 

                 𝛽∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝛽 ℒ(𝛽, ℛ, 𝐶) +⋋1 ∑ 𝛺1(𝛽𝑖),𝐾
𝑖=1             (6) 

 

where 𝛽 ={ 𝛽1, 𝛽2, … , 𝛽𝐾}  is the coefficient vector for all 

representative sets, and 𝛽𝑖  is the coefficient vector 

corresponding to ℛi, 𝐶 is the class attribute vector, 𝛺1(𝛽𝑖) is 

the regularization term to control the complexity of 𝛽𝑖 , the 

parameter ⋋1 controls the selection of sets, and if 𝛽𝑖=0, then 

the ith set will be excluded entirely.  

The second step is to calculate the feature(s) to be chosen 

from each selected representative set, which is expected to 

contribute the most predictive power to C. The objective 

function in Eq. (6) is then further formulated as, 

 

  𝛽∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝛽 ℒ(𝛽, ℛ, 𝐶) +⋋1 ∑ 𝛺1(𝛽𝑖)
𝐾
𝑖=1 +⋋2 𝛺2(𝛽),     (7) 

 

where 𝛺2(𝛽) penalizes the complexity of 𝛽. The parameter 

⋋2  adjusts the individual feature coefficient in 𝛽  to select 

features within each set and if there is a coefficient in 𝛽 up to 

0, then the corresponding feature is discarded.  

To solve Eq.(7), in our preliminary version, we adopted the 

sparse group lasso approach and proposed the SRS (Selection 

via Representative Sets) algorithm [31]. It is a nontrivial task 

to select decent ⋋1 and ⋋2 values on each data set for SRS to 

maximize the predictive power. In this paper, we propose a 
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new solution to solve Eq.(7) to avoid computing  ⋋1 and ⋋2. 

2)  Solving Eq.(7) with Group Alpha-investing 

  How to assess the predictive power of each representative 

set. We assign a weight to each representative set ℛ𝑖  which 

controls the predictive power of ℛ𝑖 to C, and the weight of each 

representative set ℛ𝑖 is calculated in the two cases below. 

Case 1: Calculating the weight of 𝐑𝐢 in discrete cases 

For discrete training data, we adopt the symmetrical 

uncertainty (SU) [29] to compute the weight of ℛ𝑖, and SU is 

defined as 

                   𝑆𝑈( 𝐹𝑖 , 𝐹𝑗) = 2 [
𝐼𝐺( 𝐹𝑖|𝐹𝑗)

𝐻( 𝐹𝑖)+𝐻(𝐹𝑗)
] , 𝐹𝑖 ∈ ℛ𝑖 , 𝐹𝑗 ∈ ℛ𝑖 ,       (8) 

where 𝐼𝐺(𝐹𝑖|𝐹𝑗) is information gain [20], and is computed by 

 

                         𝐼𝐺(𝐹𝑖|𝐹𝑗) = 𝐻(𝐹𝑖) − 𝐻(𝐹𝑖|𝐹𝑗),                               (9) 

 

where 𝐻(𝐹𝑖) is the entropy of 𝐹𝑖 that is defined as 

              𝐻(𝐹𝑖) = − ∑ 𝑃(𝑓𝑖)𝑙𝑜𝑔2(𝑃(𝑓𝑖))𝑓𝑖∈𝐹𝑖
                   (10) 

and 𝐻(𝐹𝑖|𝐹𝑗) is the entropy of 𝐹𝑖 after observing values of 

another feature 𝐹𝑗 , which is defined as 

𝐻(𝐹𝑖|𝐹𝑗) = − ∑ 𝑃(𝑓𝑗)𝑓𝑗∈𝐹𝑗
∑ 𝑃(𝑓𝑖|𝑓𝑗)𝑙𝑜𝑔2 (𝑃(𝑓𝑖|𝑓𝑗)) .𝑓𝑖∈𝐹𝑖

     (11) 

We employ the SU to represent the relationships between 

features since it can compensate for information gain bias 

toward features with lots of values. The values of SU is 

restricted to the range [0, 1]. With the SU, we define the 

weight of ℛ𝑖: 

𝑊(ℛ𝑖) = ∑ 𝑆𝑈(𝐶, 𝐹𝑗)
|ℛ𝑖|

𝑗=1 .                                 (12) 

Case 2: Calculating the weight of 𝐑𝐢 in continuous cases 

In continuous cases, we employ the partial correlations 

between features to compute the weight of a representative 

set. The correlation coefficient 𝜌(𝑋𝑖,𝑌𝑖) between two variables 

𝑋𝑖 and 𝑌𝑖 is calculated as:  

        𝜌(𝑋𝑖,𝑌𝑖) =
∑ (𝑖 𝑋𝑖−𝑋𝑖)(𝑌𝑖−𝑌𝑖)

√∑ (𝑖 𝑋𝑖−𝑋𝑖)2√∑ (𝑖 𝑌𝑖−𝑌𝑖)2
 ,                           (13) 

where 𝑋𝑖 is the mean of 𝑋𝑖 and 𝑌𝑖 is the mean of 𝑌𝑖. The value 

of 𝜌  lies between -1 and 1. If 𝑋𝑖  and 𝑌𝑖  are completely 

correlated, 𝜌  takes the value of 1 or -1; if 𝑋𝑖  and 𝑌𝑖  are 

independent, 𝜌 is zero. Thus, we compute the weight of ℛi  

by summing up the absolute values of correlations between 

each feature within 𝑅𝑖 and C, which is defined as: 

                                 𝑊(ℛ𝑖) = ∑ 𝜌(𝐹𝑗 , 𝐶)
|ℛ𝑖|

𝑗=1 .                                  (14) 

How to choose features from the selected representative 

sets. We adopt the idea of the p-value proposed in the alpha-

investing algorithm [8, 33], to solve the selection of features 

from the selected representative sets. The alpha-investing 

algorithm uses linear regression to dynamically adjust the 

threshold of error reduction required for adding a new feature, 

as shown in Figure 5. To evaluate a feature whether it can be 

included by the predictive model so far, the alpha-investing 

algorithm defines three key parameters:  

(1) The wealth w, represents the current acceptable 

number of future false positives.  

(2) The threshold 𝛼, corresponds to the probability of 
including an irrelevant or redundant feature at each 

step. It is adjusted by the parameter w. 

(3) The p-value is the probability that a feature 

coefficient would be judged to be non-zero when it 

is in fact zero. The p-value can be computed by 

linear regression. 

The parameters ∆𝛼  and 𝑤0  are both user-adjustable 

parameter which can be selected to control the false 

discovery rate, and both of them are always set to 0.5 

(False Discovery Rate: the number of features incorrectly 

included in the model divided by the total number of 

features included in the model). With those parameters, the 

alpha-investing algorithm sequentially considers each 

feature and dynamically adjusts the penalties w and 𝛼, for 
adding or discarding a feature upon its arrival [33]. More 

specially, a feature is added to the current model if its p-

value is less than 𝛼. When a feature is added to the current 

model, the parameter w is increased while it is decreased 

when a feature is discarded in order to save enough wealth 

to add future features. The work of [9] has proved that the 

key success of alpha-investing is that it gives false 

discovery rate-style guarantees against overfitting in 

feature selection by dynamically adjusting the thresholds 

w and 𝛼 on the p-value as a new feature to enter the model. 

  

The Alpha-investing Algorithm 
 

1: 𝑤0 = 0.5; ∆𝛼=0.5;  
2: w=𝑤0; model = {};  
3: i = 1; // index of features 
4: Repeat 
5: 𝐹𝑖 = GetNewFeature(); // get a next feature 
6: α= w/(2*i); 
7: // Is the p-value of 𝐹𝑖 below threshold? 
8: if (Get-Pvalue(𝐹𝑖, model) <=α) then accept 𝐹𝑖 
9: model=model+𝐹𝑖;  

10: w= w+∆𝛼−𝛼; 
11: else // otherwise, reject 𝐹𝑖 
12: w= w−𝛼; // reduce wealth 
13: endif 
14: i = i+1; 
15: Until no features are available 
16:  Return model. 

 
Fig.5. The Alpha-investing Algorithm 

But the alpha-investing algorithm cannot be directly 

applied to our problem, since a representative set is not a 

single feature, but a group of features. Motivated by the 

successes of the alpha-investing algorithm, we propose the 

SGAI algorithm (Selection via Group Alpha-Investing), to 

solve Eq.(7). The SGAI algorithm is summarized in Figure 6. 

With the representative sets, the SGAI algorithm consists of 

two Phases (Phases 3 and ) in Figure 6). Phase 3 in Figure 6 

is to calculate the predictive power of each representative set, 

while Phase ) is to pick up one or a few feature(s) from the 

selected representative sets. 

To access each representative set, at step 6, SGAI sets the 

normalized weight of each representative set ℛi  as its own 

initial wealth w, to measure how successful that a 

representative set has been generating predictive features. 

SGAI defines num_f(i) as the feature index of ℛi  to keep 
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track of the number of features that have been accessed in ℛi.  

To select a representative set at each round, at the step 7, 

SGAI starts from the set with the highest weight of the set 

which has the highest probability of containing the useful 

features. As a selected representative set contributes one 

predictive feature to the current model, its corresponding 

wealth w will be increased, otherwise it will be decreased. For 

instance, if a representative set ℛi contains a high fraction of 

predictive features, its wealth will soon become higher and 

features will be selected preferentially from this 

representative set. Meanwhile, if a representative set ℛi has 

no predictive features, its wealth will soon be the lowest and 

it will be dropped entirely eventually.  

 

 The SGAI Algorithm  
  
 Input: F, C, ∆α=0.5, and CSF={} 

Phase 1: Identify representative sets ℛ 
(1) ℑ =GetPC(C) 
(2) K=|ℑ| //Number of features in ℑ 
(3) For i=1 to K //Find ℛ by Proposition 2  

                ℛi = GetPC(Fi) ∪ Fi, Fi ∈ ℑ 
         Endfor 

Phase 2: Process ℛ into K non-overlapping sets 

 (4) ℛi ∩ ℛj = ∅, i ≠ j 

  Phase 3: Assign the weights to representative sets 
 (5) For i=1 to K  
              if training data is discrete 

                      𝑊(ℛ𝑖) = ∑ 𝑆𝑈(𝐶, 𝐹𝑗)
|ℛ𝑖|
𝑗=1  

                 else  

                     𝑊(ℛ𝑖) = ∑ 𝑝(𝐹𝑗 , 𝐶)
|ℛ𝑖|
𝑗=1  

                 endif 

                     Endfor 

              Phase 4: Select features from representative sets 

(6)  num_f(i)=1, 𝑊(ℛ𝑖) = 𝑊(ℛ𝑖)/𝑠𝑢𝑚(𝑊), i=1…K,  

    (7) Repeat 

          ℛ𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑊(ℛ𝑖)∈𝑊

𝑊 

          if ℛi ≠ null 
               X = GetNewFeature(ℛi);  

               𝛼= W(ℛ𝑖)/(2* num_f(i)); 

               if (p-value(CFS, X) <=α)  

                      𝐶𝐹𝑆 = 𝐶𝐹𝑆 ∪ 𝑋  

                     W(ℛ𝑖)= W(ℛ𝑖) +∆𝛼−𝛼; 

              else  

                     W(ℛ𝑖)= W(ℛ𝑖)−𝛼;  
              endif 

              num_f(i) = num_f(i) + 1; 

endif 

Until ℛi == ∅ 

(8) Return CFS. 

 

Fig.6. The SGAI algorithm 

 

CFS represents the currently selected feature set. With CFS 

and a currently selected ℛi, how does SGAI measure whether 

𝐹𝑖 ∈ ℛ𝑖  can be added to CFS or not? We use the p-value 

which is defined as the following. 

 
1 The LIBSVM library is available at www.csie.ntu.edu.tw/~cjlin/libsvm/ 

             𝑝 − 𝑣𝑎𝑙𝑢𝑒(𝐶𝐹𝑆, 𝐹𝑖) = exp (
(ℒ(𝑊{CFS∪Fi},ℛ,C)−ℒ(𝑊(𝐶𝐹𝑆),ℛ,𝐶))

2𝜎2
) (15) 

    ℒ(𝑊{𝐶𝐹𝑆}, ℛ, 𝐶) is the least square loss on the training set 

using the features in the CFS, ℒ(𝑊{CFS ∪ Fi}, ℛ, 𝐶)  is the 
loss after adding the feature 𝐹𝑖 , and the variance is𝜎2 =
 ℒ(𝑊(𝐶𝐹𝑆), ℛ, 𝐶)/𝑁 where N is the number of the training 

data examples. For a new feature 𝐹𝑖, when the p-value of 𝐹𝑖 is 

less than the threshold 𝛼, it is included into CFS  (that is to 

say, the loss of ℒ(𝑊{CFS}, ℛ, 𝐶) is significantly reduced after 
adding 𝐹𝑖 to CFS). Clearly, there is only one parameter, ∆𝛼, 
for SGAI. As Alpha-investing does, it is set to 0.5 in the 

experiments. The parameter is not the key parameter and does 

not have a significant impact on SGAI. 

Finally, we analyze the differences of our SGAI algorithm 

and the TIE* algorithm. TIE* discovers all Markov blankets 

for a data set customized for improving the causal induction 

mechanisms without missing causal variables, which is not 

for feature selection, whereas SGAI is specially customized 

for feature selection. Furthermore, at each iteration, TIE* 

preferentially finds a new Markov blanket on a new feature 

space by removing the previously discovered Markov 

blankets, and simply selects one feature from a set of 

correlated features (features in a seed set and its 

corresponding correlated features). SGAI attempts to choose 

a feature subset that maximizes the prediction power for 

classification from both a seed set and its corresponding 

correlated features simultaneously. 

V. EXPERIMENTS 

A.  Experiment Setup 

We have chosen 16 benchmark data sets (Table 2). There 

are five data sets from the UCI machine learning repository 

(the first five data sets), three biomedical data sets (hiva, 

ovarian-cancer, and breast-cancer), four NIPS 2003 feature 

selection challenge data sets (arcene, dexter, dorothea, and 

madelon), and four public microarray data sets (the last four 

data sets) [28]. Those 16 data sets cover a wide range of real-

world application domains, including clinical images, gene 

expressions, ecology, text categorization, and molecular 

biology. The dimensionality of the 16 data sets (from 22 to 

100,000) and sample sizes (from sixty to thousands) represent 

practical applications. 

We use two classifiers, the Naïve Bayes (NB) classifier 

provided by the Matlab statistical toolbox and the SVM 

classifier provided by the LIBSVM library1. For those data 

sets, we use 10-fold cross-validation, and report prediction 

errors and their corresponding standard deviations of NB and 

SVM in our experiments. 

Our comparative study uses four state-of-the-art Markov 

blanket filters, including IAMB [23], MMMB [24], PCMB 

[18], and HITON-MB [3], the state-of-the-art multiple 

Markov blanket discovery algorithm TIE* [21], the recent 

SRS algorithm [31], and four well-established feature 

selection algorithms, FCBF [29], mRMR [19], SPSF-LAR 

[32], and MRF [6]. The parameters in our experiments are set 

as follows. 

(1) We use nested N-fold cross-validation [22] on each 
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training data set to get descent  ⋋1  and ⋋2  for SRS. 

The inner loop is used to try different parameters for 

feature selection and classification while the outer 

loop tests the best configuration on an independent 

test data set.  

(2) The significant level is set to 0.01 for IAMB, MMMB, 

PCMB, and HITON-MB.  

(3) IAMB, MMMB, PCMB, HITON-PC and HITON-

MB deal with discrete data with the G2-test while 

IAMB, HITON-PC and HITON-MB handle 

continuous data with the Fisher’s z-test2. 

(4) To validate whether SGAI and its rivals have no 

significant difference in prediction errors, we conduct 

the Friedman test at a 95% significance level [7], 

under the null-hypothesis, which states that the 

performance of SGAI and that of its rivals have no 

significant difference, and calculate the average ranks 

using the Friedman test (for calculating the average 

ranks, please see [7]). When the null-hypothesis at the 

Friedman test is rejected, we proceed with the 

Nemenyi test [7] as a post-hoc test. With the Nemenyi 

test, the performance of two methods is significantly 

different if the corresponding average ranks differ by 

at least the critical difference (for calculating the 

critical difference, please see [7]). 

(5) All experiments are conducted on a computer with 

Inter(R) i7-2600 3.)GHz CPU and 12GB memory. 

 
TABLE 2 SUMMARY OF THE BENCHMARK DATA SETS. 

(#F: NUMBER OF FEATURES, #I: NUMBER OF INSTANCES) 

Dataset #F #I Dataset #F #I 

spect 22 267 madelon 500 2,000 

wdbc 30 569 colon 2,000 62 

spectf )) 267 prostate 6,033 102 

promoter 57 106 leukemia 7,129 72 

infant 86 5,337 lung-cancer 12,533 181 

arcene 10,000 100 breast-cancer 17,816 286 

dexter 20,000 300 ovarian-cancer 2,190 216 

dorothea 100,000 800 hiva 1,617 ),229 

 

B. Comparison of SGAI with SRS and RES 

In this section, in addition to compare SGAI with SRS 

using the NB and SVM classifiers respectively, we further 

investigate the set of the union of representative sets. RES 

(REpresentative Sets) means that we use the union of 

representative sets as a feature subset and calculate its 

classification errors. 

1) Comparison on Prediction Errors 

Tables 3 and 4 summarize the prediction errors and the 

standard deviations of SGAI against SRS and RES using NB 

and SVM, respectively. We conduct paired t-tests at a 95% 

significance level and summarize the win/tie/lose counts of 

SGAI against SRS and RES in the last rows of Tables 3 and 

4. The lowest errors are highlighted in bold face.  

With the counts of win/tie/loss in Table 3, we observe that 

SGAI outperforms both SRS and RES using the NB classifier. 

To further evaluate the performance of SGAI against SRS and 

RES, we conduct the Friedman test at a 95% significance 

 
2 In our preliminary version [31], IAMB, MMMB, PCMB, HITON-PC, and 

HITON-MB are all conducted on discrete or discretized data. 

level under the null-hypothesis, which states that whether the 

performance of SGAI and that of SRS and RES have no 

significant difference in prediction errors. The null-

hypothesis is rejected, and the average ranks for SGAI, SRS, 

and RES are 1.22, 2.13, and 2.66, respectively (the lower the 

average rank, the better the performance in prediction errors). 

 
TABLE 3 PERFORMANCE OF SGAI, SRS, AND RES USING NB 

 (A/B: A DENOTES PREDICTION ERROR AND B IS STANDARD DEVIATION) 

Dataset SGAI SRS RES 

spect 0.2918/0.0916 0.3106/0.0896 0.3106/0.0896 

wdbc 0.0562/0.0245 0.0756/0.0407 0.0667/0.0394 

spectf 0.1607/0.0738 0.2097/0.0746 0.2508/0.0741 

promoter 0.0336/0.0831 0.0340/0.1554 0.0973/0.0944 

infant 0.0449/0.0080 0.0545/0.0090 0.0618/0.0090 

arcene 0.3100/0.1449 0.3300/0.1767 0.3600/0.1897 

dexter 0.0967/0.0483 0.2000/0.0968 0.1000/0.0785 

dorothea 0.0600/0.0269 0.0488/0.0246 0.0575/0.0329 

madelon 0.3590/0.0464 0.3700/0.0418 0.3705/0.0442 

colon 0.0929/0.1049 0.1262/0.1235 0.2714/0.1472 

prostate 0.0482/0.0509 0.0582/0.0689 0.0873/0.0708 

leukemia 0.0125/0.0395 0.0125/0.0395 0.0286/0.0602 

lung-cancer 0.0056/0.0176 0.0442/0.0438 0.0111/0.0234 

breast-cancer 0.0911/0.0384 0.1223/0.0600 0.1222/0.0600 

ovarian-cancer 0.0883/0.0467 0.0837/0.0615 0.1208/0.0728 

hiva 0.0470/0.0080 0.0603/0.0090 0.0674/0.0111 

average rank 1.22 2.13 2.66 

win/tie/loss - 11/4/1 13/3/0 

 
TABLE 4 PERFORMANCE OF SGAI, SRS, AND RES USING SVM  

(A/B: A DENOTES PREDICTION ERROR AND B IS STANDARD DEVIATION) 

Dataset SGAI SRS RES 

spect 0.2997/0.0615 0.2997/0.0615 0.2997/0.0615 

wdbc 0.0281/0.0220 0.0580/0.0397 0.0211/0.0199 

spectf 0.1235/0.0580 0.1799/0.0391 0.2023/0.0399 

promoter 0.2472/0.1448 0.3400/0.1554 0.2563/0.1296 

infant 0.0431/0.0070 0.0446/0.0056 0.0431/0.0070 

arcene 0.1900/0.1101 0.1900/0.1595 0.2000/0.1633 

dexter 0.1067/0.0410 0.1167/0.0451 0.1400/0.0604 

dorothea 0.0600/0.0275 0.0550/0.0206 0.0588/0.0260 

madelon 0.1885/0.0225 0.1765/0.0226 0.1635/0.0268 

colon 0.1238/0.1554 0.1214/0.1689 0.1738/0.1361 

prostate 0.0582/0.0502 0.0382/0.0494 0.0673/0.0789 

leukemia 0.0125/0.0395 0.0411/0.0663 0.0411/0.0945 

lung-cancer 0.0111/0.0234 0.0111/0.0246 0.0111/0.0234 

breast-cancer 0.0911/0.0448 0.1047/0.0618 0.1188/0.0576 

ovarian-cancer 0.0697/0.0515 0.0554/0.0472 0.0974/0.0467 

hiva 0.0354/0.0017 0.0351/0.0013 0.0351/0.0013 

average rank 1.81 1.91 2.28 

win/tie/loss - 6/7/3 7/8/1 

 

Then we proceed with the Nemenyi test as a post-hoc test. 

With the Nemenyi test, the performance of two methods is 

significantly different if the corresponding average ranks 

differ by at least the critical difference. With the Nemenyi 

test, the critical difference is up to 0.83. Thus, we can observe 

that SGAI is significantly better than both SRS and RES using 

the NB classifier in the prediction errors. 

Table 4 gives the results of SGAI, SRS, and RES using 

SVM. We can see that SGAI also outperforms both SRS and 

RES using the SVM classifier. To further evaluate the 

performance of SGAI against SRS and RES, we conduct the 

Friedman test. The null-hypothesis is accepted, and the 
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average ranks for SGAI, SRS, and RES are 1. 81, 1.91, and 

2.28, respectively. 

2) Comparison on Numbers of Selected Features 

Figures 7 and 8 give the result of the numbers of selected 

features of SGAI and SRS. SGAI selects fewer features than 

SRS on most data sets. 

 

 
 

Fig. 7. Number of selected features of SGAI and SRS (the labels of the x-

axis from 1 to 16 denote the data sets: 1. spect, 2. wdbc, 3. spectf, 4. promoter, 

5. infant, 6. arcene, 7. dexter, 8. dorothea, 9. madelon, 10. colon, 11. prostate, 

12.leukemia, 13. lung-cancer, 14. breast-cancer, 15. ovarian-cancer, and 16. 

hiva) 

 
 

Fig.8. Number of selected features of SGAI against RES (the labels of the 

x-axis from 1 to 16 are the same as those in Figure 7.) 

 

More importantly, SGAI does not require the user-defined 

parameters ⋋1 and ⋋2 in SRS while it is a nontrivial problem 

for SRS to get a set of descent ⋋1 and ⋋2. Meanwhile, there 

is only one parameter, ∆α, for SGAI. It is not a key parameter 

of SGAI and does not have a significant impact on SGAI. In 

Figure 8, SGAI selects fewer features than RES. 

As for the running time, given the representative sets and 

the decent input parameters ⋋1 and ⋋2, SGAI has almost the 

same running time as SRS. Clearly, the computational cost of 

the SGAI algorithm mainly spends on calculating 

representative sets. Thus, we don’t report running time of 

SRS, RES, and SGAI here.  

C.  Comparison with TIE*  

In this section, we compare our SGAI algorithm with the 

state-of-the-art multiple Markov blanket discovery algorithm,  

TIE*, which attempts to find all Markov blankets in real data 

in non-faithful conditions for improving causal induction by 

avoiding missing causative variables. 

 In our experiments, TIE* is parameterized with HITON-

PC as the base Markov blanket induction algorithm in order 

to be consistent with our SGAI algorithm which also employs 

HITON-PC to discover representative sets (in our preliminary 

version, TIE* employed a semi-interleaved HITON-PC), and 

a classification error as a criterion that verifies whether a new 

feature subset is a Markov blanket of a class attribute. With 

the same parameter setting of the TIE* algorithm in [21], the 

parameter alpha of HITON-PC is set to 0.05. We select the 

Markov blanket with the lowest prediction error from all of 

the Markov blankets discovered by TIE*.  

In the following tables and figures, we report the 

comparison results of SGAI and TIE*. The highest prediction 

errors are highlighted in bold face. We select the lowest 

prediction errors of the dexter and breast-cancer data sets 

within 3 days for TIE* due to long running time (exceeding 

three days).  

 
TABLE 5 PERFORMANCE OF SGAI AND TIE* USING NB 

(A/B: A DENOTES PREDICTION ERROR AND B IS STANDARD DEVIATION) 

Dataset SGAI TIE* 

spect 0.2918/0.0916 0.3108/0.0530 

wdbc 0.0562/0.0245 0.0369/0.0280 

spectf 0.1607/0.0738 0.1981/0.0375 

promoter 0.0336/0.0831 0.0491/0.0701 

infant 0.0449/0.0080 0.0467/0.0094 

arcene 0.3100/0.1449 0.1700/0.1251 

dexter 0.0967/0.0483 0.1600/0.0858 

dorothea 0.0600/0.0269 0.0600/0.0269 

madelon 0.3590/0.0464 0.3795/0.0471 

colon 0.0929/0.1049 0.1381/0.1894 

prostate 0.0482/0.0509 0.0682/0.0667 

leukemia 0.0125/0.0395 0.0125/0.0395 

lung-cancer 0.0056/0.0176 0.0091/0.0324 

breast-cancer 0.0911/0.0384 0.0732/0.0497 

ovarian-cancer 0.0883/0.0467 0.0604/0.0667 

hiva 0.0470/0.0080 0.030/ 0.0049 

win/tie/loss - 8/4/4 

average ranks 1.38 1.63 

 
TABLE 6 PERFORMANCE OF SGAI AND TIE* USING SVM  

         (A/B: A DENOTES PREDICTION ERROR AND B IS STANDARD DEVIATION) 

Dataset SGAI TIE* 

spect 0.2997/0.0615 0.2997/0.0615 

wdbc 0.0281/0.0220 0.0334/0.0292 

spectf 0.1235/0.0580 0.2058/0.0175 

promoter 0.2472/0.1448 0.2482/0.1538 

infant 0.0431/0.0070 0.0435/0.0061 

arcene 0.1900/0.1101 0.1900/0.0994 

dexter 0.1067/0.0410 0.1467/0.1485 

dorothea 0.0600/0.0275 0.0613/0.0303 

madelon 0.1885/0.0225 0.3795/0.0515 

colon 0.1238/0.1554 0.0905/0.1610 

prostate 0.0582/0.0502 0.0782/0.0915 

leukemia 0.0125/0.0395 0.0554/0.0983 

lung-cancer 0.0111/0.0234 0.0111/0.0421 

breast-cancer 0.0911/0.0448 0.0800/0.0511 

ovarian-cancer 0.0697/0.0515 0.0740/0.0320 

hiva 0.0354/0.0017 0.0333/0.0038 

win/tie/loss - 5/9/2 

average ranks 1.28 1.72 

 
Using NB, in Table 5, with the counts of win/tie/loss, we 

observe SGAI only loses four times against TIE*. With the 

Friedman test, the null-hypothesis is not rejected, and the 

average ranks for SGAI and TIE* are 1.38 and 1.63, 

respectively. Using SVM, in Table 6, by the counts of 

win/tie/loss, SGAI only loses twice against TIE*. With the 

Friedman test, the null-hypothesis is rejected, and the average 
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ranks for SGAI and TIE* are 1.28 and 1.72, respectively. 

Then we proceed with the Nemenyi test as a post-hoc test, and 

the critical difference is up to 0.49. Thus, we can conclude 

that SGAI is significantly better than TIE* using the SVM 

classifier in the prediction errors. 

Accordingly, using both NB and SVM, SGAI achieves 

highly competitive performance against TIE* without an 

exhaustive search over all candidate Markov blankets. 

 

 
Fig.9. Numbers of selected features of SGAI and TIE* (the labels of the 

x-axis from 1 to 16 are the same as those in Figure 7.) 

 

TABLE 7 RUNNING TIME (IN SECONDS) 

Dataset SGAI TIE* 

spect 1 1 

wdbc 2 1 

spectf 2 1 

promoter 1 143 

infant 16 9 

arcene 16 13 

dexter 27 >3 days 

dorothea 309 6,665 

madelon 2 2 

colon 1,039 2 

prostate 27 13 

leukemia 24 159 

lung-cancer 41 76 

breast-cancer 61 >3 days 

ovarian-cancer 6 7 

hiva 17 30 

 

Why is SGAI not worse than TIE*? A possible explanation 

is that since TIE* finds a new Markov blanket on a new 

feature space by removing the previously discovered Markov 

blankets from the data set at each round, TIE* simply selects 

one feature from a set of correlated features, whereas SGAI 

considers both strongly relevant features and their 

corresponding correlated features simultaneously, and this 

might be beneficial to reduce classification error. This also 

explains why SGAI selects more features than TIE* as shown 

in Figure 9. For example, on the infant dataset, SGAI gets 13 

representative sets, and features in each group are strongly 

correlated. SGAI further selects six representative sets and 

picks up more than two features from those groups 

respectively while the Markov blankets selected by TIE* only 

contain 5 strongly relevant features which attain the lowest 

errors among all Markov blankets.  

From Table 7, we can see that TIE* fails on the dexter and 

breast-cancer data sets due to long running time (exceeding 

three days). But on the colon and leukemia data sets, TIE* is 

much faster than SGAI. A possible explanation is that in those 

data sets, there are a few Markov blankets for TIE* while 

there are many correlated features corresponding to features 

in the seed set to be dealt with by SGAI. 

In summary, instead of an exhaustive search for all Markov 

blankets, SGAI minimizes the prediction errors from 

representative sets with reasonable running time. 

D. Comparison with Other Markov Blanket Filters 

Tables 9 and 10 summarize the prediction errors of SGAI 

against the state-of-the-art Markov blanket filters, HITON-

MB, IAMB, PCMB, and MMMB. The highest prediction 

errors are highlighted in bold face. Note that some entries in 

Tables 9 and 10 are marked by “-”, which means that the 

method fails to return any result within a reasonable response 

time (i.e., 72 hours for a single training in our case). For 

example, MMMB fails on the dorothea data set, due to long 

running time. With the win/tie/lose counts of SGAI against 

HITON-MB, IAMB, PCMB and MMMB in the last row of 

Table 9, we observe that SGAI is superior to HITON-MB, 

IAMB, PCMB and MMMB on most data sets. 

Meanwhile, using the Friedman test at a 95% significance 

level, the null-hypothesis is rejected, and the average ranks 

for SGAI, HITON-MB, IAMB, PCMB and MMMB are 1.78, 

2.88, 3.47, and 1.88, respectively. 

Then we proceed with the Nemenyi test as a post-hoc test. 

With the Nemenyi test, the critical difference is up to 1.17. 

Thus, we can conclude that SGAI is significantly better than 

PCMB using the NB classifier in the prediction errors. Since 

MMMB fails on the dorothea data set, we don’t compare 

SGAI with MMMB using the Friedman test. 

According to Table 10 using SVM, we can see that SGAI 

also outperforms HITON-MB, IAMB, PCMB and MMMB 

on most data sets. Furthermore, SGAI is never worse than 

PCMB in prediction errors. With the Friedman test at a 95% 

significance level, the average ranks for SGAI, HITON-MB, 

IAMB, PCMB and MMMB are 1.97, 2.34, 2.97, and 2.72, 

respectively.  As for the number of selected features, in Figure 

10, SGAI is also very competitive with its rivals, although it 

considers not only the seed set of features but also their 

corresponding correlated features. From Table 8, on running 

time (in seconds), SGAI is also very competitive with the 

other MB filters (excluding the dexter, madelon, lung-cancer 

and breast-cancer data sets), even though SGAI needs to 

consider not only the seed set of features but also their 

corresponding correlated features. Since the PCMB algorithm 

is implemented in the C language, we don’t give its running 

time here. We also don’t present the dorothea and leukemia 

data sets as MMMB fails on those two data sets. 

In summary, our empirical study has demonstrated that 

when we treat data under non-faithful conditions, Markov 

blankets selected by the existing single Markov blanket 

feature selection methods may not be a best feature subset that 

minimizes the prediction error for classification. Our SGAI 

algorithm may effectively and efficiently handle Markov 

blanket feature selection in real data with representative sets. 

More importantly, with representative sets, SGAI could 

efficiently find a best feature subset for feature selection 

without an exhaustive search over an unknown space of all 

Markov blankets in a real data set. 
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Fig.10. Numbers of selected features of SGAI vs. other Markov Blanket 

Filters (the labels of the x-axis are the same as the labels in Fig.7). 

TABLE 8 RUNNING TIME (IN SECONDS) 

Dataset SGAI IAMB MMMB HITON-MB 

spect 1 0.1 0.1 0.1 

wdbc 2 1 2 1 

spectf 2 0.1 1 1 

promoter 1 0.1 1 1 

infant 16 1 1 2 

arcene 16 367 16 16 

dexter 27 19 36 37 

dorothea 309 248 / 305 

madelon 2 1 2 1 

colon 1,039 2 7 2 

prostate 27 325 89 12 

leukemia 24 208 23 13 

lung-cancer 41 1,336 39 47 

breast-cancer 61 6,085 63 50 

ovarian-cancer 6 66 6 8 

hiva 17 8 43 18 

 

E. Comparison with Other Feature Selectors 

Tables 11 and 12 summarize the prediction errors of SGAI 

against two well-established feature selection methods, FCBF 

and mRMR, and two state-of-the-art feature selection 

algorithms, SPSF-LAR and MRF. The highest prediction 

errors are highlighted in bold face. 

Since SGAI selects no more than 60 features to get the 

lowest prediction error on all 16 data sets, for SPSF-LAR, 

MRF, and mRMR, we use the selected feature subset whose 

size ranges from 1 to 15 for five UCI data sets and choose the 

lowest prediction errors achieved by NB and SVM, while for 

the remaining 11 high-dimensional data sets, we use the top 

5, 10, 15, ..., 60 features selected by each algorithm.  

We conduct paired t-tests at a 95% significance level and 

summarize the win/tie/lose counts of SGAI against its four 

rivals in the last rows of Tables 11 and 12. Meanwhile, with 

the Friedman test at a 95% significance level, the average 

ranks calculated from the Friedman test for SGAI, SPSF-

LAR, MRF, FCBF and mRMR are 2.78, 2.88, 3.78, 2.5,  and 

3.06 respectively in Table 11 using NB, while using SVM, 

the average ranks are 2.72, 2.56, 2.87,3.84, and 3.00, 

respectively, in Table 12. Accordingly, with the counts of 

win/tie/loss and the average ranks in Tables 11 and 12, we can 

conclude that SGAI achieves highly competitive performance 

against the four well-established feature selection algorithms. 

VI. CONCLUSION 

In this paper, we explored Markov blanket feature selection 

by assuming that a probability distribution may not be 

faithfully represented by a Bayesian network. To tackle this 

issue, we extended the concept of Markov blankets and 

proposed the concept of representative sets. With 

representative sets, we presented the SGAI algorithm for 

Markov blanket feature selection under the non-faithful 

condition. The experimental results have shown that the 

SGAI algorithm outperforms both state-of-the-art Markov 

blanket feature selectors and other well-established feature 

selection methods using real-world data. 
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TABLE 9 RESULTS OF EACH ALGORITHM USING NB 

(A/B: A DENOTES PREDICTION ERROR WHILE B REPRESENTS STANDARD DEVIATION) 

Dataset SGAI IAMB PCMB HITON-MB MMMB 

spect 0.2918/0.0916 0.3108/0.0529 0.3108/0.0529 0.2997/0.0615 0.3108/0.0529 

wdbc 0.0562/0.0245 0.0456/0.0343 0.0685/0.0291 0.0387/0.0318 0.0737/0.0306 

spectf 0.1607/0.0738 0.1907/0.0555 0.2165/0.0762 0.2392/0.0618 0.2427/0.0733 

promoter 0.0336/0.0831 0.2000/0.086 0.4146/0.0955 0.0972/0.0944 0.0972/0.0944 

infant 0.0449/0.0080 0.0474/0.009 0.0603/0.0038 0.0487/0.0100 0.0504/0.0095 

arcene 0.3100/0.1449 0.3100/0.1524 0.2800/0.1135 0.17/0.1159 0.3400/0.1174 

dexter 0.0967/0.0483 0.2500/0.0671 0.2567/0.0630 0.24/0.062 0.2533/0.0706 

dorothea 0.0600/0.0269 0.0663/0.0167 0.0988/0.0040 0.0613/0.0208 / 

madelon 0.3590/0.0464 0.3740/0.0367 0.4315/0.0274 0.37/0.0418 0.3700/0.0418 

colon 0.0929/0.1049 0.1571/0.1616 0.1405/0.1495 0.1381/0.1894 0.2857/0.1694 

prostate 0.0482/0.0509 0.2418/0.1308 0.0764/0.0729 0.0682/0.0667 0.1164/0.1003 

leukemia 0.0125/0.0395 0.1629/0.1420 0.0554/0.0716 0.0268/0.0566 0.0554/0.0716 

lung-cancer 0.0056/0.0176 0.0500/0.0484 0.0664/0.0439 0.0167/0.0268 0.0222/0.0388 

breast-cancer 0.0911/0.0384 0.1297/0.0585 0.1156/0.0376 0.108/0.0466 0.0943/0.0401 

ovarian-cancer 0.0883/0.0467 0.2506/0.0751 0.3996/0.1328 0.1026/0.0703 0.0788/0.0787 

hiva 0.0470/0.0080 0.0312/0.0040 0.0317/0.0042 0.0315/0.0039 0.0317/0.0038 

average ranks 1.78 2.88 3.47 1.88 - 

win/tie/loss - 10/3/3 13/1/2 8/4/4 10/3/2 

 

 

TABLE 10 RESULTS OF EACH ALGORITHM USING SVM  
(A/B: A DENOTES PREDICTION ERROR WHILE B REPRESENTS STANDARD DEVIATION) 

Dataset SGAI IAMB PCMB HITON-MB MMMB 

spect 0.2997/0.0615 0.2997/0.0615 0.2997/0.0615 0.3071/0.0670 0.2997/0.0615 

wdbc 0.0281/0.0220 0.0263/0.0289 0.0316/0.0199 0.0369/0.0267 0.0386/0.0318 

spectf 0.1235/0.0580 0.2097/0.0184 0.2058/0.0175 0.2058/0.0175 0.2095/0.0297 

promoter 0.2472/0.1448 0.2182/0.0793 0.3945/0.1074 0.2564/0.1296 0.2564/0.1296 

infant 0.0431/0.0070 0.0438/0.0065 0.0582/0.0490 0.0438/0.0075 0.0438/0.0057 

arcene 0.1900/0.1101 0.4600/0.0700 0.1900/0.1920 0.2000/0.1054 0.2100/0.1449 

dexter 0.1067/0.0410 0.1800/0.0549 0.2900/0.1899 0.5000/0 0.3867/0.1841 

dorothea 0.0600/0.0275 0.0525/0.0317 0.0975/0.0052 0.0600/0.0305 / 

madelon 0.1885/0.0225 0.3795/0.0404 0.3440/0.0431 0.1625/0.0226 0.1625/0.0226 

colon 0.1238/0.1554 0.0786/0.1328 0.1405/0.1689 0.1095/0.1286 0.2548/0.1684 

prostate 0.0582/0.0502 0.0564/0.0887 0.0582/0.0502 0.0782/0.0915 0.1055/0.0920 

leukemia 0.0125/0.0395 0.0393/0.0966 0.0411/0.0663 0.0286/0.0904 0.0411/0.0663 

lung-cancer 0.0111/0.0234 0.0167/0.0268 0.0111/0.0234 0.0111/0.0234 0.0056/0.0176 

breast-cancer 0.0911/0.0448 0.1333/0.0606 0.1121/0.0522 0.1220/0.0432 0.1015/0.0350 

ovarian-cancer 0.0697/0.0515 0.0231/0.0331 0.3933/0.0789 0.0416/0.0404 0.0465/0.0444 

hiva 0.0354/0.0017 0.0333/0.0038 0.0333/0.0038 0.0333/0.0038 0.0333/0.0038 

average ranks 1.97 2.34 2.97 2.72 - 

win/tie/loss - 6/7/3 10/6/0 6/6/4 7/6/2 
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TABLE 11 RESULTS OF SGAI, SPSF-LAR, MRF, FCBF, AND MRMR USING NB  

(A/B: A DENOTES PREDICTION ERROR WHILE B REPRESENTS STANDARD DEVIATION) 

Dataset SGAI SPSF-LAR MRF FCBF mRMR 

spect 0.2918/0.0916 0.3144/0.0962 0.3034/0.0624 0.2698/0.0790 0.3144/0.0962 

wdbc 0.0562/0.0245 0.0587/0.0315 0.0510/0.0303 0.0580/0.0321 0.0587/0.0315 

spectf 0.1607/0.0738 0.2585/0.0689 0.2053/0.0940 0.2129/0.0690 0.2585/0.0689 

promoter 0.0336/0.0831 0.1181/0.0922 0.0564/0.0486 0.1005/0.0937 0.1181/0.0922 

infant 0.0449/0.0080 0.0545/0.0096 0.0463/0.0076 0.0467/0.0096 0.0545/0.0096 

arcene 0.3100/0.1449 0.2163/0.1317 0.3000/0.1826 0.2800/0.1135 0.2163/0.1317 

dexter 0.0967/0.0483 0.2637/0.0912 0.1367/0.0637 0.2267/0.0617 0.2637/0.0912 

dorothea 0.0600/0.0269 0.0638/0.0291 0.0163/0.0132 0.0538/0.0240 0.0638/0.0291 

madelon 0.3590/0.0464 0.3661/0.0361 0.3705/0.0317 0.3482/0.0361 0.3661/0.0361 

colon 0.0929/0.1049 0.1240/0.1401 0.1428/0.1156 0.1244/0.1165 0.1240/0.1401 

prostate 0.0482/0.0509 0.0653/0.0689 0.0576/0.0654 0.0650/0.0717 0.0653/0.0689 

leukemia 0.0125/0.0395 0.0611/0.0998 0.0286/0.0602 0.0517/0.0926 0.0611/0.0998 

lung-cancer 0.0056/0.0176 0.0400/0.0456 0.0719/0.0590 0.0506/0.0401 0.0400/0.0456 

breast-cancer 0.0911/0.0384 0.0908/0.0547 0.0837/0.0439 0.0955/0.0548 0.0908/0.0547 

ovarian-cancer 0.0883/0.0467 0.1636/0.0833 0.0788/0.0440 0.1092/0.0627 0.1636/0.0833 

hiva 0.0470/0.0080 0.0351/0.0013 0.0304/0.0040 0.0361/0.0013 0.0351/0.0013 

average ranks 2.78 2.88 3.78 2.50 3.06 

win/tie/loss - 6/4/6 8/4/4 5/6/5 7/4/5 

 

 
TABLE 12 RESULTS OF SGAI, SPSF-LAR, MRF, FCBF, AND MRMR USING SVM  

(A/B: A DENOTES PREDICTION ERROR WHILE B REPRESENTS STANDARD DEVIATION) 

Dataset SGAI SPSF-LAR MRF FCBF mRMR 

spect 0.2997/0.0615 0.2994/0.0987 0.3110/0.0734 0.2926/0.0724 0.2994/0.0987 

wdbc 0.0281/0.0220 0.3210/0.0289 0.0298/0.0299 0.0333/0.0314 0.3210/0.0289 

spectf 0.1235/0.0580 0.2016/0.0322 0.2132/0.0227 0.2058/0.0228 0.2016/0.0322 

promoter 0.2472/0.1448 0.2029/0.0901 0.2009/0.1604 0.2165/0.1691 0.2029/0.0901 

infant 0.0431/0.0070 0.0446/0.0055 0.0457/0.0068 0.2596/0.0385 0.0446/0.0055 

arcene 0.1900/0.1101 0.1980/0.1100 0.4600/0.067 0.2000/0.1563 0.1980/0.1100 

dexter 0.1067/0.0410 0.2615/0.1761 0.5000/0 0.1500/0.0729 0.2615/0.1761 

dorothea 0.0600/0.0275 0.0625/0.0283 0.090/0.0099 0.0568/0.0223 0.0625/0.0283 

madelon 0.1885/0.0225 0.3088/0.0377 0.4005/0.0284 0.3341/0.0318 0.3088/0.0377 

colon 0.1238/0.1554 0.1043/0.1366 0.1404/0.1689 0.1090/0.1396 0.1043/ 0.1366 

prostate 0.0582/0.0502 0.0558/0.0617 0.0482/0.0694 0.0510/0.0515 0.0558/0.0617 

leukemia 0.0125/0.0395 0.0265/0.0723 0.0143/0.0452 0.0150/0.0439 0.0265/0.0723 

lung-cancer 0.0111/0.0234 0/0 0.0056/0.0176 0.0014/0.0087 0/0 

breast-cancer 0.0911/0.0448 0.0945/0.0552 0.0975/0.0580 0.1008/0.0482 0.0945/0.0552 

ovarian-cancer 0.0697/0.0515 0.0824/0.0556 0.0606/0.0452 0.0577/0.0534 0.0824/ 0.0556 

hiva 0.0354/0.0017 0.0351/0.0013 0.0354/0.0017 0.0351/0.0013 0.0351/0.0013 

average ranks 2.72 2.56 2.87 3.84 3.00 

win/tie/loss - 6/6/4 6/8/2 7/7/2 5/8/3 

 


