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Abstract—Over 2 million serious side effects, including 100,000
deaths, occur due to adverse drug reactions (ADR) every year
in the US. Though various NGOs monitor ADRs through self
reporting systems, earlier detection can be achieved using patient
electronic health record (EHR) data available at many medical
facilities. This paper presents an algorithm which allow existing
ADR detection methods, which were developed for spontaneous
reporting systems, to be applied directly to the longitudinal
EHR data, as well as a new ADR detection method specifically
for this type of data. Preliminary results show that the new
method outperforms existing methods on EHR datasets. Future
work on the method will extend it to detecting potential cause-
effect relationships between events in other types of longitudinal
data, handling multiple cause and effect items, and automatically
selecting surveillance windows.

I. INTRODUCTION

In the U.S., adverse drug reactions (ADR) send 700,000
patients to emergency rooms and hospitalize 120,000 people
yearly [3]. Organizations such as the FDA and the WHO have
developed spontaneous reporting systems (SRS) to monitor
ADREs in the general population. Yet, these systems suffer from
underreporting and insufficient information [1], and death rates
due to ADRs continue to rise [11].

To catch ADRs as soon as possible, it is necessary to
monitor ADRs in healthcare institutions, rather than rely on
spontaneous reports. Hospitals often already contain databases
of patient electronic health records (EHR), which contain
longitudinal patient-level information about drugs administered
and conditions experienced. Yet despite the potential benefit
of mining ADRs from EHR data, methods have only been
applied to SRS data [2], [4], [5], [9], [12]. All these methods
require counting the co-occurrence of drugs and conditions,
something that is easily done in spontaneous reporting data,
but not directly applicable to EHR data.

Co-occurrence counts are necessary in calculating propor-
tionality ratios, which form the basis of all ADR mining
methods. In SRS data, if a drug and condition are both
present in the same report, then a co-occurrence is noted.
However, in EHR, linkages between drugs and conditions must
be established using only timestamp data. This paper presents
a method to handle this problem.

The second contribution in this paper is a new technique
for mining ADR methods. This method, which is based on
comparing the rates of condition occurrence, do not suffer from
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CONDITION, AND SO ON.

the weaknesses of disproportionality methods used in SRS data
when applied in the EHR context. This method specifically
applies to events occuring over time as in EHR datasets, but
also generalizes to any problem related to extracting temporal
associations from time-stamped data.

These contributions leverage the advances in mining SRS
data to EHR data, and also provide a new method specifically
for this task. Together, this forms a basis of comparison for
future ADR mining work from EHRs. The long-term goal of
this project is to further improve EHR data mining techniques,
in the hopes that adoption will catch ADRs earlier and more
reliably and limit the potential damage they cause.

II. ADR DETECTION METHODS

Most accepted methods use disproportionality measures,
which quantify how often a drug and condition co-occur
compared to some baseline. These measures are ratios or
combinations of the four count values present in a contingency
table, as shown in Table I. The variable names a,b,c, and
d used in that table will be used to define each of the
disproportionality measures.

All disproportionality methods have only been applied to
self-reporting data. The Poisson method proposed later in
this paper is especially designed for longitudinal data, by
considering rates of occurrence, using time as a denominator.

A. Proportional reporting ratio

The proportional reporting ratio (PRR), as defined in Equa-
tion 1, has been used in the UK Medicines Control Agency
(MCA) and is widely adopted. [5]. A larger PRR signifies a
potential effect of a drug on the condition.
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1 Occurrence count of given condition in the presence of a given drug.
T2 Occurrence count of given condition in the absence of a given drug.
ni Number of individuals who have taken the given drug.

na Number of individuals who have not taken the given drug.

A1 x1/n1, the condition’s rate of occurrence with drug exposure.

A2 | x2/na2, the condition’s rate of occurrence without drug exposure.

TABLE II. NOTATION FOR POISSON FORMULAS.

PRRs greater than two, along with a count of over three,
and a x? value over four signify a potential ADR [5]. The x>
test is performed on the contingency table.

B. Reporting odds ratio

The reporting odds ratio (ROR), shown in Equation 2,
currently being used by the Netherlands Pharmacovigilance
Centre to detect ADRs, is also widely deployed [7].

ROR = — 2
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The drug-condition pair is signaled if the lower limit of the

two-sided 95% confidence interval exceeds 1 [7], [10]. This
confidence interval can be calculated using Equation 3.

PIN(ROR)£1.96(/(E+7+1+7) 3)

III. CONTRIBUTIONS

This section tackles two problems associated with extract-
ing ADREs: first, a method to detect ADRs based on comparing
rates of condition occurrence; and second, an efficient algo-
rithm for extracting contingency counts (a, b, ¢,d in Table I)
to use disproportionality methods on EHR data.

A. Poisson method

The proposed method compares rates of condition occur-
rence, as with disproportionality methods, but uses time as
a denominator. This avoids using condition non-occurrence,
which is required in disproportionality methods cannot truly
be counted in longitudinal data.

Comparing (within some time window) the rate of con-
dition occurrence in drug takers A; and the rate in non-drug
takers Ao, we may be able to determine whether or not a drug
has had a significant effect on the condition. Assuming these
rates occur according to the Poisson distribution, we can detect
an ADR a by detecting a significant difference between the
two. This can be done using either the popular C-test [8] or
the newer and more powerful E-test [6]. As discovering ADRs
is more important than being accurate, we set the o value of
both tests at 0.1, and use two-sided tests.

For the following sections, notation is given in Table II.

1) C-test: The C-test compares the two condition occur-
rence rates, A\; and ), using the fact that the joint distribution
of two counts x1,x, follow the binomial distribution when
conditioning on p = /\111/\2 and 4 = x1 + z3. The binomial
function is then used to calculate the p-value for the two-sided

hypothesis test A\; = Ao. Derivation is shown in the original
paper [8].
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For our two sided C-test, with the null hypothesis \; = Ao,
the p-value is given by the formula:

2*m1n(P(Xl Z xl‘map)aP(Xl S x1|m,p)) (5)
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and we reject the hypothesis that the two rates are equal (i.e.
the rates of condition occurrence differs significantly) when
Equation 5 yields a value less than oo = 0.1.

2) E-test: The E-test uses the standardized difference as a
pivot statistic. If the null hypothesis is that the two observed
rates z1/n1 and xo/no are equal, then the standardized differ-

ence
x1/n1 — T2 /N2

N

should be 0. In this formula, Vk is estimated variance, given
by
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The p-value can be calculated using the following formula,
which is derived in the original paper [6]:
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where I is the indicator function.

B. Count extraction algorithm

We separate the calculation of disproportionality measures
or pivot statistics from extracting the counts needed for these
methods. This saves processing time, as extracting counts is
costly for large datasets, but calculating measures, though
potentially difficult, do not depend directly on the size of the
dataset.

The count extraction algorithm described in Algorithm
1 utilizes the schema in Table IV. It returns patient drug
exposure information in the form of Py, from which a + b
can be extracted; [V, , which counts condition occurrences for
patients exposed to a given drug (a); and N__, which counts
condition occurrences for unexposed patients (c). Given that
we have the total number of people, all contingency counts in
Table I can be inferred.

The Poisson method does not use the values in the con-
tingency tables, but rather uses the count of occurrences of a
condition given that a user has taken or not taken a drug. This
can be calculated from N and N_ , respectively.

In the algorithm, D is the set of drugs; P, the set of
persons; X is the CONDITION_OCCURRENCE table; Xp



Result: N,  N__ P,
1 Py < map ;
2 foreach Row = € Xp do
3 | Pylz.person,z.drug] < x.drug_start_date ;
4 end
5 Ny < map;
6 N_ <« |P| map ;
7 foreach Drug d € D do

8 foreach Row = € X do

9 s < Py[z.person,d] ;

10 if s # N A then

1 if s < z.condition_start_date < s+t then
12 | Ny.[x.person,d,z.condition] + + ;

13 end

14 else

15 s < random time ;

16 if s < x.condition_start_date < s+t then
17 | N_.[z.person,d,z.condition] + + ;

18 end

19 end

20 end

21 end

Algorithm 1: Count extraction program.

is the DRUG_EXPOSURE table; ¢ is the time window; and s
is a start time of a drug for a person.

An analysis of the runtime of Algorithm 1:

e Lines 1-4 populate P4, which holds the date of first
occurrence of a drug for a patient, or N A if the patient
never takes the drug. Runtime depends solely on | X p]|.

e Lines 5-6 create Ny and N_ , sparse matrices which
count condition occurrences.

e In lines 7-21, how many runs the for loop goes on for
depends on |D||X¢|.

e In line 16, s should be after the start of the subject’s
observation, but with at least ¢ before the end of the
observation period.

e In total, the algorithm is O(|Xp| + |D||X¢]).

C. Extracting disproportionality ratios

Calculating the values in the contingency tables is neces-
sary to derive ROR and PRR for each drug and condition. To
get these values, convert every count value in N_ and Ny
above two to one, then sum both matrices along the “’person”
dimension. Then for each drug and condition:

e q is the respective cell in the summed N, matrix.
e c is the respective cell in the summed N_  matrix.

e b = m — a, where m is the number of people who
took d, according to Pj.

e d=n—(a+0b+c), where n is the total number of
people.

The Poisson method does not use contingency values, but
rather uses the actual count values in N_ and N, , without
converting nonzero counts to one.

Dataset | Drugs | Conditions | Persons
1 12 10 10000
2 25 20 10000
3 50 40 10000
4 12 10 10000
5 25 20 10000
6 50 40 10000
7 12 10 10000
8 25 20 10000
9 50 40 10000
TABLE III. PARAMETERS USED FOR DATASETS GENERATED.
Table Columns

PERSON_ID
CONDITION_ID
CONDITION_START_DATE
PERSON_ID

DRUG_ID
DRUG_START_DATE
DRUG_END_DATE
PERSON_ID
OBSERVATION_START_TIME
OBSERVATION_END_TIME
DRUG_ID

CONDITION_ID
DRUG_EFFECT_SIZE
DRUG_EFFECT_CATEGORY

CONDITION_OCCURRENCE

DRUG_EXPOSURE

OBSERVATION_PERIOD

DRUG_OUTCOMES

TABLE IV. A TABLE REPRESENTING THE USEFUL TABLES AND
ATTRIBUTES OF THE OSIM OUTPUT SCHEMA.

IV. EXPERIMENTS
A. Data

EHR data was generated using the OMOP OSIM1 soft-
ware. OSIM uses probability distributions of variables such
as demographic information, personal characteristics, and
drug and condition characteristics extracted from a real
EHR database, and preserves these distributions for generated
datasets, while allowing experimenters to scale and modify
parameters at will.

Input parameters for the 9 generated datasets are shown in
Table III. In addition to these, condition and drug prevalence
were also increased (set to the 1-10% category), as the default
settings resulted in extremely few condition / drug reactions.
All other parameters remained at their default values.

The relevant tables generated from the OSIM
process, and their schemas, are shown in Table IV.
CONDITION_OCCURRENCE and DRUG_EXPOSURE consist
of patient data; DRUG_OUTCOMES contains known ADRs,
and serves as the ground truth.

B. Experimental Design

Experiments compared ROR, PRR, and the proposed C-test
and E-test methods. All 9 datasets were used.

The primary evaluation metric is recall, which measures
the rate of false negatives, and is commonly used metric in
ADR detection [10], [12]. The secondary metric is precision,
which measures the rate of false positives.

The length of the surveillance period, within which a drug-
condition pair may be considered to have co-occurred, was
selected manually. 180 and 365-day time windows were used
in these experiments.



Precision Recall

Datasel | poR | PRR | C-test | E-test | ROR | PRR | C-test | E-test
1 0.033 | 0.022 | 0.033 | 0.020 | 1.000 | 1.000 | 1.000 | 1.000

2 0.038 | 0.034 | 0.039 | 0.042 | 0733 | 0.867 | 0.733 | 0.867

3 0024 | 0023 | 0023 | 0023 | 0737 | 0.842 | 0.737 | 0.868

4 0.033 | 0022 | 0.033 | 00290 | 1.000 | 1.000 | 1.000 | 1.000

5 0.038 | 0.035 | 0039 | 0.042 | 0733 | 0.867 | 0.733 | 0.867

6 0.024 | 0023 | 0023 | 0023 | 0737 | 0.842 | 0.737 | 0.868

7 0.033 | 0.022 | 0.033 | 0029 | 1.000 | 1.000 | 1.000 | 1.000

8 0.039 | 0.034 | 0039 | 0.042 | 0733 | 0.867 | 0.733 | 0.867

9 0.024 | 0023 | 0023 | 0023 | 0737 | 0.842 | 0.737 | 0.868
mean | 0.032 | 0026 | 0.032 | 0.031 | 0.823 | 0903 | 0.823 | 0.912

TABLE V. RECALL AND PRECISION RESULTS FOR EACH DATASET,
USING A 180-DAY TIME WINDOW. BEST RESULTS FOR EACH DATASET ARE
PRESENTED IN BOLD.

Dataset Precision Recall

ROR PRR C-test E-test ROR PRR C-test | E-test

1 0.028 | 0.022 | 0.031 0.028 1.000 | 1.000 1.000 1.000

2 0.044 | 0.039 0.041 0.040 | 0.867 | 0.867 | 0.867 0.867

3 0.126 | 0.046 | 0.021 0.021 0.632 | 0.711 0.737 0.816

4 0.028 | 0.022 0.032 0.029 1.000 | 1.000 1.000 1.000

5 0.043 | 0.039 0.041 0.040 | 0.867 | 0.867 | 0.867 0.867

6 0.122 | 0.046 | 0.021 0.022 | 0.632 | 0.711 0.737 0.842

7 0.033 | 0.022 | 0.033 0.029 1.000 | 1.000 1.000 1.000

8 0.038 | 0.034 | 0.039 0.042 | 0.733 | 0.867 | 0.733 0.867

9 0.024 | 0.023 0.023 0.023 0.737 | 0.842 | 0.737 0.868
mean 0.054 | 0.032 0.031 0.030 | 0.830 | 0.874 | 0.853 0.903

TABLE VI RECALL AND PRECISION RESULTS FOR EACH DATASET,
USING A 365-DAY TIME WINDOW. BEST RESULTS FOR EACH DATASET ARE
PRESENTED IN BOLD.

C. Results
Results are shown in Tables V and VI.

The E-test method recognized the most true ADRs in every
experimental condition, as evidenced by its high recall. On
average, the PRR test had the second highest recall, followed
by C-test and then ROR.

In the 180-day time window condition, the E-test precision
was comparable to other methods, only negligibly lower than
the C-test and ROR methods. In the 365-day condition, ROR
had the highest precision by far, but also the lowest recall.

V. DISCUSSION
A. Future Experiments

Though results show the E-test to be superior in every
experiment ran, more sophisticated methods such as MGPS
and BCPNN were not extended to EHR data and tested against.
This is because as Bayesian methods, they are sensitive to
initial conditions and have many implementation details. In
the future, the methods described here must be tested against
the more state-of-the-art Bayesian methods.

B. Future Applications

The Poisson method described here is applicable to any
task involving detecting abnormal temporal co-occurrences, for
example, finding potential causes and effects. To demonstrate
the utility and flexibility of this technique, future experiments
should be run in different domains and on different problems.

The framework described here only detects single-cause
single-effect associations, but needs to be extended to han-
dling multiple causes and effects. This presents considerable

difficulty, as co-occurrence will then need to be defined for
sets of drugs and conditions larger than two.

One possible method to make this easier would be to
automatically identify a time window ¢. If the likelihood of
a cause-effect association decreases as the gap between the
two increases, then perhaps this definition could be extended
to model the time gap between multiple causes and effects as
well.

C. Conclusion

This paper explores the usage of EHR data for ADR
detection, tackling two issues: one, the establishment of a
counting method, which is necessary to apply existing ADR
mining methods to EHRs, and second, a native method for
mining ADRs from longitudinal data, which outperforms two
popular and currently used methods. Discussions show the
benefits of working with EHR data, and it is hoped that future
work will benefit actual ADR detection in the future.
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