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Abstract—surveying a large amount of small sub-kilometer 
craters in planetary images is a challenging task due to their 
non-distinguishable features. In this paper, we integrate the 
LASSO (Least Absolute Shrinkage and Selection Operator) 
method with the Bayesian network classifier and propose an 
L1 Regularized Bayesian Network Classifier (L1-BNC) 
algorithm for this task. The L1-BNC algorithm uses the 
LASSO method not only to deal with high-dimensional crater 
features, but also to give a crater feature order for 
constructing a Bayesian network classifier. Our framework is 
evaluated on a large Martian image of 37,500 × 56,250m2. 
Experimental results demonstrate that this proposed method 
gets higher prediction accuracy than the existing crater 
detection algorithms. 

Keywords-bayesian classification; feature selection; crater 
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I.  INTRODUCTION 
Impact craters, or craters for short, are formed by high 

velocity collisions of solid celestial bodies onto the planet’s 
surface. Yielding information about the past and present 
geological processes, craters become the most studied 
geomorphic features in the solar system. However, during a 
crater life cycle, they are often eroded, buried, overlaid, and 
transformed, which lead to various difficulties in crater 
detection from remote images. Furthermore, geologically 
more active surfaces contain more degraded craters. 
Therefore, efficient crater detection in planetary images 
remains as a challenging task [12, 7, 11]. 

The existing work on crater detection can be divided into 
manual detection and automatic detection. Manual detection 
focuses on large craters of planetary images, for example, 
42,283 Martian craters with diameters larger than 5 km [3], 
and 8,497 named lunar craters with diameters larger than a 
few kilometers [1]. However, the size distribution of craters 
follows power-law: large craters that can be easily identified 
manually are rare and small sub-kilometer craters are 
abundant [14]. Surveying such small craters is ill-suited for 
visual detection, due to their shear numbers, but well-suited 
for an automated technique. Therefore, crater auto-detection 
techniques are needed, especially to catalog small sub-
kilometer craters. In a word, automating the process of small 
crater detection is the only practical solution to a 
comprehensive surveying of sub-kilometer craters [7]. 

Existing research efforts on automatic detection 
techniques in planetary images can be divided into two 
general categories: unsupervised and supervised approaches. 
The unsupervised methods identify crater rims in an image 

as circular or elliptical features [13, 9, 6, 2, 12]. However, 
the performance is usually at least one magnitude less 
accurate than supervised methods. The supervised methods 
take advantage of domain knowledge in the form of labeled 
training sets that guide classification algorithms [5, 17, 18]. 
In addition, those previous  efforts relie on inefficient 
exhaustive search of the entire image using pixel-based 
approaches which may work for finding a small number of 
large craters in low resolution images, but not for finding a 
very large number of small craters in high resolution images. 
Billions of pixels in a high resolution planetary image 
inevitably become a bottleneck of scalability of those crater 
detection methods [7, 15]. 

Urbach and Stepinski [15] proposed the idea of finding 
candidate craters instead of inefficient exhaustive search of 
the entire image. Crater candidates are the regions of an 
image that can potentially contain craters which can be 
viewed parts of an image that contain crescent-like pairs of 
shadows and highlights. The work of Urbach and Stepinski 
only uses a small set of features to describe the shapes of the 
shadow and high regions of crater candidates. However, 
other non-crater landforms in similar shapes make using 
shape features, an un-ideal choice on crater detection. 
Recently, Ding et al. [7] proposed a boosting with feature 
selection framework for crater detection. In this framework, 
they not only used the idea of candidate crater, but also was 
the first research team that constructed image gradient 
texture features from crater candidates for rapid feature 
extraction. Their framework contains three steps as follows. 
Firstly, they utilize mathematical morphology on shape 
detection for efficient identification of regions indicative for 
craters; Secondly, they extract and select image gradient 
texture features; at the last, a set of boosting algorithms with 
feature selection is proposed for crater detection. Texture 
features effectively enrich the information for crater 
detection so that we can effectively capture potential 
gradient structure of remotely sensed images without priori 
domain knowledge. However, how to efficiently deal with 
those features in high dimensions is a difficult problem for 
traditional supervised learning algorithms. 

Based on the crater framework proposed by Ding et al. 
[7], in this paper, we propose a new method on feature 
selection by integrating the LASSO method [4] into the 
Bayesian network classifier and propose an L1 Regularized 
Bayesian Network Classifier (L1-BNC). LASSO (Least 
Absolute Shrinkage and Selection Operator) was firstly 
introduced by Tibshirani [4] which is a least-square like 
problem with the addition of L1 penalty on the parameter 
vector for shrinkage and feature selection. The advantage of 



LASSO is that it is not only for feature selection but also for 
establishing a good feature order for the selected features. 
Therefore, in a high-dimensional crater dataset, L1-BNC 
with LASSO can not only select the strongly relevant crater 
features, but also establish a good feature order to further 
construct a Bayesian network classifier. The proposed 
method is evaluated on a large and high resolution image of 
Martian (37,500×56,250 m2) surface. Experimental results 
show that L1-BNC outperforms other crater detection 
methods with respect to prediction accuracy. 

The rest of the paper is organized as follows. Section 2 
describes the method for crater detection based on a 
Bayesian network classifier with LASSO. Section 3 presents 
our experimental result in a large high resolution planetary 
image from Mars. Section 4 summarizes our work and 
discusses future directions. 

II. BAYESIAN NETWORK CLASSIFIERS WITH LASSO FOR 
CRATER DETECTION 

In this section, based on the research efforts of Ding et al. 
[7], a method which integrates Bayesian classifier with 
LASSSO is proposed for crater detection. The proposed 
method contains four steps: (1) constructing crater 
candidates; (2) extracting texture features from candidate 
craters (3) using LASSSO to select a subset of the strongly 
relevant features and sorting the selected features by their 
correlation with the class label, (4) training a Bayesian 
network classifier based on the sorted features and perform 
classification. 

A. A framework for constructing candidate craters 

 
Figure 1.  Diagram illustrating individual steps in constructing crater 

candidates 

Fig. 1 shows the framework for constructing candidate 
craters [7]. A key insight in their method is that pair wise 
crescent-like shapes (candidate craters, the locations where 
craters likely reside) are identified from images using a 
shape detection method based on mathematical morphology 
[7, 15, 16]. In Fig. 1, the step of background removal deletes 
shapes, such as mountains, that are too large to be part of the 
craters; Power Filter, Area Filter and Shape Filter remove 
those features that lack sufficient contrast and are unreliable 
for crater detection. In the final step, highlight and shadow 
regions are matched so that each pair corresponds to a single 
crater candidate. This framework does not have high enough 
accuracy to constitute a stand-alone crater detection 
technique, but is ideal for identification of crater candidates. 

B. Feature Extraction and Feature Selection 
Wang and Ding et al. [11] constructed the training set 

and testing set which contains 19 crater geometric shape 
features from a high resolution panchromatic image 
h0905_0000. They used three feature selection methods to 
deal with those 19 features. In their results, when the number 

of selected features is up to 14 or 18, the accuracy of crater 
detection achieves the highest value with SVM using a 
Greedy and AUC feature selection algorithm. Ding et al. [7] 
worked on the same image and divided this image into three 
regions to extract 1,089 image gradient texture features on 
these regions. And then they iteratively construct a boosting 
classifier and selected 150 features from the original 1,089 
image texture features for crate detection. 

Motivated by above research work, we design an L1-
BNC to deal with those high dimensional crater features for 
crate detection which selects features by the LASSO method. 
The main difference between L1-BNC and the work of Ding 
and Wang is that L1-BNC can dynamically adjust the 
number of selected features by the prediction accuracy. In 
the other words, unlike the previous work, L1-BNC can 
vary the number of selected features to dynamically assess 
the prediction accuracy, and then select the feature subset 
with the highest detection accuracy. 

C. A framework for crater detection 
In this section, we first give the main flow for crater 

detection in Fig. 2. In Fig. 2, at first, crater candidates are 
identified which contain crescent-like pairs of shadows and 
highlights from an image. Secondly, the training set and 
testing set are sampled based on those crater candidates. In 
the final step, L1-BNC is used to discover craters and non-
craters from crater candidates. 

 
Figure 2.  Main flow for carter detection 

L1-BNC integrates Bayesian network classifiers with 
LASSO, so that it can not only choose the most effective 
feature subsets for classification, but also sort the selected 
features according to their correlation with the class label. 
The L1-BNC algorithm in detail is shown in Fig. 3 which is 
divided into two stages. The first stage is feature subset 
selection using the LARS algorithm (a very efficient 
solution to the LASSO problem), which chooses the most 
relevant features. And the second stage sorts the selected 
feature subset and uses the feature order to construct an 
exact Bayesian network classifier for crate detection. 

The first step of L1-BNC is mainly used to select the 
feature subset. We first initialize the number of each feature 
subset to be selected. And then L1-BNC selects a feature 
subset according to the correlation with class label by calling 
the function L1-BNC_LARS (), detailed description of this 
function is explained in Fig. 4. This function can not only 
select a strongly relevant feature set, but also give an order of 
the selected features with the class label. The LARS method 
is a useful and less greedy version of traditional forward 
selection methods: given a collection of possible predictors, 
we select the one having largest absolute correlation with the 
response y, say xj1, and perform simple linear regression of 
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y on xj1. This leaves a residual vector orthogonal to xj1, now 
considered to be the response. 

Algorithm: 

L1-BNC for crater detection  
Require 
Input crater candidates ),(,),...,,( 11 nn yxyx where iy = 0, 1,  
i = 1,…,n, for non-crater and crater examples respectively. 
 
1. Initialize Num=number of features to be selected   
2. For each Num do 
(1) Feature selection and Feature Ranking: 

L1-BNC_LARS(CraterTrainData, Num);  
Obtaining a feature subset, including the strongly relevant features with 
class label, denoted by S, and the feature ordering of this feature subset 
according to their correlation with the class label. 
(2) Classification procedure: 

     // CraterTrainData and CraterTestSet are train datasets 
// and test datasets. 
L1-BNC_Classification(S,CraterTrainData,CraterTestSet); 
Return classification accuracy. 
End for 

Figure 3.  Algorithm L1-BNC for classification 

We project the other predictors orthogonally to xj1 and 
repeat the selection process. After k steps, this results in a set 
of predictors jkjj xxx ,...,, 21 are then used in the usual way 
to construct a k-parameter linear model. From the function, 
we can see that LARS selects the most correlated variable 
with the residual r at each time, while r just presents the 
information of selected variables and the response variable 
(the class label). 

Feature Selection and feature Ranking: 

L1-BNC_LARS (CraterTrainData, Num) 
Require 
(1) Dataset:CraterTrainData ),,...,,( 21 yxxx n

, 
CraterTestData ),,...,,( 21 yxxx n

, where
ix is texture feature, class 

label 1=y for a crater, otherwise 0=y for a non crater. 
(2) Num: the number of selected features. 
For i=1:Num do 
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jβ is the jth regression coefficient,
ijx is crater feature, p is the 

number of selected features, and n is the number of cases, as 
follows: 

(1) Start with all coefficients βj equal to zero. Find predictor xj most 
correlated with the response y. 

(2) Along with the most possible in the direction of the predictor xj, stop 
when some other predictor xk has as much correlation with the 
current residual ( yyr ˆ−= ). 

(3) Increase (βj,βk) in their joint least squares direction, until some other 
predictor xm has as much correlation with the residual r by the inner 
product. 

(4) Continue until the number of selected features achieves num. 
End For 

Obtaining a ordering of the selected features. 

Figure 4.  Feature Selection and Feature Ranking for crater features 

The second step of L1-BNC is to call function L1-
BNC_Classification. This function uses the feature order 
obtained by the first step to learn a Bayesian network 
classifier by K2 algorithm [8], which learning Bayesian 

networks from data is often motivated by its ability to find 
the network structure efficiently, given that a reasonable 
variable ordering is provided. Then we use this trained 
classifier to detect the candidate craters, detailed description 
of this function is discussed in Fig. 5. 

Crater detection: 

L1-BNC_Classification(S,CraterTrainSet,CraterTestSet) 

Require
 
(1) Feature subset: S.  
(2) CraterTrainSet and CraterTestSet: Datasets in the format of 

),,...,,( 21 yxxx n ，
where

ix is texture feature, class label 1=y for a 

crater, otherwise 0=y for a non crater.  
 
1. K2(S, CraterTrainSet); //each CraterTrainSet contains  

//Num selected features. 
For i:=1:Num 

Search the parents of xi from set of nodes that precede xi in the 
feature set S, which operates by initially assuming that a node has no 
parents, and then adding incrementally that parent whose addition 
most increases the probability of the resulting network. 

End For 
We can obtain the topology of the Bayesian network classifier, 

denoted by BNC. 
 
2. Evaluating the BNC 

For each test set 
Evaluating BNC on the test set. 
Obtaining classification accuracy. 

End For

Figure 5.  L1-BNC for Crater detection 

III. EXPERIMENT RESULTS 
We have selected a portion of the High Resolution 

Stereo Camera (HRSC) nadir panchromatic image h0905 
[10], taken by the Mars Express spacecraft, to serve as the 
test set. As illustrated in Fig. 6, the selected image has a 
resolution of 12.5 meters/pixel and a size of 3,000 by 4,500 
pixels (37,500 × 56,250m2). The image represents a 
significant challenge to automatic crater detection 
algorithms because it covers a terrain that has spatially 
variable morphology and its contrast is rather poor if 
inspected at a small spatial scale. We divide the image into 
three sections denoted by the west region, the central region, 
and the east region (see Fig. 6). The central region is 
characterized by surface morphology that is distinct from 
the rest of the image. The west and east regions have similar 
morphology but the west region is much more heavily 
cratered than the east region. 

The testing set are from the west region, the central 
region, the east region and the corresponding crater 
candidate numbers of samples are 6708, 2935, 2026, 
respectively. The training set consists of 204 true craters and 
292 non-crater examples selected randomly from amongst 
crater candidates located in the northern half of the east 
region. The number of features is 1,089 and 1 class label for 
all data sets. 



 
Figure 6.  The Test images 

A. The results with varied number of selected features 
To construct classifiers, the numbers of selected features 

are 2, 5, 10, 14, 18, 20, 25, 50, 100, 120, 150 from the 
training set (see the analysis of section 2.2), then, we test 
those classifiers in the west region, the central region and 
the east region, respectively. Table 1 show that the 
classification accuracy of each feature subset on the three 
regions (the highest prediction accuracy marked by the bold 
face). 

As depicted in Table 1, when the number of selected 
features is 2, the classification accuracy on three areas is 
rather low, which reveals that although a crater can be 
consider as containing crescent-like pairs of shadows and 
highlights, only using two features to detect a crater is far 
from enough because of the eroding, burying, overlaying, 
and transforming problem during a crater life cycle. 
Therefore, it is necessary to increase more features to 
improving the accuracy of crater detection. 

TABLE I.  THE CLASSIFICATION ACCURACY FOR EACH FEATURE 
SUBSET 

Features Training Set TestSet1 TestSet2 TestSet3
2 crater_train2 71.17 74.62 73.35 
5 crater_train5 76.73 75.72 75.72 
10 crater_train10 77.85 76.12 74.58 
14 crater_train14 76.68 77.79 78.08 
18 crater_train18 76.68 77.79 78.08 
20 crater_train20 76.45 77.96 78.78 
25 crater_train25 76.73 77.96 77.69 
50 crater_train50 75.37 75.57 71.96 

100 crater_train100 77.12 76.97 75.27 
120 crater_train120 76.73 78.88 77.69 
150 crater_train150 76.13 78.64 77.39 

In order to clearly illustrate the results of Table 1, Fig. 7 
gives how the classification accuracy changes with varied 
number of selected features on three regions where x-axis is 
the number of selected features: 2, 5, 10, 14, 18, 20, 25, 50, 
100, 120, and 150, y-axis is the classification accuracy and 
dashed represents the number of selected features when the 
classification accuracy achieve the highest value. 

Fig. 7(A) shows that when the number of selected 
features is up to 10, the prediction accuracy achieves the 
highest value 77.85 in west region. In the central region, 
when the number of selected features is up to 120, the 
prediction accuracy obtain the best value 78.88, while the 
number of selected features is up to 20 or 25, the prediction 
accuracy only decrease 0.0092 in Fig. 7(B). In Fig. 7(C), 
when the number of selected features is up to 20, the 
prediction accuracy achieves the highest value 78.78 in east 
region, which is slightly higher than the west region. But 
when the number of selected features is equal to 50, L1-
BNC gets the lowest accuracy. Therefore, when the number 
of selected features from three areas is 10, 120, and 20 
respectively, the corresponding prediction accuracy is 
highest, up to 77.85, 78.88 and 78.78, respectively. 

 
Figure 7.  Prediction accuracy changes with the varied number of selected features 

B. Comparative Performance with the Existing Algorithms 
In this section, we compare L1-BNC with the existing 

algorithms for crater detection, such as Naïve Boosting, J48, 
and SVM. A Naïve Boosting algorithm (NBoost for short) 
was proposed by Ding et al. [7] which integrated the 
boosting algorithm and greedy feature selection algorithm 
while J48 and SVM perform without feature selection in our 
experiments. Table 2 shows the prediction accuracy of the 

four algorithms, where 10/120/20 denotes the number of 
selected features by L1-BNC in the west, central and east 
regions respectively (the highest prediction accuracy in 
Table 2 marked in the bold face). 

 
 
 



TABLE II.  THE PREDICTIVE ACCURACY OF COMPARING L1-BNC WITH NAIVE BOOSTING, J48 AND SVM 

Algorithm Features West Region Central Region East Region 

Feature Selection L1-BNC 
NBoost 

10/120/20 
150 

77.85 
76.61 

78.88 
78.88 

78.78 
77.49 

No Feature Selection J48 
SVM 

1090 
1090 

76.91 
76.83 

77.24 
77.10 

76.36 
77.54 

Table 2 shows that the prediction accuracies of both L1-
BNC and Naïve Boosting are higher than those of J48 and 
SVM without feature selection. L1-BNC outperforms the 
Naïve Boosting algorithm on the west and east regions. On 
the central region, the two algorithms have the same 
performance. 

IV. CONCLUSIONS 
The aim of this paper is to present a reliable method for 

auto-detection of sub-kilometer craters from high resolution 
images of planetary surfaces. In this framework, we 
integrate the LASSO method with the Bayesian network 
classifiers and propose the L1 Regularized Bayesian 
Network Classifier (L1-BNC) for crater detection. Different 
from previous work, L1-BNC can vary the number of 
selected features to dynamically assess the prediction 
accuracy, and then select the feature subset with the highest 
detection accuracy. Experiments show that L1-BNC 
outperforms other classification algorithms. 
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