
1
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Abstract—Causal feature selection has attracted much atten-
tion in recent years, as the causal features selected imply the
causal mechanism related to the class attribute, leading to more
reliable prediction models built using them. Currently there is a
need of developing multi-source feature selection methods, since
in many applications data for studying the same problem has
been collected from various sources, such as multiple gene expres-
sion datasets obtained from different experiments for studying the
causes of the same disease. However, the state-of-the-art causal
feature selection methods generally tackle a single dataset, and
a direct application of the methods to multiple datasets will
result in unreliable results as the datasets may have different
distributions. To address the challenges, by utilizing the concept
of causal invariance in causal inference, we firstly formulate the
problem of causal feature selection with multiple datasets as a
search problem for an invariant set across the datasets, then give
the upper and lower bounds of the invariant set, and finally we
propose a new Multi-source Causal Feature Selection algorithm,
MCFS. Using synthetic and real world datasets and 16 feature
selection methods, the extensive experiments have validated the
effectiveness of MCFS.

Index Terms—Causal feature selection, Markov blanket, Mul-
tiple datasets, Bayesian network, Causal invariance

I. INTRODUCTION

Feature selection is an effective approach to reducing di-
mensionality by selecting features (variables) that are most
relevant to the class attribute for better prediction. In recent
years, causal feature selection [1], [11] is attracting more
attentions and has been increasingly used in building predic-
tion models, since the causal features selected can imply the
causal mechanisms around the class attribute. Consequently,
in contrast to traditional or non-causal feature selection, a
prediction model built with causal features can be explained
in terms of the causal relevance of the features with the
class attribute. Moreover, causal features enable more reliable
predictions in non-static environment where the distributions
of testing and training data may be different, and allow the
prediction of the outcomes of actions [11].

Many causal feature selection algorithms have been devel-
oped [1], [9], [20], with the aim to identify the Markov blanket
(MB) of the class attributes or a subset of the MB. A MB of a
variable contains its parents (direct causes), children (direct
effects), and spouses (direct causes of children) when the
relations between variables are represented using a Bayesian
network [19].
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However, all the methods are designed for causal feature
selection from a single data set, whereas multiple datasets
studying a same problem are ubiquitous nowadays. For exam-
ple, multiple gene expression datasets may have been obtained
from experiments conducted at different laboratories for the
discovery of genetic causes of the same disease, such as lung
cancer [10]. To develop strategies for effective promotion of a
product, data may have been collected from various sources,
such as A/B tests, customer surveys, and records of previous
promotional campaigns. It is desirable to maximize the use
of the richer information contained in the multiple datasets
to develop better solutions. The challenge is that, however,
existing causal feature selection methods are not able to be
applied to multiple datasets directly because

• Unreliable results will be obtained if we simply pool
the multiple datasets together and then apply an exist-
ing causal feature selection method to the pooled data.
Although the multiple datasets are targeted at the same
problem, they often have been produced from different
experiments or sources, thus do not have identical dis-
tributions. For instance, to identify the impact of genes
on a disease, in an experiment, the expression levels of
some genes are manipulated (intervened), and then the
expression changes of the marker genes of the disease are
observed. As in different experiments different genes may
be intervened, the distributions of the datasets obtained
from these experiments may not be identical. Then in the
pooled data, due to the different/inconsistent distributions,
the relationship between a feature and the target attribute
may not be detected any more (while it might be observed
in a single dataset).

• It will not work well either if we apply an existing causal
feature selection method to each dataset individually and
then take the commonly selected features, because in this
case we will lose useful information provided by the
different datasets. For instance, suppose that a gene is
important for predicting a disease, but it is manipulated
in one training dataset while not in another, the commonly
selected features from these datasets may not include the
important gene for predicting the disease.

To tackle these problems, in the paper, we propose a
multi-source causal feature selection approach by utilizing the
concept of causal invariance [18], [22] in causal inference.
The main idea behind causal invariance is that although in the
experiments from which these datasets were obtained, differ-
ent variables might have been intervened (resulting in different
probability distributions of the datasets), since the datasets are
for the same system, the underlying causal mechanism of the
system should keep invariant across the experiments.

Based on the observations, we assume that there exists an
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invariant set S∗ such that the conditional distribution of the
class attribute C, P (C|S∗) maintains the same across the
datasets. As we will show in Section IV.B (Theorem 6) that
the set of direct causes (parents) of C is such an invariant set.
As the ultimate goal of feature selection is to achieve good
predictions, we would like to find a set of features S∗ which
not only satisfy the invariant property across the datasets, but
also can maximize P (C|S∗). Our goal is to search for such a
feature set S∗.

In recent years, causal invariance has been employed to
tackle domain adaptation problems [15], [23]. Particularly,
based on causal invariance, a new method was proposed [15]
to select a set of features that makes the predictions adaptable
to a different domain. Our work is closely related to the
existing work for cross-domain predictions since the causal
features learnt from multiple training datasets carries richer
and more reliable causal knowledge, and thus give more stable
predictions in domains with different external environmen-
t/interventions. However, our work is mainly driven by the idea
of better utilizing information in multiple sources to select a
set of causal features for stable predictions, and the method is
designed without assumed source (training) or target (testing)
domains as in the previous work for domain adaptation.

The contribution of this paper can be summarized as follow:
• We analyze the properties of causal invariance for feature

selection with multiple datasets, formulate the problem of
multi-source causal feature selection as a search problem
for an invariant set, and represent the search criterion
using mutual information. Moreover, we give the upper
and lower bounds of the invariant sets.

• Based on the theories established in the first contribution
above, we propose a new Multi-source Causal Feature
Selection algorithm MCFS. The effectiveness and effi-
ciency of the MCFS algorithm are validated by a series
of experiments using synthetic and real world data.

The rest of the paper is organized as follows. Section II
reviews the related work, and Section III gives notations
and definitions. Section IV analyzes causal feature selection
with multiple datasets, while Section V proposes our new
algorithm. Section VI describes and discusses the experiments
and Section VII concludes the paper.

II. RELATED WORK

In the big data era, high-dimensional datasets have become
ubiquitous in various applications [33]. And thus, feature
selection is pressing more than ever, and thus many feature
selection methods have been proposed. The most existing
feature selection methods fall into three main categories,
filter, wrapper, and embedded methods [13]. Filter feature
selection methods are classifier independent, the other two
types of methods are not. Excellent reviews of classical feature
selection (i.e. filter, embedded, wrapper) algorithms can be
found in [6], [12], [13] and the reference therein.

Causal feature selection has attracted much attention in
recent years, since by bringing causality into play, it naturally
provides causal interpretation about the relationships between
features and the class attribute, enabling a better understanding

of the mechanisms behind data [1], [11]. Additionly, the MB of
the class attribute is a minimal set of features which renders the
class attribute statistically independent from all the remaining
features conditioned on the MB [19]. Causal feature selection
did not become practical until Tsamardinos and Aliferis [26]
proposed the IAMB family of algorithms, such as IAMB [26],
inter-IAMB [28], IAMBnPC [28], and Fast-IAMB [30]. These
algorithms attempt to find PC (parents and children) and
spouses of a target variable simultaneously.

However, the IAMB family of algorithms is not able to
distinguish PC (parents and children) from spouses of the
target. In addition, they require a large number of data samples
at least exponential to the size of the MB of the target,
and thus they would not scale to thousands of variables in
most real-world datasets with small numbers of data samples.
To mitigate the problem, a divide-and conquer approach was
proposed. The ideas behind the approach are that instead of
discovering PC and spouses of a target variable simultane-
ously, it firstly finds the PC of the target, then discovers
its spouses. The representative algorithms include HITION-
MB [1], [2], MMMB [27], PCMB [20], and STMB [9].
However, existing causal feature selection algorithms only
focus on selecting features from a single (training) dataset.
Thus, there is a need for causal feature selection to specially
selecting features from multiple datasets.

Recently, Yu et al. [31] theoretically analyzed under what
conditions the correct MB of a target variable can be found
and under what conditions the causes of the target variable are
able to be identified via discovering its MB from multiple in-
terventional datasets. And some methods have utilized the idea
of causal invariance [18] for learning causal structures from
multiple interventional datasets. Peters et al. [22] proposed the
ICP algorithm to discover a target variable’s direct causes from
multiple interventional datasets by using the causal invariance.
Zhang et al. [34] proposed an enhanced constraint-based
algorithm for learning causal structures from heterogeneous
data. Mooij et al. [16] proposed a novel unified framework for
causal structure learning with multiple interventional datasets.

However, the existing work uses the idea of causal invari-
ance to discover causal structures, instead of finding causal
features for building prediction models. In addition, [16]
and [34] are both computational expensive or prohibitive when
datasets contain large number of variables, and they need to
specify a set of context variables (e.g. prior knowledge of
interventions) to help causal structure learning, which may
not be practical in many real-world applications.

Magliacane et al. [15] proposed a novel method to address
domain adaptation problem, specifically transferable predic-
tions. The idea behind [15] is to employ causal invariance
to find a separating set to be used in the predictions in
target domains. The proposed algorithm firstly uses a standard
feature selection method such as Random Forests to generate
a list of candidate feature sets, then identifies a set satisfying
the invariance as a separate set. Both our work and the
method in [15] utilize the idea of causal invariance and the
causal features obtained by our method can also be used
for predictions in different domains. However, they have the
following differences: (1) The method in [15] needs to specify
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context variables while our work does not; (2) [15] assumes
that datasets in the source domains (or the multiple training
datasets) have the same distribution while our work deals with
training datasets with different distributions; (3) As we will see
later, our work can be scalable to thousands of variables, but
as presented in [15], the method in practice only dealt with
several variables; and (4) As introduced in Section V, our
method makes use of source domain data only, and it starts
with candidate features selected from individual datasets by a
causal feature selection method and then uses the invariance to
select those can make stable predications; whereas the method
in [15] utilizes data in both source and target domains, and
starts with the candidate feature sets selected by a normal
(non-causal) feature selection method and then uses causal
inference method to filter out features that would not transfer
to the target domain.

In summary, there is a lack of effective feature selection
methods for selecting causal features from multiple datasets,
thus, in this paper, we will focus on tackling causal feature
selection with multiple datasets for stable predictions.

III. NOTATIONS AND DEFINITIONS

In this section, we discuss some key concepts involved
in tackling causal feature selection with multiple datasets.
Specifically, Section III.A presents the concepts of Bayesian
networks and Markov blankets with regard to causal feature se-
lection. Section III.B dicusses the intervention theory in causal
inference, which is related to the idea of causal invariance,
and Section III.C introduces the basics of mutual information,
which is used by our method for finding invariant sets.

Let D = {D1, D2, · · · , DK} be K training datasets. ∀i ∈
{1, . . . ,K}, Di is defined by {F,C}, i.e. the datasets all
contain the same set of features F = {F1, F2, · · · , FN}
and the class attribute C. Let Υi (Υi ⊂ F ) be the features
manipulated in the i-th experiment, and Υ = {Υ1, · · · ,ΥK}
the K intervention experiments producing D1, · · · , DK , re-
spectively. Note that in this paper we assume that the class
attribute is not intervened in any of the experiments (more
details in Section 3) (In the following, we use the two
terms, class attribute and target variable, interchangeably).
We use \ to denote set subtraction. For simplicity, we abuse
the notation and write F \ {Fi} as F \ Fi to indicate all
features in F excluding Fi. Fi and Fj (i 6= j) are said to
be conditionally independent given S ⊆ F\{Fi, Fj} if and
only if P (Fi, Fj |S) = P (Fi|S)P (Fj |S). We use Fi ⊥⊥ Fj |S
and Fi 6⊥⊥ Fj |S to represent that given S, Fi is conditionally
independent of and dependent on Fj , respectively.

For the convenience of presentation, we let FN+1 = C
and F = {F1, F2, · · · , FN , FN+1}, representing the set of all
variables under consideration, including all the features and
the class attribute.

A. Bayesian network and Markov blanket

Let P be the joint probability distribution of D and rep-
resented by a directed acyclic graph (DAG) G over F . A
Bayesian network is defined as follows.

season

sprinkler rain

wet

slippery

season

Sprinkler rain

wet

slippery

(a) (b)

do(sprinkler=on)

Fig. 1. Example of BN and interventions. (a) A simple BN representing
dependencies among five variables; (b) An example of an intervention on
variable “sprinkler”.

Definition 1 (Bayesian network). [19] The triplet 〈F , G, P 〉
is called a Bayesian network if 〈F , G, P 〉 satisfies the Markov
condition: every variable is independent of any subset of its
non-descendants conditioned on its parents in G.

In this paper, we consider causal Bayesian network (CBN),
a BN in which an edge X → Y indicates that X is a direct
cause of Y [18]. For simple presentation, however, we use the
term BN instead of CBN.

For example, Figure 1 (a) shows a simple yet typical
BN [18]. A Bayesian network encodes the joint probability P
over a set of variables F and decomposes P into a product of
the conditional probability distributions of the variables given
their parents in G. Let pa(Fi) represent the set of parents of
Fi in F . We have the following decomposition of P :

P (F) =
∏N+1

i=1 P (Fi|pa(Fi)). (1)

Definition 2 (Faithfulness). [19] Given a Bayesian network
< F , G, P >, G is faithful to P if and only if every conditional
independence present in P is entailed by G and the Markov
condition. P is faithful if and only if there exists a DAG G
such that G is faithful to P .

Let ch(Fi) and sp(Fi) represent the sets of children and
spouses of Fi in F , then the Markov blanket of Fi in a BN
is defined as follows.

Definition 3 (Markov blanket). [19] Under the faithfulness
assumption, the Markov blanket of Fi ∈ F in a BN, noted
as MB(Fi), is unique and MB(Fi) = {pa(Fi) ∪ ch(Fi) ∪
sp(Fi)}.

B. Interventions in BNs

To represent the intervention on a variable in an intervention
experiment, Pearl [18] proposed the do operator do(X = x)
to indicate that the value of variable X is set to a constant
x by the intervention. If we use a DAG to represent the
causal relations between variables in F , an intervention on
a variable can be indicated by deleting all the edges pointing
to the variable [18]. For example, to represent the intervention
“turning the sprinkler On” (i.e. do(sprinkler = on)) in the
network as shown in Figure 1 (b), the link from F1 to F2 is
deleted and F2 is assigned the value “On”.

Property 1. [18] P (Fj |pa(Fj)) = P (Fj |do(pa(Fj) = ζ)) if
Fj /∈ Υi where ζ is a set of constant values of pa(Fj).

Property 2. [18] Assuming S ⊆ F\{Fj , pa(Fj)}, if Fj /∈ Υi,
P (Fj |do(pa(Fj) = ζ)), S) = P (Fj |do(pa(Fi) = ζ)).
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Property 1 ensures that P (Fj |pa(Fj)) coincides with the
effect (on Fj) of setting pa(Fj) to the chosen values. Prop-
erty 2 illustrates that once we control the direct causes of Fj
(i.e. pa(Fj)), no other interventions will affect the probability
of Fj . The DAG obtained after all the interventions of an
intervention experiment are represented by the edge deletions
is known as a post-manipulation DAG, and it is formal
definition is given in the following.

Definition 4 (Post-manipulation DAG). [18] Let G = (F , E)
be a DAG with variable set F and edge set E. After the in-
tervention on the set of variables Υi (represented as do(Υi =
γ)), the post-manipulation DAG of G is Gi = (F , Ei) where
Ei = {(a, b)|(a, b) ∈ E, b /∈ Υi}. The joint distribution of the
post-manipulation DAG Gi with respect to the set Υi can be
written as

P (F|do(Υi = γ)) =
∏

Fj∈F\Υi

P (Fj |pa′(Fj), do(pa
′′(Fj) = γ)

(2)
where pa′(Fj) ⊆ F \Υi and pa′′(Fj) ⊆ Υi. By Properties 1
and 2, P (Fj |pa′(Fj), do(pa′′(Fj) = γ) is the same as the con-
ditional probability of Fj in Eq.(1) if Fj is not intervened, i.e.
P (Fj |pa(Fj)) remain invariant to interventions not involving
Fj , while P (do(Fj = γ)|pa(Fj)) = 1 if Fj is intervened.

For example, the post-manipulation DAG resulting
from the intervention on variable “sprinkler” as shown
in Figure 1 (b) is P (F1, F2, F3, F4, F5|do(F2=On)) =
P (F1)P (F3|F1)P (F4|F3, F2 = On)P (F5|F4).

IV. MULTI-SOURCE CAUSAL FEATURE SELECTION

As mentioned in the Introduction section, we formulate the
problem of multi-source causal feature selection as a search
problem for an invariant set across all the training datasets
D = {D1, D2, · · · , DK}. Assuming ∀Di ∈ D and ∀Dj ∈
D (i 6= j), an invariant set S across D is defined as follows.

Definition 5 (Invariant set). An invariant set S across D
satisfies P i(C|S) = P j(C|S), for ∀Di, Dj ∈ D.

As the goal of feature selection is to select a subset S ⊆
F to maximize P (C|S), given D, we would like to find a
set of features S∗ which is not only an invariant set across
D, but also can maximize P (C|S). Accordingly, the problem
of causal feature selection with D is defined that given any
dataset Di ∈ D, then

S∗ = arg maxS⊆F P
i(C|S)

s.t. P i(C|S) = P j(C|S) (∀j, j 6= i).
(3)

To tackle Eq.(3), in the following, Section IV-A proposes
the rationale of maximizing P (C|S) for optimal prediction.
Section IV-B discusses the lower and upper bounds of S in
Eq.(3) for search efficiency, and Section IV-C analyzes the
properties of the upper bound of S in D.

A. Rationale of maximizing P (C|S) for optimal prediction

For a subset S ⊆ F , why S is optimal for feature selection
when S maximizes P (C|S)? We discuss the question using
mutual information and the Bayes error rate. For classification,

the minimum achievable classification error by any classifier is
called the Bayes error rate [8]. The Bayes error rate is used for
justifying P (C|S) for optimal prediction since it is the tightest
possible classifier-independent lower-bound by depending on
predictive features and the class attribute alone.

Let I(Fi, Fj) denote the mutual information of Fi and
Fj , we can formulate S∗ = arg maxS⊆F P (C|S) as S∗ =
arg maxS⊆F I(S;C), that is, maximizing I(S;C) is equiv-
alent to maximizing P (C|S) [6]. Let Perr represent the
Bayes error rate and H(Perr)

−1 be the inverse of the entropy
H(Perr), given C and S ⊆ F , the upper bound of Perr is
given as Eq.(4) below [25].

H(Perr)
−1 ≤ Perr ≤ 1/2H(C|S). (4)

Eq.(4) illustrates that minimizing H(C|S) minimizes the
Bayes error rate. By the term I(C;S) = H(C) − H(C|S),
maximizing I(C;S) is equivalent to minimizing Perr. Accord-
ingly, maximizing P (C|S) is equivalent to minimizing Perr.

B. Bounds of S in Eq.(3)

In this section, using the concept of MBs in a BN, we
will firstly discuss what S is exactly in Eq.(3) when D only
contains a single training dataset that is sampled from the
same distribution as the test dataset (K = 1), then explore the
bounds of S in Eq.(3) as K > 1.

Theorem 1. [19] Suppose MB(C) is the MB of C in a BN,
∀S ⊂ F \ {MB(C) ∪ C}, P (C|MB,S) = P (C|MB).

By Theorem 1, Theorem 2 is achieved and it states that
for ∀S ⊆ F , I(C;MB(C)) ≥ I(C;S)) with equality if and
only if S = MB(C). By Theorem 2, we can see that all
information that may influence the values of C is stored in
the values of features of MB(C).

Theorem 2. I(C;MB(C)) is maximal.

By Theorem 2 and Eq.(4), Theorem 3 below is achieved.
Theorem 3 illustrates that MB(C) is the optimal solution to
Eq.(3) when K = 1 and the training and testing dataset are
both generated from the same data distribution.

Theorem 3. MB(C) minimizes the Bayes error rate.

Given multiple training datasets D (K > 1), if the manipu-
lated variables in both D and the testing dataset are not known,
then what causal invariance properties will present in D? With
these properties, what are the lower and upper bounds of S in
Eq.(3)? Assuming that the class attribute C is not intervened
and faithfulness holds, we discuss the first question above with
Theorems 4 and 6, and the second one with Theorem 7 below.

Theorem 4. Suppose MB(C) is the MB of the class attribute C, if
for ∀Υi ∈ Υ and ∀Υj ∈ Υ (i 6= j), ch(C) * Υi and ch(C) * Υj ,
P i(C|MB(C)) = P j(C|MB(C)) holds.

According to Theorem 3, Theorem 4 states that if for all
variables in ch(C) are not manipulated in any datasets in
D, MB(C) is the largest invariant set across all datasets
in D. Theorems 5 and 6 below illustrate that if C are not
manipulated in any datasets in D, pa(C) is not only an
invariant set but also a minimal one across all datasets in D.
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Theorem 5. For ∀Di ∈ D and ∀Dj ∈ D (i 6= j),
P i(C|pai(C)) = P j(C|paj(C)).

Theorem 6. pa(C) is the minimal and invariant set across D with
regard to C.

By Theorems 4 to 6, without variable manipulation infor-
mation in D, the bounds of S in Eq.(3) is given in Theorem 7.

Theorem 7. In Eq.(3), pa(C) ⊆ S ⊆MB(C).

By Theorem 7, Eq.(3) is rewritten as Eq.(5) below.

S∗ = arg maxS⊆MB(C) P
i(C|S)

s.t. P i(C|S) = P j(C|S) (∀j, j 6= i).
(5)

C. Properties of MB(C) in multiple datasets

How do we find MB(C) from D without any variable
manipulation information in each dataset? We discuss the
problem with Theorems 8 to 10 below.

Definition 6. [9] Υ is conservative, if ∀Fj ∈
⋃K
i=1 Υi, ∃Υi ∈

Υ such that Fj /∈ Υi.

Definition 6 states that given the set of K interventional
experiments, if for any variable that is intervened, we can
always find an experiment in which the variable is not manip-
ulated, then we say that the set of interventional experiments
is conservative.

Theorem 8. If Υ is conservative and MBi(C) represents MB(C)
in Di, the union

⋃K
i=1 MBi(C) = MB(C) holds.

Theorem 9. If Υ is not conservative, pa(C) ⊆
⋃K

i=1 MBi(C) ⊆
MB(C).

Theorems 8 states that if Υ is conservative, the union of
MB(C) in each dataset of D exactly equals MB(C); if not,
Theorems 9 shows that the union of MB(C) is between pc(C)
and MB(C). By Theorems 8 and 9, we get Theorem 10 as
follows, which illustrates that pc(C) is the minimal invariant
set across D whatever Υ is conservative or not.

Theorem 10. No matter Υ is conservative or not, pa(C) ⊆⋃K
i=1 MBi(C).

Theorems 8 to 10, on the one hand, further illustrate
the bounds shown in Theorem 7; on the other hand, these
theorems discuss the properties of MB(C) in D containing
multiple interventional datasets without variable manipulation
information. This also gives the basic ideas of finding MB(C)
from D by the algorithm presented in the next section.

V. THE PROPOSED MCFS ALGORITHM

To solve Eq.(5), we propose the MCFS (Multi-Source
Causal Feature Selection) algorithm (Algorithm 1) which has
three phases. Phase 1 is carried out in Steps 2 to 5 for finding
MB(C) in D, Phase 2 is done in Steps 6 to 26 for discovering
candidate invariant sets from D, and Phase 3 lies in Step 27
for selecting S∗ from these candidate invariant sets.

A. Phase 1 (Steps 2 to 5): discovering MB(C) from D

By the analysis in Section IV-C, Phase 1 employs the
HITON-MB algorithm, one of the best MB discovery algo-
rithms [1] (any other up-to-date MB algorithms can be used

Algorithm 1: The MCFS Algorithm
Input: D = {D1, D2, · · · , DK}, C: the class attribute, α:

significance level
Output: S∗

1 MB(C) = ∅; ρ = ∅; SelFea = ∅;
2 for i=1 to K do
3 /*Find MBi(C) in dataset Di;
4 MB(C) = MB(C) ∪MBi(C);
5 end
6 for S ⊆MB(C) do
7 avgMI = 0;
8 for i=1 to K do
9 MI(i) = ∅, Ii(C;S)=0;

10 for j=1 to |S| do
11 /* computing MI(i) on Di by Eq.(10)
12 MI(i) = MI(i) ∪ Ii(C;Fj) (Fj ∈ S);
13 Ii(C;S) = Ii(C;S) + Ii(C;Fj);
14 end
15 aveMI = aveMI + 1

|S|I
i(C;S);

16 end
17 aveMI = 1

K
aveMI ;

18 for i=1 to K do
19 /* using t-test to calculate whether the mean of MI(i)

is identical to aveMI

20 ρi=get-p-value (MI(i), aveMI );
21 ρ = {ρ ∪ ρi};
22 end
23 if min(ρ) ≥ α then
24 SelFea = SelFea ∪ S;
25 end
26 end
27 output S∗ with the highest prediction accuracy from SelFea.

here) to find MBi(C) in Di, then union the found MBs in
each dataset as MB(C).

B. Phase 2 (Steps 6 to 26): finding candidate invariant sets
in MB(C)

Mutual Information for computing P (C|S). In Eq.(5),
it is difficult to calculate P (C|S) especially for a large sized
S [17]. Thus, Phase 2 uses mutual information as an alternative
to compute P (C|S) as follows. Given dataset Dj ∈ D, j ∈
{1, · · · ,K}, let p(C|S,Dj) denote the true class distribution
of Dj and q(C|S,Dj) represent the predicted class distribution
of Dj given S. Then the conditional likelihood of C given S
is calculated by L(C|S,Dj) =

∏M
i=1 q(c

i|si) where M is the
number of data instances in Dj , ci represents a value of C in
the i-th data instance, and si denotes a value set of S in the
i-th data instance. The (scaled) conditional log-likelihood of
L(C|S,Dj) is computed by

`(T |S,Dj) = 1
M

∑M
i=1 log q(ci|si) (6)

By [6], Eq.(6) can be rewritten as Eq.(7) where f i denotes a
value set of F in the i-th data instance1.

−`(T |S,Dj) = Ecs

{
log p(ci|si)

q(ci|si)

}
+ Ecf

{
log p(ci|fi)

p(ci|si)

}
−Ecf

{
log p(ci|f i)

} (7)

1Please refer to Section 3.1 in [6] for the details on how to get Eq.(6) and
Eq.(7).



6

Eq.(7) can be further rewritten as Eq.(8) where S = F \ S.

lim
M→∞

−`(C|S,Dj) = KL(p(C|S)||q(C|S))+I(C;S|S)+H(C|F )

(8)
Since in Eq.(8), KL(p(C|S)||q(C|S)) will approach zero with
a large M , by I(C;F ) = I(C;S) + I(C;S|S) and Eq.(11),
Eq.(8) can be rewritten as Eq.(9) below.

limN→∞−`(C|S,Dj) ≈ H(C)− I(C;S) (9)

For each dataset in D, since C is not intervened, we assume
the probability of C keeps same and thus H(C) will be the
same across different datasets. Then for a subset of features
S, if I(C;S) in Di and I(C;S) in Dj are identical, S carries
the equivalent information for predicting C.

Finding candidate invariant sets. By the observations
discussed above, for each subset S ⊆ MB(C), Phase 2
tests whether Ii(C;S) in Di and Ij(C;S) in Dj for ∀i, j ∈
1, · · · ,K are identical to identify a candidate invariant S. For
computational efficiency, we use the well-known approach in
Eq.(10) to approximately calculate I(C;S) [21].

I(C;S) = 1
|S|
∑

Fi∈S I(Fi;C) (10)

where |S| is the size of the set S. At Step 12, MI(i) is a set
which stores mutual information of each feature in S with C
in Di. For data with discrete values, we calculate symmetrical
uncertainty [32] instead of I(Fi;C), which is defined by
SU(Fi, C) = 2I(Fi;C)

H(Fi)+H(C) . The advantage of SU(Fi, C) over
I(Fi;C) is that SU(Fi, C) normalizes the value of I(Fi;C)
between 0 and 1 to compensate for the bias of I(Fi;C) toward
features with more values. For data with numeric values,
I(Fi;C) = 1

2 log(1 − ρ2) where ρ is the Pearson correlation
coefficient [7]. At Step 17, avgMI is the average value of
I(C;S) over K training datasets.

To determine whether a subset S is an invariant set, for
Ii(C;S) in Di and Ij(C;S) in Dj for ∀i, j ∈ 1, · · · ,K
and i 6= j, Steps 18 to 22 need to examine if each of them
is identical. To avoid pairwise comparisons, the idea behind
Steps 18 to 22 is that if ∃S ∈ F such that for ∀i ∈ 1, · · · ,K,
Ii(C;S) is identical to 1

K

∑K
i=1 I

i(C;S), S is considered as
an invariant set. Specially, Steps 18 to 22 calculate whether
∀i ∈ {1, · · · ,K}, the mean of MI(i) is identical to avgMI

using t-test, and keep the corresponding p-value in the vector
ρ. From Steps 23 to 25, if the minimum value in ρ is bigger
or equals to α, S is added to SelFea which stores candidate
invariant sets.

C. Phase 3 (Step 27): Finding the best S∗ from the candidate
invariant sets by using prediction

In this step, for each subset S in SelFea, firstly, MCFS
trains a classifier on each dataset in D independently, then
gets K classifiers. Secondly, MCFS uses the K classifiers
for predicting the class labels of data instances in the testing
dataset individually. Thirdly, in the testing dataset, the class
label of each data instance has the K predicted class labels.
When K = 2, i.e. D only includes two training datasets, if the
two predicted labels are the same, for a data instance in the
testing dataset, then it is assigned the predicted class label. If
not, the class label of the data instance is randomly assigned.

When K > 2, MCFS uses the majority voting method. In this
case, the class label of each data instance in the testing dataset
is the most frequent one among the K predicted class labels.
Fourthly, by comparing the predicted labels with the groud-
truth of labels in the testing dataset, the prediction accuracy
of S will be computed. Finally, MCFS outputs the subset S∗

with the highest prediction accuracy.

D. Time complexity

The time complexity of MCFS lies in Phase 1 and Phase
2. Phase 1 employs HITON-MB for discovering MBs in
each dataset. Given a single dataset, HITON-MB firstly finds
PC(C). Then it discovers the spouses of C, for which
HITON-MB needs to find the parents and children of each
variable in PC(C). Let maxPC be the largest PC a-
mong those found from K training datasets. In Phase 1,
MCFS requires O(|F ||maxPC|22|maxPC|) conditional in-
dependence tests (or mutual information computations). In
Phase 2, let ∪MB(C) represent the union of MBs of C
found from all datasets, the time complexity of MCFS is
O(2|∪MB(C)|). Therefore, the overall time complexity of
MCFS is O(2max(|∪MB(C)|,|maxPC|)).

VI. EXPERIMENTS

The goals of our experiments include: (1) evaluating the
performance of the proposed MCFS algorithm, in comparison
with existing MB discovery methods and other algorithms.
We extensively evaluated our method through a series of
experiments with synthetic and real world datasets (Sections
VI-A and VI-B); (2) Validating the lower and upper bounds
of the invariant set proposed in Section IV-B along with
Theorems 6 and 7 using synthetic data (Section VI-A).

As there are no algorithms specifically developed for causal
feature selection with multiple datasets for the experiments,
we employ three representative causal feature selection meth-
ods, HITON-MB [2], IAMB [28], and STMB [9], two well-
known mutual information based feature selection methods,
FCBF [32] and mRMR [21], and the ICP algorithm [22].

Except for ICP, which is designed for finding causes from
multiple datasets, the other five algorithms are designed for
feature selection from a single dataset, so we apply these
five algorithms to multiple datasets (for comparing with our
proposed algorithm) in three different ways:
• Use individual feature sets. We first use an algorithm to

select features from each training dataset, then use the set
of selected features to train a classifier with the dataset.

• Use the intersection. We first select features from each
training dataset, then train a classifier with the dataset
using the intersection of the feature sets obtained from
individual datasets.

• Use the union. We first select features from each training
dataset, then train a classifier using the union of the
feature sets selected from individual datasets.

With all the three approaches, for a test sample, we combine
the prediction results by the trained classifiers via majority
voting. Together with ICP, the three experiment configurations
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TABLE I
SUMMARY OF COMPARED METHODS IN OUR EXPERIMENTS

ID Method Output

1 ICP Parents (direct causes) of C discovered
from multiple training datasets

2 HITON-MB MB of C found from a training dataset
3 IAMB MB of C found from a training dataset
4 STMB MB of C found from a training dataset

5 mRMR Features selected by mRMR from
a training dataset

6 FCBF Features selected by FCBF from
a training dataset

7 ∪HITON-MB Union of the MB of C found from
each training dataset by HITON-MB

8 ∩HITON-MB Intersection of the MB of C found from
each training dataset by HITON-MB

9 ∪IAMB Union of the MB of C found from
each training dataset by IAMB

10 ∩IAMB Intersection of the MB of C found
from each training dataset by IAMB

11 ∪STMB Union of the MB of C found from
each training dataset by STMB

12 ∩STMB Intersection of the MB of C found from
each training dataset by STMB

13 ∪mRMR Union of the features selected by
mRMR from each training dataset

14 ∩mRMR Intersection of the features selected by
mRMR from each training dataset

15 ∪FCBF Union of the features selected by
FCBF from each training dataset

16 ∩FCBF Intersection of the features selected by
FCBF from each training dataset

of applying the five rival algorithms give us 16 different
methods for comparison as summarized in Table I.

To evaluate the performance of the feature selection meth-
ods listed in Table I for classification, we use three types of
classifiers, NB (Naive Bayes), KNN (K-Nearest Neighbor),
and SVM (Support Vector Machine). In all tables in this sec-
tion about experiment results, the best results are highlighted
in bold-face, and A±B denotes that A is the average accuracy
and B is the standard deviation.

A. Experiments on synthetic data

Given a benchmark Bayesian network, we are able to read
the MB of each variable in the network. Therefore, we can
choose the variables in the MB of a target variable to intervene
on their values as described in Section III to generate training
and testing datasets and make the training and testing datasets
not identically distributed. Then we apply our MCFS and
the other competing methods listed in Table I to the training
datasets to select features and evaluate the performance of the
classifiers trained using the selected features by each method.
As mentioned earlier, the experiments in this section with
the synthetic data are for evaluating the performance of M-
CFS in classification (presented in Sections VI-A-1)(1A) and
2)(2A)), and for validating the bounds proposed in Theorems 6
and 7 (presented in Sections VI-A-1)(1B), 1)(1C), 2)(2B), and
2)(2C))).

We generate the training and testing datasets using a
benchmark Bayesian network, the 37-variable ALARM (A
Logical Alarm Reduction Mechanism) network [4]2, as shown

2Refer to www.bnlearn.com/bnrepository for the details of the network.
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Fig. 2. The ALARM Bayesian network

TABLE II
SYNTHETIC DATASETS USED IN THE EXPERIMENTS

Experiments Number of
training datasets

Number of
testing datasets

Number of
samples in
a dataset

E5-500 5 1 500
E5-2000 5 1 2000
E10-500 10 1 500
E10-2000 10 1 2000

in Figure 2. Two groups of datasets are generated by choosing
the variables “HR” and ”VTUB” respectively (the green nodes
in Figure 2) as the class attributes. The two variables have the
largest sizes of MBs among all variables in the network. When
generating an intervention dataset from the ALARM network,
we randomly choose the variables in the MB of ”HR” (or
”VTUB) to intervene on them.

As summarized in Table II, with each of the two chosen
class attributes, we conduct two sets of experiments, E5 with
5 training datasets and 1 testing dataset; and E10 with 10
training datasets and 1 testing dataset. Furthermore, for E5
and E10 respectively, we conduct two experiments, one where
each dataset contains 500 samples and another one where each
dataset contains 2000 samples. That is, for each of the two
chosen class attributes, we conduct 4 experiments in total,
E5-500, E5-2000, E10-500 and E10-2000. Each experiment
is carried out for 5 runs, and for each experiment we compute
and report the average prediction accuracy (i.e. the ratio of
the number of correct predictions and total number of testing
samples).

In the experiments, the significance level α for conditional
independence tests for HITON-MB, IAMB, STMB, and M-
CFS is set to 0.01, while the threshold for FCBF is set to
0.01. Since the MBs of “HR” and “VTUB” are known in the
network, the user-defined parameter k of mRMR is set to the
size of the MB of “HR” and “VTUB”, respectively.

1) Experiment results on “HR”: “HR” has the largest MB
among all variables in the network and it has three distinct
class labels (multiple classes). Its MB includes one parents,
four children, and three spouses.

(1A) Performance of MCFS vs. its rivals. In this part, we
compare MCFS with the first six methods shown in Table I in
terms of their prediction accuracy using the features selected
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TABLE III
PREDICTION ACCURACY OF MCFS AGAINST ITS RIVALS WHEN “HR” IS THE TARGET (IN THE TABLE, (X)* DENOTES THAT AN ALGORITHM SUCCEEDED

BY RETURNING A NON-EMPTY FEATURE SET FOR X TIMES OUT OF THE FULL 5 RUNS)

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500
NB 0.8486±0.0879 0.8420±0.0673 0.8324±0.1090 0.8164±0.0999 0.8668±0.0527 0.9133±0.011(3)* 0.9200±0.0265
KNN 0.6864±0.2708 0.7028±0.2422 0.6980±0.2924 0.8064±0.0512 0.7836±0.1340 0.9133±0.011(3)* 0.9276±0.0352
SVM 0.7804±0.0585 0.7628±0.0599 0.7780±0.0607 0.7716±0.0596 0.8048±0.0987 0.9093±0.0127(3)* 0.9112±0.0206

E5-2000
NB 0.8583±0.1022 0.8520±0.1032 0.8583±0.1008 0.8446±0.0888 0.8647±0.1041 0.7675±0(1)* 0.9172±0.0315
KNN 0.7134±0.1448 0.6879±0.1400 0.6960±0.1733 0.7771±0.0933 0.8106±0.1211 0.7675±0(1)* 0.9346±0.0414
SVM 0.7706±0.1091 0.7793±0.1070 0.7753±0.1089 0.8155±0.1183 0.8057±0.1350 0.7675±0(1)* 0.9322±0.0396

E10-500
NB 0.8916±0.0325 0.8864±0.0439 0.8732±0.0487 0.8684±0.0566 0.8796±0.0537 0.8880±0.0113(2)* 0.9168±0.0386
KNN 0.8520±0.1029 0.8332±0.1237 0.8288±0.1492 0.8460±0.0578 0.8744±0.0405 0.8880±0.0113(2)* 0.9244±0.0447
SVM 0.7553±0.1762 0.7477±0.1959 0.7519±0.1773 0.7746±0.1443 0.7562±0.1568 0.8922±0.0032(2)* 0.9498±0.0183

E10-2000
NB 0.8452±0.0682 0.8457±0.0672 0.8488±0.0651 0.8494±0.0592 0.8552±0.0595 0±0(0)* 0.9158±0.0349
KNN 0.8559±0.1078 0.8504±0.1215 0.8588±0.1036 0.8387±0.0511 0.8221±0.0783 0±0(0)* 0.9284±0.0380
SVM 0.7069±0.1616 0.7244±0.1811 0.7210±0.1801 0.8375±0.0700 0.8229±0.1262 0±0(0)* 0.9403±0.0342

TABLE IV
PREDICTION ACCURACY OF MCFS AGAINST THE INTERSECTIONS OF FEATURES SELECTED BY ITS RIVALS WHEN “HR” IS THE TARGET (IN THE TABLE,

(X)* DENOTES THAT AN ALGORITHM SUCCEEDED BY RETURNING A NON-EMPTY FEATURE SET FOR X TIMES OUT OF THE FULL 5 RUNS)

Experiments ∩HITON-MB ∩IAMB ∩STMB ∩mRMR ∩FCBF TrueParent MCFS

E5-500
NB 0.9133±0.0100(3)* 0±0(0)* 0.9133±0.0100(3)* 0.8940±0.0313 0.9116±0.0132 0.9088±0.0100 0.9200±0.0265
KNN 0.9133±0.0100(3)* 0±0(0)* 0.9133±0.0100(3)* 0.8988±0.0198 0.9092±0.0110 0.9088±0.0100 0.9276±0.0352
SVM 0.9093±0.0127(3)* 0±0(0)* 0.9093±0.0127(3)* 0.9012±0.0134 0.9044±0.0144 0.9040±0.0123 0.9112±0.0206

E5-2000
NB 0.8498±0.1030 0.8513±0.0727(3)* 0.8498±0.1030 0.8430±0.0911 0.8498±0.1030 0.8955±0.0071 0.9172±0.0315
KNN 0.8514±0.0994 0.8513±0.0727(3)* 0.8461±0.1112 0.8191±0.0897 0.7825±0.1638 0.8955±0.0071 0.9346±0.0414
SVM 0.8665±0.0658 0.8513±0.0727(3)* 0.8665±0.0658 0.8413±0.1004 0.8437±0.1019 0.8955±0.0071 0.9322±0.0396

E10-500
NB 0.8884±0.0114 0.8850±0.0156(2)* 0.8864±0.0119 0.8704±0.0482 0.8940±0.0248 0.8864±0.0119 0.9168±0.0386
KNN 0.8864±0.0119 0.8813±0.0127(2)* 0.8864±0.0119 0.8564±0.0564 0.8936±0.0240 0.8864±0.0119 0.9244±0.0447
SVM 0.8669±0.0664 0.8962±0.0354(2)* 0.8658±0.0657 0.7947±0.1592 0.8337±0.1142 0.8864±0.0119 0.9498±0.0183

E10-2000
NB 0.9043±0.0059(3)* 0.8975±0(1)* 0.9015±0.0071(4)* 0.8478±0.0598 0.8587±0.0673 0.9008±0.0064 0.9158±0.0349
KNN 0.9042±0.0058(3)* 0.8975±0(1)* 0.9015±0.0071(4)* 0.8352±0.0719 0.8794±0.0488 0.9008±0.0064 0.9284±0.0380
SVM 0.9042±0.0058(3)* 0.8935±0(1)* 0.9013±0.0068(4)* 0.8521±0.0904 0.8536±0.1144 0.9008±0.0064 0.9403±0.0342

TABLE V
PREDICTION ACCURACY OF MCFS AGAINST UNIONS OF FEATURES SELECTED ITS RIVALS ON “HR”

Experiments ∪HITON-MB ∪IAMB ∪STMB ∪mRMR ∪FCBF TrueMB MCFS

E5-500
NB 0.8056±0.1251 0.8064±0.1257 0.8048±0.1245 0.7752±0.1073 0.8304±0.0920 0.8056±0.1251 0.9200±0.0265
KNN 0.7432±0.1231 0.7812±0.1371 0.7404±0.1174 0.6728±0.0740 0.7784±0.0775 0.7876±0.1391 0.9276±0.0352
SVM 0.7692±0.0407 0.7528±0.0530 0.7644±0.0492 0.7216±0.0052 0.7576±0.0557 0.8008±0.0772 0.9112±0.006

E5-2000
NB 0.8455±0.0978 0.8401±0.0960 0.8441±0.0960 0.8113±0.0859 0.8546±0.0999 0.8444±0.0975 0.9172±0.0315
KNN 0.7920±0.0929 0.7614±0.1096 0.7860±0.0863 0.7479±0.1273 0.8051±0.1154 0.7811±0.0986 0.9346±0.0414
SVM 0.7850±0.1444 0.7847±0.1333 0.7750±0.1381 0.7926±0.1052 0.8061±0.1381 0.7854±0.1445 0.9322±0.0396

E10-500
NB 0.8892±0.0425 0.8684±0.0483 0.8660±0.0479 0.8400±0.0803 0.8748±0.0466 0.8776±0.0468 0.9168±0.0386
KNN 0.8488±0.1009 0.8664±0.0924 0.8076±0.1000 0.7544±0.1054 0.7948±0.0867 0.8600±0.0801 0.9244±0.0447
SVM 0.7577±0.1686 0.7548±0.1728 0.7432±0.1755 0.7724±0.1302 0.7674±0.1523 0.8052±0.1301 0.9498±0.0183

E10-2000
NB 0.8276±0.0710 0.8317±0.0772 0.8348±0.0767 0.8273±0.0661 0.8293±0.0804 0.8311±0.0765 0.9158±0.0349
KNN 0.8593±0.0913 0.8592±0.0934 0.8430±0.0881 0.8106±0.0478 0.8348±0.0623 0.8581±0.0922 0.9284±0.0380
SVM 0.7045±0.1166 0.7130±0.1332 0.7293±0.0588 0.7851±0.0258 0.8409±0.0621 0.7165±0.0954 0.9403±0.0342

by them (Table III), the number of features selected from the
true MB of ”HR”, and their running time (Table VI).

Table III shows that in all cases, MCFS is significantly better
than all its rivals, including ICP, HITON-MB, IAMB, STMB,
mRMR and FCBF, when those rivals only simply select
features from each dataset and train a classifier individually.
Note that for a feature selection algorithm, if it returns an
empty set on a multiple dataset, we consider that the algorithm
fails on the dataset and the corresponding prediction accuracy
is 0.

In Experiment E5-500 (with 5 training datasets and 500
samples in each dataset), ICP returns a non-empty feature set
in three out of five runs (see Table III). The only feature
selected by ICP in each of the three runs is “CCHL”, i.e.
the parent of “HR”. When the number of data samples of
each training dataset is set to 2000, the only successful run of
ICP returns two features, the parent and one child of “HR”.
In Experiment E10-500 (with 10 training datasets and 500

samples each), ICP succeeds in two out of the five runs, and
returns the parent of “HR” in one run and the parent and
one child of “HR” in the other run. In Experiment E10-2000,
ICP fails in all five runs without returning any features. Our
observation shows that ICP does not necessarily guarantee to
find the parents of a given target from multiple datasets.

From Table III, the performance of HITON-MB, IAMB,
STMB, mRMR, and FCBF seems to be competitive over-
all, but our algorithm MCFS still achieves higher predic-
tion accuracy in all experiments. Using the KNN and SVM
classifiers, when the number of datasets is set to 5, mRMR
and FCBF achieve higher prediction accuracy than HITON-
MB, IAMB, and STMB. On computational efficiency, from
Table VI, ICP spends much more time than all the other
algorithms. Compared to HITON-MB, IAMB, STMB, mRMR,
and FCBF, MCFS has a reasonable running time and selects
fewer features than these five algorithms.

In summary, from Table III, the proposed MCFS algorithm
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TABLE VI
RUNNING TIME (IN SECONDS) AND NUMBER OF SELECTED FEATURES ON “HR”

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500 Running time 1.34±0.9 0.72±0.3 1.8±0.4 0.24±0.05 0.06±0.01 6±0 4.2±0.4
Number of selected features 4.2±0.4 3±0 5±0 8±0 4.6±0.5 1±0(3)* 3±1

E5-2000 Running time 2.6±0.9 1.8±0.4 4±0.7 0.32±0.04 0.18±0.04 26±13 5.8±1.6
Number of selected features 4.8±1.3 4.2±0.4 5.4±1.5 8±0 3.2±0.4 2±0(1)* 3.6±2.4

E10-500 Running time 2.6±0.8 1±0 3.8±0.8 0.3±0 0.2±0 18±5 9±1.7
Number of selected features 4.6±0.9 3±0 5.4±1.5 8±0 4.6±0.5 1.5±0.7(2) 3±2

E10-2000 Running time 4.2±1 2.6±0.5 6.4±2.2 0.6±0 0.3±0 23.4±12 12.4±5
Number of selected features 4.6±1.1 4.2±0.8 5.2±1.5 8±0 3±0.7 0±0 2±1.4

TABLE VII
PREDICTION ACCURACY OF MCFS AGAINST ITS RIVALS ON ‘VTUB” (IN THE TABLE, (X)* DENOTES THAT AN ALGORITHM SUCCEEDED BY RETURNING

A NON-EMPTY FEATURE SET FOR X TIMES OUT OF THE FULL 5 RUNS)

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500
NB 0.8440±0.0699 0.8164±0.1756 0.8088±0.1555 0.7484±0.1511 0.9200±0.0642 0±0(0)* 0.9824±0.0103
KNN 0.8556±0.1104 0.8432±0.1761 0.8636±0.1653 0.8388±0.0840 0.8824±0.0944 0±0(0)* 0.9812±0.0101
SVM 0.7872±0.1625 0.7272±0.2116 0.6280±0.3027 0.6016±0.3995 0.5856±0.4221 0±0(0)* 0.8232±0.2339

E5-2000
NB 0.9184±0.0424 0.9165±0.0425 0.9235±0.0480 0.5795±0.3972 0.9258±0.0406 0±0(0)* 0.9711±0.0018
KNN 0.8296±0.1698 0.8678±0.1012 0.8230±0.1281 0.7814±0.1733 0.8987±0.0922 0±0(0)* 0.9715±0.0024
SVM 0.5056±0.3124 0.5090±0.3773 0.5051±0.3116 0.5010±0.3635 0.5063±0.3822 0±0(0)* 0.7444±0.2963

E10-500
NB 0.9072±0.0426 0.8324±0.1711 0.8620±0.1175 0.8700±0.0578 0.9036±0.0588 0±0(0)* 0.9752±0.0033
KNN 0.8896±0.0633 0.8436±0.1686 0.9012±0.0816 0.7864±0.1527 0.8356±0.0899 0±0(0)* 0.9752±0.0033
SVM 0.4852±0.2578 0.4976±0.2435 0.4924±0.2422 0.4776±0.2533 0.4544±0.2350 0±0(0)* 0.7040±0.3437

E10-2000
NB 0.8702±0.1028 0.9067±0.0695 0.8733±0.0948 0.8851±0.0848 0.9105±0.0713 0±0(0)* 0.9685±0.0034
KNN 0.9043±0.0857 0.8775±0.1442 0.8906±0.0872 0.8765±0.0771 0.9449±0.0427 0±0(0)* 0.9685±0.0034
SVM 0.5308±0.1451 0.4720±0.2216 0.6302±0.2492 0.6966±0.0985 0.5399±0.2845 0±0(0)* 0.8338±0.1294

TABLE VIII
PREDICTION ACCURACY OF MCFS AGAINST INTERSECTIONS OF FEATURES SELECTED ITS RIVALS ON ‘VTUB” (IN THE TABLE, (X)* DENOTES THAT AN

ALGORITHM SUCCEEDED BY RETURNING A NON-EMPTY FEATURE SET FOR X TIMES OUT OF THE FULL 5 RUNS)

Experiments ∩HITON-MB ∩IAMB ∩STMB ∩mRMR ∩FCBF TureParent MCFS

E5-500
NB 0.9100±0.0122(3)* 0.904±0(1)* 0.9160±0.0025(3)* 0.9028±0.1241 0.9220±0.1312 0.9808±0.0103 0.9824±0.0103
KNN 0.8720±0.0537(3)* 0.6904±0(1)* 0.9160±0.0025(3)* 0.9020±0.1213 0.9216±0.1287 0.9808±0.0103 0.9812±0.0101
SVM 0.7853±0.2298(3)* 0.5200±0(1)* 0.7913±0.2350(3)* 0.6588±0.3693 0.6276±0.3787 0.5276±0.4606 0.8232±0.2339

E5-2000
NB 0.8324±0.2537 0.8101±0.2877(4)* 0.9295±0.0697 0.7467±0.3785 0.8907±0.0904 0.9711±0.0018 0.9711±0.0018
KNN 0.8697±0.1692 0.8611±0.1863(4)* 0.8940±0.1475 0.9093±0.0641 0.8451±0.1327 0.9711±0.0018 0.9715±0.0024
SVM 0.5376±0.3468 0.4756±0.3375(4)* 0.5142±0.3871 0.4988±0.3734 0.5123±0.3836 0.4797±0.4407 0.7444±0.2963

E10-500
NB 0.4740±0.6265(2)* 0±0(0)* 0.5620±0.5006(2)* 0.8608±0.1887 0.9452±0.0577 0.9724±0.0038 0.9752±0.0033
KNN 0.4740±0.6265(2)* 0±0(0)* 0.5620±0.5006(2)* 0.8704±0.1938 0.9612±0.0266 0.9752±0.0033 0.9752±0.0033
SVM 0.6120±0.4299(2)* 0±0(0)* 0.4773±0.3832(2)* 0.5292±0.2827 0.6248±0.2973 0.6960±0.3544 0.7040±0.3437

E10-2000
NB 0.8266±0.1809 0.6681±0.3688(4)* 0.9623±0.0163 0.9582±0.0188 0.9570±0.0214 0.9685±0.0034 0.9685±0.0034
KNN 0.8253±0.1824 0.6643±0.3652(4)* 0.9533±0.0210 0.8860±0.1185 0.9348±0.0771 0.9685±0.0034 0.9685±0.0034
SVM 0.4484±0.3063 0.4495±0.3665(4)* 0.4571±0.3127 0.4665±0.2521 0.4769±0.2613 0.4665±0.3152 0.8338±0.1294

is able to deal with the situation better than the other six
algorithms where the training and testing datasets are not
identically distributed.

(1B) Performance of MCFS, methods using intersections
of feature sets, and the true parents of “HR”. In Section IV,
Theorems 6 and 7 state that the set of all parents of the
class attribute is the minimal and invariance subset across
multiple interventional datasets when the class attribute is not
manipulated. From the ALARM network, we can read the
parents of “HR”. Thus, in this part, we compare the prediction
accuracy of the true parent of “HR”, the set of features selected
by MCFS, and the intersection of the sets selected by each
other five algorithms on each training dataset, i.e. methods
∩HITON-MB, ∩IAMB, ∩STMB, ∩mRMR, and ∩FCBF.

In Table IV, “TrueParent” denotes the ground-truth parents
of “HR” in the ALARM network, that is, “CCHL”. We
use the ground-truth parent of “HR” to train a classifier on
each training dataset, and use majority voting to combine the
prediction results on testing data attained.

From Table IV, we can see that MCFS achieves higher
prediction accuracy than the other five methods using the inter-

sections of selected feature sets (i.e. ∩HITON-MB, ∩IAMB,
∩STMB, ∩mRMR, and ∩FCBF), and MCFS achieves similar
prediction accuracy as that using the true parent as the feature.
For ∩HITON-MB, ∩IAMB, ∩STMB, ∩mRMR, and ∩FCBF,
only the intersections of features selected by mRMR and
FCBF from each training dataset are not empty. When the
number of data samples is 2000, we can see that the prediction
accuracy of the true parent of “HR” is much higher than that
of ∩mRMR and ∩FCBF. When the number of data samples
is 500, the prediction accuracy of the true parent of “HR” is
higher than ∩mRMR and is very competitive with ∩FCBF.
When ∩HITON-MB, ∩IAMB, or ∩STMB outputs a non-
empty feature set, the performance of ∩HITON-MB, ∩IAMB,
and ∩STMB is not inferior to HITON-MB, IAMB, and STMB
in Table III.

By comparing Table III with Table IV, we can see that using
the intersections of features selected from multiple datasets
by mRMR and FCBF (i.e. ∩mRMR and ∩FCBF) gets higher
prediction accuracy than using features selected by mRMR
and FCBF. Moreover, in the experiments, we observe that the
parent of “HR” is included in the output of all of ∩HITON-
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TABLE IX
PREDICTION ACCURACY OF MCFS AGAINST UNIONS OF FEATURES SELECTED ITS RIVALS ON ‘VTUB”

Experiments ∪HITON-MB ∪IAMB ∪STMB ∪mRMR ∪FCBF TureMB MCFS

E5-500
NB 0.8448±0.0771 0.8448±0.0771 0.8520±0.0771 0.6792±0.1959 0.7912±0.1444 0.8440±0.0875 0.9824±0.0103
KNN 0.8580±0.0979 0.8664±0.0891 0.8848±0.0741 0.7396±0.1747 0.8400±0.0730 0.8784±0.0875 0.9812±0.0101
SVM 0.4769±0.2613 0.6552±0.3235 0.5976±0.3987 0.6920±0.3325 0.7268±0.3395 0.5172±0.4218 0.8232±0.2339

E5-2000
NB 0.9064±0.0766 0.7445±0.3388 0.8901±0.0911 0.5377±0.3961 0.7718±0.2792 0.9064±0.0766 0.9711±0.0018
KNN 0.7941±0.1503 0.7320±0.1911 0.7190±0.2061 0.6689±0.2331 0.8836±0.0898 0.7941±0.1503 0.9715±0.0024
SVM 0.4591±0.3096 0.5190±0.3059 0.5469±0.2885 0.5180±0.3804 0.5048±0.3833 0.4592±0.3098 0.7444±0.2963

E10-500
NB 0.8480±0.0887 0.8360±0.1267 0.8896±0.0630 0.6896±0.1467 0.8204±0.0505 0.8864±0.0706 0.9752±0.0033
KNN 0.6976±0.2978 0.7612±0.1680 0.6424±0.3122 0.5864±0.1852 0.6148±0.2744 0.7308±0.2333 0.9752±0.0033
SVM 0.4180±0.2337 0.4808±0.2964 0.4444±0.1849 0.4220±0.2438 0.4120±0.2704 0.4492±0.2460 0.7040±0.3437

E10-2000
NB 0.8887±0.0908 0.8978±0.0750 0.7716±0.2381 0.7482±0.2996 0.9004±0.0944 0.8887±0.0908 0.9685±0.0034
KNN 0.8789±0.0865 0.8005±0.1093 0.6824±0.1380 0.6113±0.1946 0.9189±0.0535 0.8789±0.0865 0.9685±0.0034
SVM 0.6030±0.2126 0.5620±0.1780 0.5948±0.1824 0.5746±0.1258 0.6163±0.2132 0.6021±0.2115 0.8338±0.1294

TABLE X
RUNNING TIME (IN SECONDS) AND NUMBER OF SELECTED FEATURES ON ‘VTUB”

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500 Running time 2±0 0.36±0.05 2±0 0.1±0 0.08±0.01 24±15 2.8±1.3
Number of selected features 4.2±0.8 2.4±0.5 5±1.4 6±0 5±0 0±0 4±0.7

E5-2000 Running time 3±0.7 1±0 3.4±0.5 0.2±0 0.1±0 89.4±38 3.6±0.5
Number of selected features 4.8±0.4 4±0 6.4±1.1 6±0 3.6±0.5 0±0 2.8±0.8

E10-500 Running time 2.6±0.5 1±0 3.2±0.4 0.2±0 0.2±0 53.4±17 5.8±1.9
Number of selected features 3.6±0.5 2.2±0.4 4.4±0.5 6±0 5.4±0.5 0±0 3±1

E10-2000 Running time 4.4±0.9 2±0 5.6±0.5 0.4±0 0.2±0 254±78 5.6±1.4
Number of selected features 4.4±0.8 4±0 5.4±1.5 6±0 3±0 0±0 3±0.7

TABLE XI
IMPACT OF α ON PREDICTION ACCURACY OF HITON-MB, IAMB, STMB, AND MCFS

Prediction accuracy (A/B) on “HR” using α=0.01 (A) or α=0.05 (B)

Experiments E5-500/E5-2000 E10-500/E10-2000
HITON-MB IAMB STMB MCFS HITON-MB IAMB STMB MCFS

500
NB 0.8486/0.8624 0.8420/0.8424 0.8324/0.8324 0.9200/0.9200 0.8916/0.8784 0.8864/0.8868 0.8732/0.8760 0.9168/0.9176
KNN 0.6864/0.7624 0.7028/0.7228 0.6980/0.7852 0.9276/0.9276 0.8520/0.8544 0.8332/0.8288 0.8288/0.8536 0.9244/0.9256
SVM 0.7804/0.7804 0.7628/0.7624 0.7780/0.7892 0.9112/0.9112 0.7553/0.7565 0.7477/0.7473 0.7519/0.7399 0.9498/0.9556

2000
NB 0.8583/0.8583 0.8520/0.8582 0.8583/0.8558 0.9172/0.9172 0.8452/0.8499 0.8457/0.8512 0.8488/0.8481 0.9158/0.9163
KNN 0.7134/0.7139 0.6879/0.7640 0.6960/0.7081 0.9346/0.9346 0.8559/0.8528 0.8504/0.8508 0.8588/0.8519 0.9284/0.9291
SVM 0.7706/0.7706 0.7793/0.7804 0.7753/0.7779 0.9322/0.9343 0.7069/0.7451 0.7244/0.7201 0.7210/0.7516 0.9404/0.9259

Prediction accuracy (A/B) on “‘VentTube” using α=0.01 (A) or α=0.05 (B)

Experiments E5-500/E5-2000 E10-500/E10-2000
HITON-MB IAMB STMB MCFS HITON-MB IAMB STMB MCFS

500
NB 0.8440/0.8428 0.8164/0.8244 0.8088/0.8524 0.9824/0.9824 0.9072/0.9056 0.9685/0.8256 0.8620/0.8816 0.9752/0.9752
KNN 0.8556/0.8712 0.8432/0.8384 0.8636/0.8708 0.9812/0.9812 0.8896/0.8944 0.8436/0.8540 0.9012/0.8832 0.9752/0.9752
SVM 0.7872/0.7678 0.7272/0.7232 0.6280/0.5828 0.8232/0.8232 0.4852/0.5608 0.4976/0.4932 0.4924/0.4784 0.7040/0.7048

2000
NB 0.9184/0.9188 0.9165/0.9165 0.9235/0.8406 0.9711/0.9711 0.8702/0.8697 0.9067/0.9067 0.8733/0.9003 0.9685/0.9685
KNN 0.8296/0.8250 0.8678/0.8581 0.8230/0.7435 0.9715/0.9715 0.9043/0.8994 0.8775/0.8784 0.8906/0.8797 0.9685/0.9685
SVM 0.5056/0.5099 0.5090/0.5090 0.5051/0.4895 0.7444/0.7444 0.5308/0.5209 0.4720/0.4941 0.6302/0.5821 0.8338/0.8338

MB, ∩IAMB, ∩STMB, ∩mRMR, and ∩FCBF. Especially,
when the output of ∩HITON-MB, ∩IAMB, or ∩STMB is
not empty, it only includes the parent of “HR”. In summary,
Table IV illustrates that the different methods achieve similar
prediction performance when they all use the parent set,
indicating that the parent set is the invariant set.

(1C) Performance of MCFS, methods using unions of
feature sets, and the true MB of “HR”. According to
Theorem 8, when the feature interverion conforms to the
conservative rule, the union of feature sets selected by each
MB discovery algorithm from all training datasets equals to
the true MB. Thus, to validate Theorems 8, we compare
the prediction accuracy of using the true MB of “HR”, the
features outputed by MCFS, ∪HITON-MB, ∪IAMB, ∪STMB,
∪mRMR, and ∪FCBF.

From Table V, firstly, we can see that MCFS is significantly
better than the true MB and the other five methods. This
indicates that with multiple interventional datasets, the true
MB of the class attribute may not be optimal for feature

selection. Secondly, referring to Table IV, using the true parent
of “HR” gets significantly better prediction accuracy than
using the true MB of “HR”. Thus, with multiple interventional
datasets, when we do not know which features are intervened,
the parents of the class attribute may be a more reliable subset
for prediction. Thirdly, ∪HITON-MB, ∪IAMB, and ∪STMB
achieves an accuracy very close to that of the true MB of
“HR”. This further validates Theorem 8, which demonstrates
that when the feature interventions is conservative, the union
of the MB of the class attribute discovered from each inter-
ventional dataset equals to the true MB of the class attribute.
∪mRMR achieves the worst result as shown in Table V.
The explanation is that it is hard to select the user-defined
parameter k for mRMR to select the features to achieve
desirable prediction accuracy.

2) Results on “VTUB”: “VTUB” has the second largest
MB among all features in the ALARM network and has four
distinct class labels (multiple classes). Its MB consists of two
parents, two children and two spouses.
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(2A) Performance of MCFS vs. its rivals. From Table VII,
we can see that MCFS is significantly better than the other
six algorithms. For ICP, it returns an empty set on all five
runs in all cases. Thus, this illustrates that the idea of ICP for
finding parents of a given target from multiple datasets does
not always work well. Meanwhile, using NB and KNN, FCBF
achieves higher prediction accuracy than HITON-MB, IAMB,
STMB, and mRMR. Compared to Tables III, Tables VII
illustrates that FCBF also achieves satisfactory results. On
computational efficiency, from Table X, ICP is still the slowest
one among the seven algorithms, although ICP uses the lasso
method as a preprocess step. FCBF is faster than the other
six algorithms. Compared to HITON-MB, IAMB, STMB,
mRMR, and FCBF, MCFS has a reasonable running time and
selects fewer features than these five algorithms. In summary,
Tables VII and X shows that MCFS is better than the other
six algorithms to deal with multiple interventional datasets.

(2B) Performance of MCFS, methods using intersections
of feature sets, and the true parents of “VTUB”. Table VIII
illustrates that MCFS achieves highest prediction accuracy
among the other six methods. Meanwhile, the se of true parents
of “VTUB” achieves the same prediction accuracy as MCFS
in 4 out of 8 cases, while in the other 4 cases, the prediction
accuracy of the true parents of “VTUB” is almost the same
as that of MCFS. However, it is a difficult problem to find
the parents of a given target in data. For example, ICP is
customized to discover parents of a given target from multiple
interventional datasets, but Tables III and VII illustrate that
ICP always fails.

Table VIII shows that only ∩mRMR and ∩FCBF output a
non-empty set over five runs. When the number of training
datasets is 10, we can see that the intersections of features
selected by FCBF achieve satisfactory prediction accuracy
no matter for using NB or KNN. Compared to Table VII,
Table VIII demonstrates that ∩mRMR and ∩FCBF get higher
prediction accuracy than mRMR and FCBF. This further
confirms that the set of parents of the class attribute is reliable
for prediction with multiple interventional datasets.

(2C) Performance of MCFS, methods using unions of
feature sets, and the true MB of “VTUB”. Table IX shows
that the prediction accuracy of MCFS is significantly better
than that of the true MB of “VTUB”. This further confirms that
the true MB of the class attribute in a multiple interventional
dataset may not be optimal for classification. Referring to
Table VIII, the set of true parents of “VTUB” gets significantly
higher accuracy than the set of true MB of “VTUB”. Thus,
with multiple interventional datasets, the parents of the class
attribute may be more reliable than its MB for prediction.

Additionally, we can see that ∪HITON-MB gets very close
accuracy with the true MB of “VTUB”, while ∪mRMR still
gets the worst prediction accuracy in Table IX.

3) Impact of the parameter α: Table XI reports the impact
of the significance level α for conditional independence tests
for HITON-MB, IAMB, STMB, and MCFS. From Table XI,
we can see that α almost has no impact on the performance
of MCFS. Meanwhile, for HITON-MB, IAMB, and STMB,
in most cases, with a different value of α, the prediction
accuracy of HITON-MB, IAMB, and STMB is able to keep

stable, and thus α does not have a significant influence on
these algorithms.

4) Time complexity of the rivals of MCFS: The time
complexity of MCFS, FCBF, mRMR, HITON-MB, IAMB,
and STMB is measured in the number of conditional indepen-
dence tests (or mutual information computations) executed.
Let maxMB(C) and maxPC(C) be the largest PC set
and MB of C respectively, among those found from K
training datasets. For IAMB, the average time complexity
is O(|F ||MB(C)|) and the worst case time complexity is
O(|F |2) with |MB(C)| = |F |. STMB also finds PC(C)
firstly, then discovers spouses. Different from HITON-MB,
STMB finds spouses from F \ PC(C), instead of all parents
and children of variables of PC(C). Then the overall time
complexity of STMB is O(|PC(C)||F \ PC(C)|2|PC(C)|).
However, STMB is not able to deal with datasets with high-
dimensionality and small number of samples. Since the user-
defined parameter k of mRMR is set to the size of MB(C),
mRMR and FCBF need O(|MB(C)|2) pairwise mutual infor-
mation computations, and thus the time complexity of FCBF
and mRMR is not exponential with the size of MB(C).
However, it is hard to select a suitable value of k for mRMR
and FCBF, and they are not specifically designed for MB
discovery.

In summary, we can see that FCBF, and mRMR in general
are faster than HITON-MB, IAMB, and STMB. Comparing
to HITON-MB, IAMB, and STMB, MCFS has competitive
efficiency with synthetic data and when the sizes of the MBs of
variables “VTUB” and “HR” are small, (see Tables VI and X),
although MCFS has an additional step to find the invariant sets.
When the size of the MB of C found by IAMB and STMB is
much larger than that by MCFS, IAMB and STMB are much
slower than MCFS, as shown in Table XVII in next Section
using real-world datasets.

B. Results on real-world data.
In this section, we will study the performance of MCFS with

two real-world datasets. The details of these two datasets and
the corresponding experimental results are reported as follows.

1) Results on the Student dataset: The Student dataset is a
real-world dataset about educational attainment of teenagers
and it was provided in [24]. The original Student dataset
includes records of 4739 pupils from approximately 1100
US high schools and 14 attributes as shown in Table XII.
Following the method in [22], considering variable distance
being the manipulated variable, the original Student dataset is
split into two intervention datasets (for which the distance
variable is intervened): one including 2231 data instances
of all pupils who live closer to a 4-year college than the
median distance of 10 miles, and the other including 2508
data instances of all pupils who live at least 10 miles from the
nearest 4-year college. Then the variable education is selected
as the target variable and we make it into a binary target, that
is, whether a pupil received a BA (Bachelor of Arts) degree or
not. With KNN and NB classifiers, we use MCFS and all the
16 methods listed in Table I to select features from the above
described two intervention datasets for predicting the value of
the target education.
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TABLE XII
VARIABLES IN THE EDUCATIONAL ATTAINMENT DATA SET AND THEIR

MEANINGS

Variable Meaning

education Years of education completed (target variable,
binarized to completed a BA or not in this paper)

gender Student gender, male or female
ethnicity Afam/Hispanic/Other

score Base year composite test score. (These are
achievement tests given to high school seniors in the sample)

fcollege Father is a college graduate or not
mcollege Mother is a colllege graduate or not
home Family owns a house or not
urban School in urban area or not
unemp County unempolyment rate in 1980
wage State hourly wage in manufacturing in 1980
distance Distance to the nearest 4-year college
tuition Avg. state 4-year college tuition in $1000’s
income Family income >$25,000 per year or not
region Student in the western states or other states

Specifically, we select 2000 data instances from the two in-
tervention datasets to construct two training datasets (each with
2000 training instances). The 231 instances and 508 instances
remained from the two intervention datasets respectively are
merged to form 739 data instances as the testing dataset. Then
we use MCFS and its rivals to select features from the two
training datasets. In each of the two training datasets, we train
the NB, KNN, and SVM classifiers using the selected features
and make predictions on the testing dataset. We repeat the
experiment with each method ten times and report the average
prediction accuracy, number of selected features, and running
time in Tables XIII, XIV, and XV, respectively.

With the results in Tables XIII and XIV, to compare
MCFS with its rivals, we conduct t-tests at a 95% confidence
level under the null-hypothesis, which states that whether the
performance of MCFS and that of its rivals have no significant
difference in prediction accuracy.

In Table XIII, when α = 0.01 (i.e. the value of parameter
α (significance level) is set for MCFS, IAMB, HITON-MB,
and STMB), both using NB and KNN, we observe that all
null-hypotheses are rejected, and thus MCFS is significantly
better than all 9 rivals of MCFS on prediction accuracy. For
SVM, using t-tests, except for IAMB, ∪IAMB, and ∪HITON-
MB, we observe that MCFS is significantly better than the 6
remaining rivals. When α = 0.05, using NB, KNN, and SVM,
expect for ∪STMB, all null-hypotheses are also rejected,
then we can state that MCFS is significantly better than all
rivals of MCFS (expect for ∪STMB) on prediction accuracy.
For ∪STMB, using SVM and NB, the two null-hypotheses
are accepted, then MCFS and ∪STMB have no significant
difference on prediction accuracy.

In Table XIV, by conducting t-tests at a 95% confidence
level, on prediction accuracy, we observe that using NB,
MCFS is significantly better than ICP, ∪mRMR, FCBF, and
∩FCBF, while MCFS is not significantly better than mRMR,
∩mRMR, and ∪FCBF. When using KNN, MCFS is signif-
icantly better than all its rivals. When using SVM, except
for mRMR, ∪mRMR, MCFS is significantly better than the
remaining rivals. In summary, we can conclude that no matter
for setting α = 0.01 or α = 0.05 for MCFS, at most
cases, MCFS is significantly better than its rivals on prediction

TABLE XIV
PREDICTION ACCURACY ON STUDENT DATASET (“•” INDICATES THAT

MCFS IS STATISTICALLY BETTER THAN THE COMPARED METHOD)

Algorithm NB KNN SVM
MCFS 0.7669±0.0134 0.7646±0.0150• 0.7683±0.0144
ICP 0.7513±0.0173• 0.7440±0.0163• 0.7520±0.0171•
mRMR 0.7535±0.0153 0.6606±0.0281• 0.7614±0.0171
∪mRMR 0.7444±0.0154• 0.7352±0.0257• 0.7604±0.0158
∩mRMR 0.7610±0.0169 0.6742±0.0602• 0.7586±0.0198
FCBF 0.7450±0.0170• 0.7346±0.0368• 0.7507±0.0108•
∪FCBF 0.7556±0.0159 0.7465±0.0158• 0.7539±0.0163•
∩FCBF 0.7491±0.0187• 0.7396±0.0241• 0.7538±0.0130•

TABLE XV
TIME AND NUMBER OF SELECTED FEATURES ON STUDENT DATASET

Algorithm Time $Features
α=0.01 α=0.05 α=0.01 α=0.05

MCFS 5.9±2.3 10±3.2 3.5±0.8 3.9±1.2
HITON-MB

4.89±2.4 7.6±2.4
4.8±0.6 6±0.4

∪HITON-MB 6.9±1 8.2±1.1
∩HITON-MB 2.3±0.5 3±0.8
IAMB

0.2±0 0.2±0
4.1±0.3 4.6±0.5

∪IAMB 6±0 6.2±0.4
∩IAMB 2±0.4 2.3±0.5
STMB

0.47±0.1 1.1±0.5
4.4±0.7 7±1.1

∪STMB 5.5±0.8 9.5±1.4
∩STMB 2.8±0.6 3.7±1
ICP 349±52 1.7±0.7
mRMR

0.06±0
6±0

∪mRMR 8.1±0.7
∩mRMR 4.1±0.3
FCBF

0.02±0
3.2±1

∪FCBF 3.5±1.6
∩FCBF 2.1±0.7

accuracy. Moreover, from Tables XIII and XIV, we can see
that the feature subset selected by MCFS achieves more stable
prediction accuracy than those of its rivals on NB, KNN, and
SVM.

For computational efficiency, compared to IAMB, STMB,
and HITON-MB, the running time of MCFS is reasonable, and
MCFS is almost 70 times faster than ICP. mRMR and FCBF
are the fastest algorithms. As about the correctly selected
features, MCFS and its rivals are all competitive.

Over the ten runs, the features most frequently selected by
MCFS include score and mcollege while ICP selects fcollege.
As we have not the ground truth of the parents and the MB
of variable education in this real-world dataset, we use the
MMHC (Max-Min Hill Climbing) algorithm [29], a well-
known algorithm for learning a Bayesian network structure
from the original Student dataset. Figure 3 gives the local
Bayesian network structure around the target education. Using
the parents and the MB of education in Figure 3, over the ten
runs, the average accuracies of the trained NB, KNN, and
SVM classifiers are 0.7419, 0.7532, and 0.7574, respectively.

2) Gene expression datasets: In this section, we use three
microarray gene expression datasets, Harvard, Michigan, and
Stanford, which come from three laboratories studying lung
cancer [3], [5]. They have been obtained from different patient
samples and from different experimental environments. The
three datasets were preprocessed by removing duplicated genes
and genes with missing values in the datasets, resulting in three
datasets each containing common 1962 genes (features) and
the following listed numbers of instances respectively [14]:
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TABLE XIII
PREDICTION ACCURACY ON STUDENT DATASET (“•” INDICATES THAT MCFS IS STATISTICALLY BETTER THAN THE COMPARED METHOD)

Algorithm NB KNN SVM
α=0.01 α=0.05 α=0.01 α=0.05 α=0.01 α=0.05

MCFS 0.7669±0.0134 0.7698±0.0160 0.7646±0.0150 0.7671±0.0187 0.7683±0.0144 0.7707±0.0157
HITON-MB 0.7403±0.0177• 0.7432±0.0170• 0.7353±0.0146• 0.7315±0.0161• 0.7558±0.0166• 0.7571±0.0174•
∪HITON-MB 0.7468±0.0133• 0.7479±0.0122• 0.7227±0.0310• 0.7288±0.0269• 0.7583±0.0138 0.7572±0.0146•
∩HITON-MB 0.7463±0.0201• 0.7422±0.0216• 0.7440±0.1830• 0.7423±0.0213• 0.7511±0.0156• 0.7531±0.0166•
IAMB 0.7475±0.0147• 0.7498±0.0119• 0.7486±0.0128• 0.7440±0.0152• 0.7580±0.0156 0.7587±0.0151•
∪IAMB 0.7483±0.0121• 0.7482±0.0120• 0.7406±0.0154• 0.7369±0.0174• 0.7595±0.0145 0.7591±0.0145•
∩IAMB 0.7477±0.0204• 0.7468±0.0146• 0.7433±0.0183• 0.7457±0.0136• 0.7528±0.0149• 0.7510±0.0154•
STMB 0.7491±0.0168• 0.7461±0.0188• 0.7446±0.0151• 0.7269±0.0189• 0.7564±0.0153• 0.7593±0.0146•
∪STMB 0.7430±0.0126• 0.7683±0.0652 0.7437±0.0281• 0.7217±0.0170• 0.7562±0.0152• 0.7607±0.0172
∩STMB 0.7495±0.0210• 0.7509±0.0150• 0.7458±0.0211• 0.7494±0.0181• 0.7549±0.0173• 0.7557±0.0153•

income

score

mcollege

education

fcollege

ethnicity

region

wage tuition

Fig. 3. A local causal structure around education learned from the original
educational attainment dataset

TABLE XVI
SUMMARY OF THE MULTIPLE DATASETS IN THE THREE EXPERIMENTS

Experiment Training data Testing data
1 Harvard and Stanford Michigan
2 Michigan and Stanford Harvard
3 Michigan and Harvard Stanford

• Harvard: 156 instances, including 139 tumor and 17
normal samples.

• Stanford: 46 instances, including 41 tumor and 5 normal
samples.

• Michigan: 96 instances, including 86 tumor and 10 nor-
mal samples.

Since the three datasets are class-imbalanced, we use AUC
to evaluate MCFS and its rivals instead of prediction accuracy.
We conduct three experiments corresponding to the three
different settings of multiple datasets as shown in Table XVI.
In each of the three experiments, the AUC of MCFS is
compared with the AUCs obtained by all the methods listed in
Table I, except for ∩HITON-MB,∩IAMB, ∩STMB, ∩mRMR,
and ∩FCBF, as their outputs are empty.

Experiment 1. In this experiment, we have the Harvard and
Stanford datasets for training while using the Michigan dataset
for testing, and the results are reported in Figures 4 to 6. From
these three figures (using NB, KNN, and SVM respectively),
we can observe that except for ICP, the remaining 10 rivals
are significantly worse than MCFS on the AUC metric. Using
KNN and SVM, the values of AUC of both MCFS and ICP
are up to 1 while the AUC of ∪IAMB is only 0.5 (or 0.55)
using NB and SVM (or KNN).

Experiment 2. In this experiment, the Michigan and Stan-
ford datasets are for training while the Harvard dataset is for
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Training data: Harvard and Standford
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Fig. 4. AUC of NB using the features selected by MCFS and its rivals in
Experiment 1

testing. From Figures 7 to 9, we can see that using NB, MCFS
is significantly better than its 10 rivals except for mRMR.
Using KNN, MCFS is significantly better than its 7 rivals,
while for the AUC values of HITION-MB, IAMB, ∪mRMR,
and mRMR are close to that of MCFS, but they still achieves
lower AUC than MCFS. Using SVM, except for IAMB, MCFS
is significantly better than the other rivals. Moreover, MCFS
and HITON-MB achieve stable AUC values, while the other
rivals get fluctuating AUC values.

Experiment 3. In this experiment, we have the Michigan
and Harvard datasets as the training datasets and the Stanford
dataset as the testing dataset. In Figures 10 to 12, for NB and
KNN, IAMB gets the worst result while for SVM, STMB is
the worst. Except for STMB, ∪STMB, FCBF, and ∪FCBF,
using NB, MCFS is the best in Figure 10, while using KNN,
except for HITION-MB and ∪HITON-MB, MCFS is signifi-
cantly better than the other rivals in Figure 11. Using SVM,
except for HITION-MB, ∪HITON-MB, and ∪mRMR, MCFS
is significantly better than the remaining rivals. The AUC of
NB with features selected by STMB, FCBF and ∪FCBF is
1, but using KNN, the AUC of KNN with features selected
by STMB, FCBF and ∪FCBF is only up to 0.8, 0.7 and
0.7, respectively. And the similar unstable AUC values with
features selected by HITION-MB and ∪HITON-MB using NB
and KNN. However, no matter for NB or KNN or SVM, the
AUC when using features selected by MCFS is always 1.

Table XVII shows the number of selected features and
running time of MCFS and its rivals. We can see that ICP
selects the smallest number of features, while IAMB selects
the most number of features. For computational efficiency,
IAMB and STMB are the slowest since they select more
features than the other algorithms, while FCBF is the fastest
algorithm. Meanwhile, in Table XVII, the running time and the
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number of selected features of MCFS also look reasonable.
Finally, we report the average results of AUC and the

deviations in the three experiments in Table XVIII, where
we can see that MCFS is significantly better than the other
methods. In summary, Figures 4 to 12, and Table XVIII show
that MCFS gets significantly higher AUC and always achieves
much more stable performance than its rivals.

VII. CONCLUSION

W have analyzed causal interventions and invariance in
feature selection with multiple datsets, and have proposed a
new algorithm, MCFS, for causal feature selection with multi-
ple datasets. Experiments on synthetic and real-world datasets
have illustrated that if the distributions between training and
testing datasets are different, MCFS is significantly better than
the existing causal and non-causal feature selection algorithms.

Additionally, we empirically analyzed the bounds proposed
in Theorems 6 and 7. The experiments have illustrated that
with multiple intervention datasets, the set of parents of the
class attribute is promising for reliable prediction while the
MB of the class attribute may not be for optimal prediction.
In future, on the one hand, we will explore MCFS to tackle
large MBs and propose efficient methods to find invariant sets
in Phase 2 of MCFS; on the other hand, our work also can
be put in the context of domain adaptation, although here we
focus on causal feature selection for stable predictions. In next
work, we will systematically explore our work proposed in the
paper for domain adaptation.

ACKNOWLEDGMENTS

This work is partly supported by the Australian Re-
search Council (ARC) Discovery Project (under grant D-
P170101306), the National Key Research and Developmen-
t Program of China (under grant 2016YFB1000901), and

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 (

N
B

)

mRMR

ICP

MCFS
0.9562

uSTMB
0.9598

uHITON−MB

STMB

0.9598
0.9454

HITON−MB

IAMB

0.7941

uIAMB

0.816

0.9856
0.9598

FCBF

umRMR

0.9082 uFCBF

0.9082

0.8457

0.9964

Training data: Michigan and Standford
Testing data: Harvard

Fig. 7. AUC of NB using the features selected by MCFS and its rivals in
Experiment 2

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
(K

N
N

)

HITON−MB

uHITON−MB
0.934

0.9046

STMB

0.7869 0.7941

uSTMB

IAMB

0.934
uIAMB

0.8716

mRMR

0.7761

ICP

MCFS0.9376

0.9376
umRMR

0.7611

FCBF 0.7611

uFCBF

0.967

Training data: Michigan and Standford
Testing data: Harvard

Fig. 8. AUC of KNN using the features selected by MCFS and its rivals in
Experiment 2

the National Science Foundation of China (under grants
61876206).

REFERENCES

[1] C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Kout-
soukos. Local causal and markov blanket induction for causal discovery
and feature selection for classification part i: Algorithms and empirical
evaluation. Journal of Machine Learning Research, 11(Jan):171–234,
2010.

[2] C. F. Aliferis, I. Tsamardinos, and A. Statnikov. Hiton: a novel markov
blanket algorithm for optimal variable selection. In AMIA Annual
Symposium Proceedings, volume 2003, page 21. American Medical
Informatics Association, 2003.

[3] D. G. Beer, S. L. Kardia, C.-C. Huang, T. J. Giordano, A. M. Levin,
D. E. Misek, L. Lin, G. Chen, T. G. Gharib, D. G. Thomas, et al.
Gene-expression profiles predict survival of patients with lung adeno-
carcinoma. Nature medicine, 8(8):816, 2002.

[4] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The
alarm monitoring system: A case study with two probabilistic inference
techniques for belief networks. In AIME 89, pages 247–256. Springer,
1989.

[5] A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa,
C. Ladd, J. Beheshti, R. Bueno, M. Gillette, et al. Classification of
human lung carcinomas by mrna expression profiling reveals distinct
adenocarcinoma subclasses. Proceedings of the National Academy of
Sciences, 98(24):13790–13795, 2001.

[6] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján. Conditional likelihood
maximisation: a unifying framework for information theoretic feature
selection. Journal of machine learning research, 13(Jan):27–66, 2012.

[7] T. M. Cover and J. A. Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[8] K. Fukunaga. Introduction to statistical pattern recognition. Academic
press, 2013.

[9] T. Gao and Q. Ji. Efficient markov blanket discovery and its application.
IEEE transactions on cybernetics, 47(5):1169–1179, 2017.

[10] M. E. Garber, O. G. Troyanskaya, K. Schluens, S. Petersen, Z. Thaesler,
M. Pacyna-Gengelbach, M. Van De Rijn, G. D. Rosen, C. M. Perou, R. I.
Whyte, et al. Diversity of gene expression in adenocarcinoma of the
lung. Proceedings of the National Academy of Sciences, 98(24):13784–
13789, 2001.

[11] I. Guyon, C. Aliferis, and A. Elisseeff. Causal feature selection.
Computational methods of feature selection, pages 63–82, 2007.



15

0.2

0.4

0.6

0.8

1

A
U

C
 (

S
V

M
)

uIAMB
UmRMR

mRMR

0.5882

uFCBF

STMB

uSTMB

IAMB
0.9670

0.5552

0.7317

0.8189 0.8189

HITON−MB
0.9340

uHITON−MB

0.9274

0.5294

FCBF

0.50

ICP 0.8163

Training data: Michigan and Standford
Testing data: Harvard

MCFS
1.0

Fig. 9. AUC of SVM using the features selected by MCFS and its rivals in
Experiment 2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
U

C
(N

B
)

HITON−MB
STMB

0.9512 uHITON−MB

0.9634

1.0 uSTMB

0.9878

0.5 0.5

uIAMBIAMB

mRMR

0.9634

0.9634

UmRMR
1.0

FCBF 1.0

uFCBF

0.80

ICP

MCFS

1.0

Training data: Harvard and Michigan
Testing data: Standford

Fig. 10. AUC of NB using the features selected by MCFS and its rivals in
Experiment 3

[12] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182,
2003.

[13] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu. Feature selection: A data perspective. ACM Computing Surveys
(CSUR), 50(6):94, 2017.

[14] L. Liu, Y. Li, B. Liu, and J. Li. A simple yet effective data integration
approach to tree-based microarray data classification. In Engineering
in Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE, pages 1503–1506. IEEE, 2010.

[15] S. Magliacane, T. van Ommen, T. Claassen, S. Bongers, P. Versteeg, and
J. M. Mooij. Causal transfer learning. NeurIPS’18, 2018.

[16] J. M. Mooij, S. Magliacane, and T. Claassen. Joint causal inference
from multiple contexts. arXiv preprint arXiv:1611.10351, 2016.

[17] L. Paninski. Estimation of entropy and mutual information. Neural
computation, 15(6):1191–1253, 2003.

[18] J. Pearl. Causality. Cambridge university press, 2009.
[19] J. Pearl. Probabilistic reasoning in intelligent systems: networks of

plausible inference. Elsevier, 2014.
[20] J. M. Pena, R. Nilsson, J. Björkegren, and J. Tegnér. Towards scalable

and data efficient learning of markov boundaries. International Journal
of Approximate Reasoning, 45(2):211–232, 2007.

[21] H. Peng, F. Long, and C. Ding. Feature selection based on mutu-
al information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on pattern analysis and machine
intelligence, 27(8):1226–1238, 2005.
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APPENDIX A
MUTUAL INFORMATION

Given two random variables X and Y , the mutual information
I(X,Y ) and the conditional mutual information I(X;Y |Z) are
calculated in Eq. (11) and Eq. (12) below [7].

I(X,Y ) = H(X)−H(X|Y )

= Σx∈X,y∈Y P (x, y) log P (x,y)
P (x)P (y)

(11)

The entropy H(X) and H(X|Y ) are defined as
H(X) = −Σx∈XP (x) logP (x) and H(X|Y ) =
−Σy∈Y P (y)Σx∈XP (x|y) logP (x|y), respectively. P (x) is
the prior probability of value x that feature X takes, and P (x|y) is
the posterior probability of x given the value y that feature Y takes.

I(X;Y |Z) = H(X|Z)−H(X|Y Z)

= Σz∈ZP (z)Σx∈X,y∈Y P (x, y|z) log P (x,y|z)
P (x|z)P (y|z)

(12)
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TABLE XVII
NUMBER OF SELECTED FEATURES AND RUNNING TIME (E1, E2, AND E3

REFER TO EXPERIMENTS 1, 2 AND 3 RESPECTIVELY)

Algorithm #Feature Time
E1 E2 E3 E1 E2 E3

MCFS 4 3 2 44 38 53
ICP 1 1 1 10 14 21
HITON-MB 5 5 6 39 35 50∪HITON-MB 10 9 9
IAMB 92 64 114 298 193 358∪IAMB 183 125 224
STMB 24 28 27 385 142 440∪STMB 47 55 53
mRMR 15 15 15 7 11 12∪mRMR 20 28 24
FCBF 20 24 21 2 2 2∪FCBF 41 47 37

TABLE XVIII
AVERAGE AUC OF MCFS AND ITS RIVALS

Algorithm NB KNN SVM
MCFS 0.9655±0.0567 0.9890±0.0191 0.9890±0.0191
ICP 0.8486±0.0501 0.8587±0.1230 0.8054±0.2002
HITON-MB 0.8703±0.1416 0.8682±0.1533 0.8741±0.1642
∪HITON-MB 0.8244±0.2376 0.9182±0.0759 0.7689±0.2477
IAMB 0.6054±0.1826 0.6780±0.2273 0.7223±0.2343
∪IAMB 0.5980±0.1698 0.7072±0.1609 0.5184±0.0319
STMB 0.8818±0.1598 0.7623±0.0543 0.6692±0.1682
∪STMB 0.8647±0.1866 0.7314±0.0543 0.6732±0.1562
mRMR 0.8997±0.1301 0.8292±0.0971 0.8059±0.1793
∪mRMR 0.8577±0.1799 0.8292±0.1202 0.6724±0.2735
FCBF 0.8527±0.1815 0.7037±0.0556 0.5294±0.0509
∪FCBF 0.8207±0.2662 0.7204±0.0353 0.5000±0.0

APPENDIX B
PROOFS OF THEOREMS IN SECTION IV

By Eq.(11) and Eq.(12), we get Lemmas 1 and 2 as follows.

Lemma 1. I(Fi;Fj) ≥ 0 with equality if and only if P (Fi, Fj) =
P (Fi)P (Fj).

Lemma 2. I(Fi;Fj |S) ≥ 0 with equality if and only if
P (Fi, Fj |S) = P (Fi|S)P (Fj |S).

Proof of Theorem 2:
Case 1: For ∀S ⊆ F \ {C ∪MB(C)}, by Eq.(12), we can get

the following equation.

I(C;S|MB(C) = E{C,S,MB(C)} log P (C,S|MB(C))
P (C|MB(C))P (S|MB(C))

.

By Theorem 1, P (C, S|MB(C)) = P (C|MB(C))P (S|MB(C))
holds, and thus we get I(C;S|MB(C)) = 0. By the chain
rule, I((S,MB(C);C) = I(C;MB(C)) + I(C;S|MB(C)) =
I(C;S)+I(C;MB(C)|S). Since I(C;S|MB(C)) = 0 holds, then
I(C;MB(C)) = I(C;S) + I(C;MB(C)|S) holds. By Lemmas 1
and 2, we get I(C;MB(C)) ≥ I(C;S) with equality if S equals
to MB(C).

Case 2: For ∀S ⊂ MB(C) and S′ = MB(C) \ S, by
I(C;MB(C)) − I(C;S) = I(C;S ∪ S′) − I(C;S) = I(C;S) +
I(C;S′|S)−I(C;S) = I(C;S′|S), then I(C;MB(C)) ≥ I(C;S)
holds.

Case 3: Let S′ ⊂ MB(C) and S′′ ⊂ F \ {C ∪MB(C)}, and
S = {S′ ∪ S′′}, then by Theorem 8, we get Eq.(13) below. By
I(C;MB(C)) + I(C;S|MB(C)) = I(C;S) + I(C;MB(C)|S)
and Eq.(13), in the case, I(C;MB(C)) ≥ I(C;S) holds.

P (C,S|MB(C))
P (C|MB(C))P (S|MB(C))

= P (C,S′′,MB(C))
P (C|MB(C))P (S′′,MB(C))

= P (C|S′′,MB(C))P (S′′,MB(C))
P (C|MB(C))P (S′′,MB(C)))

= 1.

(13)

By Cases 1 to 3, I(C;MB(C)) ≥ I(C;S) with equality holds if S
equals to MB(C). �

Proof of Theorem 4:
Suppose S = F \ {C ∪ MB(C)} and S′ =

F \ MB(C). Let P (sp(C)) =
∏|sp(C)|

k=1 P (Fk|Pa(Fk)),
P (pa(C)) =

∏|pa(C)|
m=1 P (Fm|Pa(Fm)), and P (ch(C)) =∏|ch(C)|

j=1 P (Fj |Pa(Fj)), then by Eq.(1), P (C|MB(C)) is
calculated as follows.

P (C|MB(C)) = P (C,MB(C))
P (MB(C))

=
∑

S

∏|S|
i=1 P (Fi|pa(Fi))P (C|pa(C))P (sp(C))P (ch(C))P (pc(C))∑

S′
∏|S′|

i=1 P (Fi|pa(Fi))P (C|pa(C))P (sp(C))P (C|pa(C))P (ch(C))P (pc(C))

=
P (C|pa(C))P (ch(C))

∑
S

∏|S|
i=1 P (Fi|pa(Fi))P (sp(C))P (pc(C))∑

C P (C|pa(C))P (ch(C))
∑

S

∏|S|
i=1 P (Fi|pa(Fi))P (sp(C))P (pc(C))

=
P (C|pa(C))

∏|ch(C)|
j=1 P (Fj |pa(Fj))∑

C P (C|pa(C))
∏|ch(C)|

j=1 P (Fj |pa(Fj))

(14)
By Eq.(2), the post-manipulation distribution of an intervention Υi

can be factorized as

P i(F|do(Υi = γi)) = P (C|pa(C))
×
∏

Fj∈ch(C) P (Fj |pa(Vj))×
∏

Fj /∈{Υi∪ch(C)} P (Fj |pa(Fj))
(15)

By Eq.(15), since C and the variables in ch(C) are not ma-
nipulated, ∀Di ∈ D, P i(C|pa(C)) = P (C|pa(C)) and∏

Fj∈ch(C) P
i(Fj |pa(Vj)) =

∏
Fj∈ch(C) P (Fj |pa(Vj)) hold. Thus,

by Eq.(14), the theorem is proven. �
Proof of Theorem 5:
a) If pa(C) /∈ Υi ∀i, by Eq.(15), then P i(C|pai(C)) =

P j(C|paj(C)) (i 6= j) holds; (b) If pa(C) ∈ Υi ∀i, by Properties 1
and 2, the theorem holds. �

Proof of Theorem 6:
Since C is not intervened, pa(C) is invariant across D. Case 1:

for ∀Di ∈ D and ch(C) * Υi, by Theorem 4, MB(C) remains
invariant across D and pa(C) ⊆ MB(C). Case 2: for ∀Di ∈ D,
∃S ⊂ ch(C) and S ⊆ Υi, for the invariant set S′ across D,
pa(C) ⊆ S′. Case 3: for ∀Di ∈ D, if ch(C) ⊆ Υi, ch(C) and
the corresponding sp(C) are not in MBi(C), by Theorem 5, pa(C)
remains invariant across D. Thus, considering the three cases, pa(C)
is the minimally invariant set across D. �

Proof of Theorem 8:
Since C is not manipulated, (1) for ∀Di ∈ D, pc(C) keeps

invariant across D. Thus for ∀MBi(C), pa(C) in MBi(C) holds;
(2) If ∃Fj ∈ ch(C) and Fj ∈ Υ, by the conservative rule, there must
exist a set Υm and Fj /∈ Υm. Then in Dm, Fj is not manipulated,
and the edge between C and Fj is not deleted. Then Fj ∈MBm(C).
Since Fj is not manipulated in Dm, the edges between Fj and
its parents (C and C′s spouses w.r.t Fj) are not deleted. Then
the set sp(C) with respect to Fj ∈ ch(C) is in MBm(C); (3)
If ∃Fj ∈ ch(C) and Fj /∈ Υ, Fj is not manipulated. Thus, for
∀Di ∈ D, as the same as the proof in (2), Fj and the corresponding
sp(C) are in MBi(C). �

Proof of Theorem 9:
(1) C is not manipulated, then for ∀MBi(C), pa(C) in MBi(C)

holds. (2) Since Υ is not conservative, if ∃Fj ∈ ch(C) and for
∀Υi ∈ Υ, Fj ∈ Υi holds, then for ∀Di ∈ D, Fj is manipulated.
Thus Fj and the corresponding sp(C) are not in MBi(C). Then⋃K

i=1 MBi(C) ⊂ MB(C) holds. Otherwise, if ch(C) * Υ and
∀Fj ∈ ch(C), for ∀Di ∈ D, Fj is not manipulated, and {ch(C) ∪
sp(C)} ⊂ MBi(C). In the case,

⋃K
i=1 MBi(C) = MB(C) holds.

�
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