
Evaluation of Three Specification-based Testing Criteria

Aynur Abdurazik,�Paul Ammann,y Wei Ding,y and Jeff Offutt?

Department of Information and Software Engineering
Software Engineering Research Laboratory

George Mason University
Fairfax, VA 22030-4444 USA

faynur, pammann, wding, ofutg@ise.gmu.edu

Abstract

This paper compares three specification-based testing
criteria using Mathur and Wong’s PROBSUBSUMES mea-
sure. The three criteria are specification-mutation cover-
age, full predicate coverage, and transition-pair coverage.
A novel aspect of the work is that each criterion is encoded
in a model checker, and the model checker is used first to
generate test sets for each criterion and then to evaluate
test sets against alternate criteria. Significantly, the use of
the model checker for generation of test sets eliminates hu-
man bias from this phase of the experiment. The strengths
and weaknesses of the criteria are discussed.

1. Introduction

There are many approaches to generating tests. There
are also criteria to measure the completeness, adequacy,
or coverage of tests on source code [27]. However, most
test coverage criteria are either not objective or depend on
a particular implementation. This paper uses Mathur and
Wong’s PROBSUBSUMESmeasure [18] to empirically com-
pare three test coverage criteria on an example specification.
The investigation is carried out with a model checker, the
advantage being that human bias is eliminated from the re-
sulting test cases.

There is an increasing need for high quality software,
particularly for safety-critical applications such as avionics,
medical, and other control systems. Developers have re-
sponded to this need in many ways, including improving
the process, increasing the attention on early development

�Supported in part by Rockwell Collins, Inc, and in part by the National
Science Foundation under grant CCR-98-04111.

ySupported in part by the National Institute of Standards and Technol-
ogy and in part by the National Science Foundation under grant CCR-99-
01030.

activities, and using formal methods to describe require-
ments, specifications, and designs. Although all of these
improvements help create software that is of higher quality
and higher reliability, the software still needs to be tested,
and the more stringent needs for the product also means that
the testing method must be more effective at finding prob-
lems in the software. Project and test managers are more
than ever in a position where they need solid information
for how to apply scarce resources. Applying structured,
precisely defined testing techniques allows development re-
sources to be used more wisely.

Specification-based testing refers to creating test inputs
from the software specifications. Specification-based test-
ing allows tests to be created earlier in the development
process, and be ready for execution before the program is
finished. Additionally, when the tests are generated, the test
engineer will often find inconsistencies and ambiguities in
the specifications, which allows problems to be found and
eliminated early. Specifications can be used as a basis for
output checking, which significantly reduces one of the ma-
jor costs of testing. Another advantage is that the essential
part of the test data can be independent of any particular
implementation of the specifications. Specification-based
testing is also important for conformance testing, where ac-
cess to the code is not provided, but specifications for the
product are.

This paper investigates the usefulness of three recently
developed techniques for generating tests from state-based
formal specifications: full predicate testing (calledFP test-
ing) [22, 24], transition-pair testing (calledTP testing)
[22, 24], and specification-mutation testing (calledSM test-
ing) [2]. The goal of this paper is to identify the relative ad-
vantages and disadvantages of each testing method. Com-
paring testing techniques helps managers decide which to
apply, helps researchers and practitioners to improve the
techniques, and helps test engineers decide when to apply
them.

It is often difficult to compare testing criteria theoreti-

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

cally or analytically. Empirical comparisons of testing crite-
ria are also difficult, which is why they are rare, and usually
small in scale. While other comparative studies have been
carried out for code-based testing techniques [12, 21], we
know of no such study for specification-based testing tech-
niques. This paper presents an empirical comparison of FP
testing, TP testing, and SM testing. There are two relation-
ships that have been defined elsewhere. Weyuker, Weiss,
and Hamlet [25] suggest a relationship called PROBBET-
TER. A testing criterionC1 is PROBBETTER thanC2 for a
programP if a randomly selected test setT that satisfiesC1

is more “likely” to detect a failure than a randomly selected
test set that satisfiesC2. Mathur and Wong [18, 26] suggest
a different relationship called PROBSUBSUMES. A testing
criterionC1 PROBSUBSUMESC2 for a programP if a test
setT that is adequate with respect toC1 is “likely” to be
adequate with respect toC2. If C1 PROBSUBSUMES C2,
C1 is said to be more “difficult” to satisfy thanC2.

The PROBBETTER relation is defined with respect to the
fault detection capability of test sets, whereas the PROB-
SUBSUMES relation is defined with respect to the difficulty
of satisfying one criterion in terms of another. Both are
probabilistic relations between two testing criteria and are
defined in terms of specific programs. Although this means
that it is difficult to draw general conclusions from any
one study, as the number and variety of programs studied
increases, our confidence in the validity of a PROBSUB-
SUMES or a PROBBETTER relationship with a larger set
of programs also increases. This paper uses Mathur and
Wong’s [18] ProbSubsumes measure to compare the three
criteria.

The SMV model checker is used to both generate tests
and to evaluate test sets with respect to a given criterion.
The model checking approach to formal methods specifies
a system with a state transition relation and then charac-
terizes the relation with properties that are stated in a tem-
poral logic. Model checking has been successfully applied
to a wide variety of practical problems, including hardware
design, protocol analysis, operating systems, reactive sys-
tems, fault tolerance, and security. Although model check-
ing began as a method for verifying hardware designs, there
is growing evidence that it can be applied with consider-
able automation to specifications for relatively large soft-
ware systems, such as TCAS II [6].

The three criteria being compared are defined in Section
2. Section 3 presents the empirical method and process,
and Section 4 presents the design and conduct of the exper-
iment. Section 5 gives results and analysis, and conclusions
and future directions are in Section 6.

2. Test Coverage of State-based Specifications

State-based specifications describe software in terms of
states and transitions. Typical state-based specifications de-
finepreconditions on transitions, which are values that spe-
cific variables must have for the transition to be enabled,
andtriggering events, which are changes in variable values
that cause the transition to be taken. A triggering event is a
change in one or more variable that can cause a transition to
be taken, and a new state to be entered. For example, SCR
[13, 15] calls these WHEN conditions and triggering events.
The values the triggering events have before the transition
are sometimes calledbefore-values, and the values after the
transition are sometimes calledafter-values. The state im-
mediately preceding the transition is thepre-state, and the
state after the transition is thepost-state.

The first two criteria, full predicate testing and transition-
pair testing, are defined with respect to a state-based spec-
ification such as SCR. These have been applied to Flight
Guidance System (FGS) [20, 19]. The third criterion,
specification-mutation testing, is defined with respect to a
model checking specification – in this case, SMV. This
criterion has been applied to a subset of FGS. These ap-
plication show that the criteria can be applied to reasonable
large systems. The connection is that state-based specifi-
cations such as SCR may be represented as model check-
ing specifications. For example, automated conversions to
a model checking representation are available from SCR to
SPIN [14] and from StateCharts to SMV [6].

2.1. Full Predicate Coverage

Offutt has defined two coverage criteria, full predicate
and transition-pair, in prior research [22, 23, 24]. Full pred-
icate coverage questions whether predicates in the speci-
fications are formulated correctly. Small inaccuracies in
the specification predicates can lead to major problems in
the software. The full predicate coverage criterion takes
the philosophy that to test the software, testers should at
minimum provide inputs derived from each clause in each
predicate. This criterion requires that each clause in each
predicate on each transition is tested independently, thus at-
tempting to address the question of whether each clause is
necessary and is formulated correctly.

In the following definitions, T is a set of test cases. Al-
though the tests are intended to be executed on an imple-
mentation of the specification, we say that a testtraverses
a transition to indicate that, from a modeling perspective,
the test causes the transition’s predicate to be true, and the
implementation will change from the transition’s pre-state
to its post-state. Formally:

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

FP testing:: For each predicate P on each tran-
sition, T includes tests that cause each clause c
in P to result in a pair of outcomes where the
value of P is directly correlated with the value
of c.

In this definition, “directly correlated” means thatc con-
trols the value ofP , that is, one of two situations occurs.
Either c andP have the same value (c is true impliesP
is true andc is false impliesP is false), orc andP have
opposite values (c is true impliesP is false andc is false
impliesP is true). This explicitly disallows cases such asc

is true impliesP is true andc is false impliesP is true.
FP testing is closely related to, but strictly weaker than,
the MC/DC (multiple condition/decision coverage) crite-
rion used in testing critical avionics applications [7].

2.2. Transition-pair Coverage

Many mistakes in software can arise because the en-
gineers do not fully understand the complex interactions
among sequences of states in the specifications. Full pred-
icate coverage tests transitions independently, but does not
test sequences of state transitions, thus some faults may not
be adequately tested for. Typical faults that may occur are
because an invalid sequence of transitions is allowed, or a
valid sequence is not allowed. To check for these kinds of
faults, transition-pair coverage requires that pairs of transi-
tions be taken. Transition-pair testing is defined as follows:

TP testing:: For each pair of adjacent transi-
tions Si : Sj and Sj : Sk, T contains a test that
traverses the pair of transitions in sequence.

2.3. Specification Mutation Coverage

Mutation testing is a well studied technique for testing
software units [10, 11]. It is defined in terms of the code
statements in an implementation. Mutation was adapted to
the problem of deriving tests from functional specifications
by Ammann and Black [1, 3]. A specification for model
checking has two parts. One part is a state machine defined
in terms of variables, initial values for the variables, and
a description of the conditions under which variables may
change value. The other part is temporal logic constraints
on valid execution paths. Conceptually, a model checker
visits all reachable states and verifies that the invariants and
temporal logic constraints are satisfied. Model checkers ex-
ploit clever ways to avoid brute force exploration of the state
space, for example, see Burch et al. [5] or Clarke et al. [8].

Model checkers are attractive for test case generation be-
cause given a temporal logic constraint that does not hold, a

model checker can (sometimes - see below) produce a coun-
terexample. A counterexample is atrace, or sequence of
transitions in the state machine. The trace has a direct inter-
pretation as test case, and is useful for not only identifying
inputs, but verifying outputs as well.

In the context of the mutation model developed pre-
viously [1], Figure 1 illustrates a key difference between
mutations to program code and mutations to logic formu-
lae. Code mutants are classified as either equivalent or
nonequivalent. An equivalent mutant is one that has exactly
the same input/output relation as the original program.

Mutations to logic constraints in a model checking spec-
ification result in a different situation. Instead of being ei-
ther equivalent or nonequivalent, mutants are eitherconsis-
tent or inconsistent with the state machine. A consistent
mutant is a temporal logic formula that is true over all pos-
sible traces defined by the state machine. Just as equiva-
lent mutants cannot be distinguished from the original for
program-based mutation analysis, consistent mutants can-
not be found false for model checking mutation analysis.
Fortunately consistency is decidable for these temporal log-
ics, and model checkers are specifically designed to effi-
ciently determine whether or not a temporal logic formula
is consistent. So this arena does not have the problem of
undecidability or requiring human judgment.

For inconsistent mutants, there are two possibilities.
Some temporal logic formulae can be shown to be incon-
sistent with a single trace through the state machine. For
example, if the assertion “the East-West light is never green
while the North-South light is green” is inconsistent, the in-
consistency could be exhibited with an execution trace that
starts in some initial condition and ends in a state where
both lights are green. Afalsifiable mutant is one that can
be demonstrated to be inconsistent. Other temporal logic
formula may be inconsistent with respect to the state ma-
chine, but cannot be shown to be inconsistent with a single
trace. For example, an inconsistent assertion that “even-
tually both the East-South and West-North left turn lights
are green simultaneously” cannot be shown to be false with
any single trace from the state machine. The reason is that
counterexamples are excellent for showing that universally
quantified properties fail, but are not useful for showing that
existentially quantified properties fail. Anonfalsifiable mu-
tant is one that is inconsistent but no counterexample has
been found.

For this paper, the specification clauses constraining the
transition relation are produced through the processes of ex-
poundment and reflection [1].Expoundment makes implicit
aspects of the transition relation explicit, and is essentially
the same as making explicit the predicate on thedefault
branch of acase statement in a traditional programming
language.Reflection is a process of restating the transition
relation in temporal logic. The goal of expoundment and

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

@
@
@

�
�
�

Code Mutants

Equivalent Nonequivalent

@
@
@

�
�

�

@
@
@

�
�
�

Logic Mutants

Consistent Inconsistent

Falsifiable Nonfalsifiable

Figure 1. Categories of Mutants.

reflection is to produce a complete, redundant description
of the state machine. This allows the model checker to find
traces (test cases) that distinguish the behavior of the orig-
inal description (the state machine) from mutations of an
equivalent description (the temporal logic description).

Specification-mutation testing is defined as follows:

SM testing:: For a given transition relation, set
of specification clauses constraining the tran-
sition relation, and set of mutation operators,
let M be the set of mutant specification clauses
produced by applying the operators to the
specification clauses in all possible ways. Let
M 0 be the inconsistent, falsifiable specification
clauses in M . Test set T is mutation adequate
with respect to the transition relation, specifi-
cation clauses, and mutation operators if for
each m0 in M 0, some test t in T is a counterex-
ample for m0.

3. Evaluation of Testing Criteria

Analytical comparisons show theoretical relationships
between techniques, and are most satisfying because they
allow claims that are true in all situations. Empirical com-
parisons show relations that are based on specific studies.
Although it is difficult to show that empirical results hold
in all situations, analytical comparisons cannot always be
made, but empirical comparisons can.

The PROBSUBSUMES relation used in this paper is de-
fined with respect to the difficulty of satisfying one crite-
rion in terms of another; this has also been called “cross-
scoring” [17]. It is a probabilistic relation between two test-
ing criteria and is defined in terms of specific programs. Al-
though this means that it is difficult to draw general con-
clusions from any one study, as the number and variety of
programs studied increases, our confidence in the validity
of a PROBSUBSUMES relationship with a larger set of pro-
grams also increases.

Mathur and Wong [18] used the PROBSUBSUMES rela-

tion in experimental comparisons of all-uses data flow test-
ing with mutation testing, by manually generating test data
to satisfy both criteria and comparing the scores. They
used four programs and 30 sets of test cases per program
and detected equivalent mutants and unexecutable subpaths
by hand. This study indicated that mutation-adequate test
sets were closer to being data flow-adequate than data flow-
adequate test sets were to being mutation-adequate. Offutt
et al. [21] also compared all-uses data flow with mutation
using more programs, and also compared the two criteria
based on the number of faults they found (using the PROB-
BETTER relationship [25]).

While other comparative studies have been carried out
for code-based testing techniques [9, 12, 21], we know of
no such study for specification-based testing techniques.

4. Experimental Hypothesis and Conduct

It seems reasonable to suppose that if test sets created
for one criterion also satisfy another, then the first criterion
can in some sense be considered to be “better” than the sec-
ond. This is the essence of the PROBSUBSUMES relation-
ship. Thus, this experiment tries to determine if specifica-
tion mutation adequate test sets are likely to cover full pred-
icate and transition-pair, full predicate adequate test sets are
likely to cover transition-pair and specification mutation,
and transition-pair adequate test sets are likely to cover full
predicate and specification mutation.

For this comparison, the following hypothesis has been
formulated for each possible pair from the three criteria:
mutation adequacy, full predicate coverage, and transition-
pair coverage.

Hypothesis: Criterioni PROBSUBSUMES criterionj.

Since only one example program is evaluated and tests
are generated in only one way for that program (albeit auto-
matically way), the hypothesis cannot be completely tested,
which is a threat to the external validity of the results. How-
ever, this approach does provide the opportunity to discover
obvious trends with the aim of spurring further analysis. We
limit our results to such a discussion.

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

The cruise control system is used as our artifact. Cruise
control is a common example in the literature [4, 16, 24],
and specifications are readily available. The cruise control
specification has four modes and 12 mode transitions. The
12 mode transitions form 12 transition predicates. Although
the example is very simple, it is sufficient to draw the high
level conclusions presented in this paper.

The SCR specification used for the cruise control system
is shown in Table 1. The specification has four states: OFF
(the initial state), INACTIVE, CRUISE, and OVERRIDE.
The system’s environmental conditions indicate whether the
automobile’s ignition is on (Ignited), the engine is running
(EngRun), the automobile is going too fast to be controlled
(Toofast), the brake pedal is being pressed (Brake), and
whether the cruise control level is set toActivate, Deacti-
vate, or Resume.

Each row in the table specifies a conditioned event that
activates a transition from the mode on the left to the mode
on the right. A table entry of @T or @F under a column
header C represents a triggering event @T(C) or @F(C).
This means that the value of C must change for the tran-
sition to be taken, that is, “@T(C)” means C must change
from false to true, and “@F(C)” means C must change from
true to false. A table entry oft or f represents a WHEN
condition. WHEN[C] means the transition can only be
taken if C is true, and WHEN[:C] means it can only be
taken if C is false. If the value of a condition C does not
affect a conditioned event, the table entry is marked with a
hyphen “-” (don’t care condition).

Test sets were generated and evaluated as illustrated in
Figure 2. We explain generation of test cases first. The
SCR specification for the cruise control example was an-
alyzed by hand to determine the test requirements for FP
testing and TP testing. In principle, test cases to satisfy
FP testing and TP testing could be constructed directly, but
we chose instead to implement test case generation with a
model checker. The reasons were (1) to avoid human bias
and mistake in generating tests and (2) to use a uniform
mechanism to generate and evaluate all tests in the exper-
iment.

To make use of a model checker, a transition relation
was developed in SMV for the cruise control problem. This
process was performed by hand, although automated tools
do exist [4, 14]. At this point in the process, the temporal
logic constraints on the transition relation, that is, theSPEC
clauses in SMV, are empty.

To generate test cases,SPEC clauses tailored to the de-
sired criteria were generated and SMV was executed. The
set of counterexamples produced by SMV form a test set
that is adequate with respect to the relevant criteria. Thus,
to generate FP tests, the test requirements for FP were ex-
pressed in SMVSPEC clauses.1 Similarly, to generate TP

1The general strategy is to write a temporal logic formula that expresses

tests, the test requirements for TP testing were expressed in
SMV SPEC clauses.

For SM testing, the situation is slightly different. The
transition relation is expounded and reflected into the tem-
poral logic, and then mutation operators are applied to the
temporal logic [1]. Running SMV produces a set of coun-
terexamples that form a mutation adequate test set. The mu-
tation operators used are listed below. The first four are
from previous work [1] and the remaining two are new op-
erators. Each operator is illustrated with a mutant it gener-
ates from the following clause. Changes are emphasized by
underlining.

AG(CruiseControl=Cruise
-> AX(Toofast ->
CruiseControl=Inactive))

1. replace constant – replace one constant with another.

AG(CruiseControl=Override
-> AX(Toofast ->
CruiseControl=Inactive))

2. replace oper – replace one operator with another op-
erator, for example, replace “implies” with “or”.

AG(CruiseControl=Cruise
-> AX(Toofast |
CruiseControl=Inactive))

3. replace vars – replace a variable with another variable.

AG(CruiseControl=Cruise
-> AX(Brake ->
CruiseControl=Inactive))

4. remove expr – remove a simple expression from con-
junctions, disjunctions, and implications.

AG(CruiseControl=Cruise
-> AX(
CruiseControl=Inactive))

5. negate expr – replace a simple expression with its
negation.

AG(CruiseControl=Cruise
-> AX(!Toofast ->
CruiseControl=Inactive))

6. constant expr – replace a simple expression with the
constantTRUE. Repeat with the constantFALSE.
This mutation operator mimics the “stuck-at” faults
from circuit testing and is quite powerful.

thenegation of a given test requirement. If the test requirement is satisfi-
able, the model checker produces a counterexample to the negated require-
ment; the counterexample is a test case that satisfies the test requirement.
Of course, if the test requirement is not satisfiable, no counterexample,and
hence no test case, exists for that requirement.

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

Previous Mode Ignited EngRun Toofast Brake Enum1 New Mode
Off @T - - - - Inactive
Inactive @F - - - - Off

- t f f @T(Enum1=Activate) Cruise
Cruise @F - - - - Off

- @F - - - Inactive
- - @T - -
- - - @T - Override
- - - - @T(Enum1=Deactivate)

Override @F - - - - Off
- @F - - - Inactive
- - f f @T(Enum1=Activate) Cruise
- - f f @T(Enum1=Resume)

Table 1. SCR Specifications for the Cruise Control System.

AG(CruiseControl=Cruise
-> AX(TRUE ->
CruiseControl=Inactive))

At this point in the process, test sets adequate for each of
the three criteria have been generated; this corresponds to
the right hand side of the Test Case Generation diagram in
Figure 2.

We now turn to evaluation of one criterion against an-
other. Specifically, we wish to know how the test set gener-
ated for one criterion scores against the test requirements
for another criterion. This is the PROBSUBSUMES rela-
tion defined in Section 3. This was done using the cover-
age tools developed previously [1]. In general terms, each
test case from the test set under evaluation is turned into a
“forced” state machine. SMV is used to see whichSPEC
clauses from the criteria being evaluated are found incon-
sistent. The results for the entire test set are collected and
evaluated. The score for a test set is the number of satisfied
test requirements relative to the number of total test require-
ments. This process is shown in the Test Case Evaluation
diagram in Figure 2.

5. Results and Analysis

The three techniques of full predicate, transition-pair,
and specification mutation testing are compared on two
bases, a coverage measurement (using the PROBSUB-
SUMESrelationship) and test set size.

Coverage is defined in the usual way, as the percentage
of test requirements covered. The coverage for a set of tests
that are adequate with respect to criterionA are measured
on a second criterionB. Thus coverage of criterionA by
criterionB is 100% if and only if a test set that is adequate
for criterionA is also adequate for criterionB. More for-
mally, letA andB be two adequacy criteria, andFA (T; S)

andFB (T; S) be the functions that measure whether a test
setT is adequate for the criteria. LetTA be a set of test
data that is adequate with respect to criterionA and TB

be a set of test data that is adequate with respect to crite-
rionB. Then the coverage of criterionA by criterionB is
FA (TB ; S) and the coverage of criterionB by criterionA
is FB (TA; S). Since a criterion covers itself, by definition
FA (TA; S) = 100% andFB (TB ; S) = 100%.

If Ft is the total number of full predicate requirements
for the specification being tested,Fs is the number of full
predicate requirements that have been satisfied by the test
set andFi is the number of full predicate requirements that
can never be satisfied because of infeasible predicates, then
thefull predicate score is:

FPS (S; T) =
Fs

Ft � Fi
: (1)

If Tt is the total number of transition-pair requirements
for the specification being tested,Ts is the number of
transition-pair requirements that have been satisfied by the
test set andTi is the number of transition-pair requirements
that can never be satisfied because of infeasible pairs of
transitions, then the transition-pair score is:

TPS (S; T) =
Ts

Tt � Ti
: (2)

The coverage measure for mutation is themutation
score. If Mt is the total number of mutants generated for
a specification,Mk is the number of mutants killed by a set
of test casesT , andMc is the number of consistent mutants
for the specification being tested, then the mutation score is:

SMS (S; T) =
Mk

Mt �Mc

: (3)

In this experiment, if the mutation criterion is denoted
byM , the full predicate criterion is denoted byF , and the
transition-pair criterion is denoted byT , thenFM computes
the mutation score for a set of test data using Equation 3,FP
computes the full predicate score for a set of test data using
Equation 1, andFT computes the transition-pair score for
a set of test data using Equation 2. Values ofFM (TF ; S),
FM (TT ; S), FF (TM ; S), FF (TT ; S), FT (TM ; S) and

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

System
Specification

Test Case Evaluation

SCR
Requirements
Specification

Test Case Generation

Temporal
Logic
Encoding

Temporal
Logic
Encoding

Transition−pair
 (TP)
Test Requirements

Full Predicate
 (FP)
Test Requirements

Mutation
Engine Mutated

SM SPEC
Clauses

Model
Checker
Outputs

Adequacy of
Test Set B
for Criterion A

Test SPECs for
Criterion A

Test Set for
Criterion B

FP
Test Set

SMV
State
Machine

TP
Test Set

SM
Test Set

SMV
Model
Checker

Reflect & Expound

FP SMV
SPEC
Clauses

TP SMV
SPEC
Clauses

SMV
Model
Checker

SM SMV
SPEC
Clauses

Figure 2. Experimental Process.

Full Predicate Transition-pair Mutation
Test Case Set Score Score Score
Full Predicate TC 100 32 86
Transition-pair TC 50 100 82
Mutation TC 88 38 100

Table 2. Coverage Scores of Test Criteria.

FT (TF ; S) were computed for the test case sets gener-
ated from the cruise control specification. These scores are
shown in Table 2.

Table 2 shows that the FP-tests (left column) were 100%
adequate for FP-testing (second column), only 32% ade-
quate for TP-testing (third column), and 86% adequate for
SM-testing (second column). Both the FP-tests and the SM-
tests scored very high on each other’s criterion, but neither
scored very highly on the transition-pair criterion. However,
the transition-pair tests did not score very high on the full
predicate criterion, but scored relatively highly on the speci-
fication mutation criterion. This indicates that full predicate
testing and specification mutation testing might be similar
in effectiveness, and possibly even interchangeable, but that
transition-pair testing may yield very different tests. We
are currently investigating the theoretical relation between
the FP and SM criteria. The reflection process for mutation
analysis is not deterministic – there are a variety of logi-

cally equivalent temporal logic formulae that are nonethe-
less different syntactically and therefore lead to a different
test cases. The authors conjecture that a thorough under-
standing of the reflection process would lead to a set of test
cases from mutation analysis that would, in fact, be FP ad-
equate.

In terms of the six experimental hypotheses, no pair of
criteria appeared to satisfy the PROBSUBSUMES relation.
However, given the closeness of FP and SM coverage re-
sults, it may be that a PROBSUBSUMES hypothesis is sat-
isfied for modified versions of one or both of these criteria.
We intend to pursue research to investigate this possibility.

5.1. Test Set Size

Table 3 gives the number of test cases generated for each
criterion. In the cruise control software, specification muta-
tion required about twice as many tests as full predicate and

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

transition-pair. The size of the full predicate test set is lin-
early bound by the number of clauses in the transition pred-
icates, and the size of the transition-pair test set is bounded
by the square of the number of transitions. The size of the
mutation test set is harder to bound. In general, the number
of mutations is limited by the size of the description of the
state machine and the set of mutation operations chosen. It
is important to note that the number of mutations does not
“blow up” as does the state space, which is a common prob-
lem with model checking.

Test Set
Test Case Set Size
Full Predicate TC 21
Transition-pair TC 24
Mutation TC 42

Table 3. Number of Test Cases Per Criterion.

6. Conclusions

This paper has presented results from an empirical study
of three specification-based test generation criteria. First,
full predicate coverage, transition-pair coverage, and state-
ment mutation were compared on the basis of a “cross scor-
ing” , where tests generated for each criterion are measured
against the other. Second, the three techniques were com-
pared on the basis of the number of test cases generated to
satisfy them, in a rough attempt to compare their relative
costs.

For the program used, the specification mutation score
of the full predicate tests and the full predicate scores of
the specification mutation tests were quite high. This pro-
vides some evidence that specification mutation PROBSUB-
SUMES full predicate and full predicate PROBSUBSUMES

specification mutation, that is, the two techniques are rel-
atively similar. However, neither the full predicate tests
nor the specification mutation tests had high transition-pair
scores, and the transition-pair tests did not have high full
predicate or specification mutation scores. Thus, it can be
inferred that transition-pair tests offer something different
from full predicate and specification mutation tests.

Of course, this experiment has limitations that are diffi-
cult to avoid in this area. To do certain kinds of statistical
analyses, we must be able to assume that the data is based on
“ representative samples” from the population being studied.
Unfortunately, there is currently no way to choose a repre-
sentative sample of software, test cases, or faults, so we are
limited in our ability to use statistical analysis tools to make
claims of significance.

The program studied was relatively small, which leaves
the question of how the conclusions might scale up to large

software systems. Experimentation is currently underway
to apply these techniques to a larger industrial system.

References

[1] Paul E. Ammann and Paul E. Black. A specification-based coverage
metric to evaluate test sets. In HASE 99: Fourth IEEE International
Symposium on High Assurance Systems, pages 239–248, Washing-
ton, DC, November 1999.

[2] Paul E. Ammann, Paul E. Black, and William Majurski. Using model
checking to generate tests from specifications. In Proceedings of
the Second IEEE International Conference on Formal Engineering
Methods (ICFEM’98), pages 46–54. IEEE Computer Society, De-
cember 1998.

[3] Paul E. Ammann, Paul E. Black, and William Majurski. Using model
checking to generate tests from specifications. In Second IEEE Inter-
national Conference on Formal Engineering Methods, pages 46–54,
Brisbane, Australia, December 1998.

[4] Joanne M. Atlee and M. A. Buckley. A logic-model semantics for
SCR software requirements. In Proceedings of the 1996 Interna-
tional Symposium on Software Testing and Analysis, pages 280–292,
January 1996.

[5] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the An-
nual Symposium on Logic in Computer Science, pages 428–439, June
1990.

[6] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. D. Reese. Model checking large software specifica-
tions. IEEE Transactions on Software Engineering, 24(7):498–520,
July 1998.

[7] J. J. Chilenski and S. P. Miller. Applicability of modified condi-
tion/decision coverage to software testing. Software Engineering
Journal, pages 193–200, September 1994.

[8] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, Cambridge, Massachusetts, USA, 2000.

[9] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A
comparison of data flow path selection criteria. In Proceedings of
the Eighth International Conference on Software Engineering, pages
244–251, London UK, August 1985. IEEE Computer Society Press.

[10] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. IEEE Computer,
11(4):34–41, April 1978.

[11] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering, 17(9):900–
910, September 1991.

[12] P. G. Frankl and S. N. Weiss. An experimental comparison of the
effectiveness of branch testing and data flow testing. IEEE Transac-
tions on Software Engineering, 19(8):774–787, August 1993.

[13] C. Heitmeyer, R. Jefords, and B. Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on Soft-
ware Engineering Methodology, 5(3):231–261, July 1996.

[14] Constance L. Heitmeyer, B. Labaw, and D. Kiskis. Consistency
checking of SCR-style requirements specifications. In Proceedings,
International Symposium on Requirements Engineering, York, UK,
March 1995.

[15] K. Henninger. Specifiying software requirements for complex sys-
tems: New techniques and their applications. IEEE Transactions on
Software Engineering, SE-6(1):2–12, January 1980.

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

[16] Zhenyi Jin. Deriving mode invariants from SCR specifications.
In Proceedings of Second IEEE International Conference on Engi-
neering of Complex Computer Systems, pages 514–521, Montreal,
Canada, October 1996. IEEE Computer Society.

[17] A. P. Mathur. On the relative strengths of data flow and mutation
based test adequacy criteria. In Proceedings of the Sixth Annual
Pacific Northwest Software Quality Conference, Portland OR, 1991.
Lawrence and Craig.

[18] A. P. Mathur and W. E. Wong. An empirical comparison of data flow
and mutation-based test adequacy criteria. The Journal of Software
Testing, Verification, and Reliability, 4(1):9–31, March 1994.

[19] S. P. Miller. Specifying the mode logic of a flight guidance system in
CoRE and SCR. In Second Workshopon Formal Methods in Software
Practice, Clearwater Beach, FL, March 1998.

[20] S. P. Miller and K. F. Hoech. Specifying the mode logic of a flight
guidance system in CoRE. Technical Report WP97-2011, Rockwell
Collins, November 1997.

[21] A. J. Offutt, Jie Pan, Kanupriya Tewary, and Tong Zhang. An ex-
perimental evaluation of data flow and mutation testing. Software–
Practice and Experience, 26(2):165–176, February 1996.

[22] Jeff Offutt and Aynur Abdurazik. Generating tests from UML spec-
ifications. In Proceedings of the Second IEEE International Confer-
ence on the Unified Modeling Language (UML99), pages 416–429,
Fort Collins, CO, October 1999. IEEE Computer Society Press.

[23] Jeff Offutt and Shaoying Liu. Generating test data from SOFL spec-
ifications. The Journal of Systems and Software, 49(1):49–62, De-
cember 1999.

[24] Jeff Offutt, Yiwei Xiong, and Shaoying Liu. Criteria for generating
specification-based tests. In Proceedings of the Fifth IEEE Inter-
national Conference on Engineering of Complex Computer Systems
(ICECCS ’99), pages 119–131, Las Vegas, NV, October 1999. IEEE
Computer Society Press.

[25] E. J. Weyuker, S. N. Weiss, and R. G. Hamlet. Comparison of pro-
gram testing strategies. In Proceedings of the Fourth Symposium on
Software Testing, Analysis, and Verification, pages 1–10, Victoria,
British Columbia, Canada, October 1991. IEEE Computer Society
Press.

[26] Weichen Eric Wong. On Mutation and Data Flow. PhD thesis,
Purdue University, December 1993. (Also Technical Report SERC-
TR-149-P, Software Engineering Research Center, Purdue Univer-
sity, West Lafayette, IN).

[27] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit
test coverage and adequacy. ACM Computing Surveys, 29(4):366–
427, December 1997.

Proceedings of the 6th IEEE International Conference on Complex Computer Systems (ICECCS�00)
0-7695-0583-X/00 $10.00 © 2000 IEEE

