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Abstract. This paper presents a novel region discovery framework geared
towards finding scientifically interesting places in spatial datasets. We
view region discovery as a clustering problem in which an externally
given fitness function has to be maximized. The framework adapts four
representative clustering algorithms, exemplifying prototype-based, grid-
based, density-based, and agglomerative clustering algorithms, and then
we systematically evaluated the four algorithms in a real-world case
study. The task is to find feature-based hotspots where extreme den-
sities of deep ice and shallow ice co-locate on Mars. The results reveal
that the density-based algorithm outperforms other algorithms inasmuch
as it discovers more regions with higher interestingness, the grid-based
algorithm can provide acceptable solutions quickly, while the agglom-
erative clustering algorithm performs best to identify larger regions of
arbitrary shape. Moreover, the results indicate that there are only a few
regions on Mars where shallow and deep ground ice co-locate, suggesting
that they have been deposited at different geological times.
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1 Introduction

The goal of spatial data mining [1-3] is to automate the extraction of interest-
ing and useful patterns that are not explicitly represented in spatial datasets.
Of particular interests to scientists are the techniques capable of finding sci-
entifically meaningful regions as they have many immediate applications in
geoscience, medical science, and social science; e.g., detection of earthquake
hotspots, disease zones, and criminal locations. An ultimate goal for region
discovery is to provide search-engine-style capabilities to scientists in a highly
automated fashion. Developing such a system faces the following challenges.
First, the system must be able to find regions of arbitrary shape at differ-
ent levels of resolution. Second, the system needs to provide suitable, plug-in
measures of interestingness to instruct discovery algorithms what they should
seek for. Third, the identified regions should be properly ranked by relevance.
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Fourth, the system must be able to
accommodate discrepancies in various
formats of spatial datasets. In par-
ticular, the discrepancy between con-
tinuous and discrete datasets poses a
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discrete datasets. Fifth, it is desirable
for the framework to provide pruning
and other sophisticated search strate-  Fijg, 1. Region discovery framework
gies as the goal is to seek for interest-

ing, highly ranked regions.

This paper presents a novel region discovery framework (see Fig. 1) geared to-
wards finding scientifically interesting places in spatial datasets. We view region
discovery as a clustering problem in which an externally given fitness function
has to be maximized. The framework adapts four representative clustering algo-
rithms, exemplifying prototype-based, grid-based, density-based, and agglomer-
ative clustering algorithms for the task of region discovery. The fitness function
combines contributions of interestingness from constituent clusters and can be
customized by domain experts. The framework allows for plug-in fitness functions
to support a variety of region discovery applications correspondent to different
domain interests.

Relevant Work. Many studies have been conducted in region discovery. These
most relevant to our work are region-oriented clustering techniques and hotspot
discovery. In our previous work, we have discussed a region discovery method
that was restricted to one categorical attribute [4,5]. The integrated framework
introduced in this paper is generalized to be applicable to both continuous and
discrete datasets. The framework allows for various plug-in fitness functions and
extends our work to the field of feature-based hotspot discovery (see Section 2).
[1] introduces a “region oriented” clustering algorithm to select regions to satisfy
certain condition such as density. This approach uses statistical information
instead of a fitness function to evaluate a cluster.

Hotspots are object clusters with respect to spatial coordinates. Detection
of hotspots using variable resolution approach [6] was investigated in order to
minimize the effects of spatial superposition. In [7] a region growing method for
hotspot discovery was described, which selects seed points first and then grows
clusters from these seed points by adding neighbor points as long as a density
threshold condition is satisfied. Definition of hotspots was extended in [8] using
circular zones for multiple variables.

Contributions. This paper presents a highly generic framework for region dis-
covery in spatial datasets. We customize our discovery framework to accommo-
date raster, continuous, and categorical datasets. This involves finding a suitable
object structure, suitable preprocessing techniques, a family of reward-based fit-
ness functions for various measures of interestingness, and a collection of cluster-



ing algorithms. We systematically evaluate a wide range of representative clus-
tering algorithms to determine when and which type of clustering techniques
are more suitable for region discovery. We apply our framework to a real-world
case study concerning ground ice on Mars and successfully find scientifically
interesting places.

2 Methodology

Region Discovery Framework. Our region discovery method employs a reward-
based evaluation scheme that evaluates the quality of the discovered regions.
Given a set of regions R = {r1,...,7} identified from a spatial dataset O =
{01,...,0n}, the fitness of R is defined as the sum of the rewards obtained from
each region r; (j =1...k):

k
a(R) =) (i(ry) x size(r;)”) (1)

j=1

where i(r;) is the interestingness measure of region r; — a quantity based on
domain interest to reflect the degree to which the region is “newsworthy”. The
framework seeks for a set of regions R such that the sum of rewards over all of its
constituent regions is maximized. size(r;)? (8 > 1) in ¢(R) increases the value
of the fitness nonlinearly with respect to the number of objects in O belonging
to the region r;. A region reward is proportional to its interestingness, but given
two regions with the same value of interestingness, a larger region receives a
higher reward to reflect a preference given to larger regions.

We employ clustering algorithms for region discovery. A region is a contiguous
subspace that contains a set of spatial objects: for each pair of objects belonging
to the same region, there always exists a path within this region that connects
them. We search for regions r1,...,7; such that:

1. 7;Nr; =0,i# j. The regions are disjoint.

2. R={r1,...,r,} maximizes q(R).

3. 11 U...Ur, € O. The generated regions are not required to be exhaustive
with respect to the global dataset O.

4. ry,...,r are ranked based on their reward values. Regions that receive no
reward are discarded as outliers.

Preprocessing. Preprocessing techniques are introduced to facilitate the appli-
cation of the framework to heterogeneous datasets. Given a collection of raster,
categorical, and continuous datasets with a common spatial extent, the raster
datasets are represented as (<pixel>, <continuous variables>), the categorical
dataset as (<point>, <category variables>)3, and the continuous datasets as
(<point>, <continuous variables>). Fig. 2 depicts our preprocessing procedure:

3 To deal with multiple categorical datasets a single dataset can be constructed by
taking the union of multiple categorical datasets.
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Fig. 2. Preprocessing for heterogeneous spatial datasets

Step 1. Dataset Integration Categorical datasets are converted into a con-
tinuous density dataset (<point>, <density variables>), where a density
variable describes the density of a class for a given point. Classical density
estimation techniques [9], such as Gaussian kernel functions, can be used for
such transformation. Raster datasets are mapped into point datasets using
interpolation functions that compute point values based on the raster values.

Step 2. Dataset Unification A single unified spatial dataset is created by
taking a natural join on the spatial attributes of each dataset. Notice that
the datasets have to be made “join compatible” in Step 1. This can be
accomplished by using the same set of points in each individual dataset.

Step 3. Dataset Normalization Finally, continuous variables are normalized
into z-scores to produce a generic dataset O=(<point>, <z-scores>), where
z-score is the number of standard deviations that a given value is above or
below the mean.

Measure of Interestingness. The fitness function ¢(R) (Eqn. 1) allows a
function of interestingness to be defined based on different domain interests.
In our previous work, we have defined fitness functions to search risk zones of
earthquakes [4] and volcanoes [5] with respect to a single categorical attribute.
In this paper, we define feature-based hotspots as localized regions where contin-
uous non-spatial features of objects attain together the values from the wings
of their respective distributions. Hence our feature-based hotspots are places
where multiple, potentially globally uncorrelated attributes happen to attain
extreme values. We then introduce a new interestingness function ¢ on the top
of the generic dataset O: given set of continuous features A = {41,..., A4} the
interestingness of an object o € O is measured as follows:

i(A,0) = H z4,(0) (2)



where 24 (0) is the z-score of the continuous feature A;. Objects with |i(4, 0)| >
0 are clustered in feature-based hotspots where the features in A happen to attain
extreme values—measured as products of z-scores.

We then extend the definition of interestingness to regions: the interestingness
of a region r is the absolute value of the average interestingness of the objects
belonging to it:

|Socr i(A,0)] e [ Zocr i(A,0)]
Z(A, 71) — ( seize(r) - Zth) if seize(r) > Zth (3)
0 otherwise.
In Eqn. 3 the interestingness threshold 2z, is introduced to weed out regions

with i(r) close to 0, which prevents clustering solutions from containing only
large clusters of low interestingness.

Clustering Algorithms. Our regional discovery framework relies on reward-
based fitness functions. Consequently, clustering algorithms embedded in the
framework, have to allow for plug-in fitness functions. However, the use of fitness
function is quite uncommon in clustering, although a few exceptions exist, e.g.,
CHAMELEON [10]. Furthermore, region discovery is different from traditional
clustering as it gears to find interesting places with respect to a given measure
of interestingness. Consequently, existing clustering techniques need to be mod-
ified extensively for the task of region discovery. The proposed region discovery
framework adapts a family of prototype-based, agglomerative, density-based,
and grid-based clustering approaches. We give a brief survey of these algorithms
in this section.

Prototype-based Clustering Algorithms. Prototype-based clustering al-
gorithms first seek for a set of representatives; clusters are then created by as-
signing objects in the dataset to the closest representatives. We introduce a
modification of the PAM algorithm [11] which we call SPAM (Supervised PAM).
SPAM starts its search with a random set of k representatives, and then greed-
ily replaces representatives with non-representatives as long as ¢(R) improves.
SPAM requires the number of clusters, k, as an input parameter. Fig. 3a illus-
trates the application of SPAM to a supervised clustering task in which purity of
clusters with respect to the instances of two classes has to be maximized. SPAM
correctly separates cluster A from cluster B because the fitness value would be
decreased if the two clusters were merged, while the traditional PAM algorithm
will merge the two clusters because they are in close proximity.

Agglomerative Algorithms. Due to the fact that prototype-based algo-
rithms construct clusters using nearest neighbor queries, the shape of clusters
identified are limited to convex polygons (Voronoi cells). Interesting regions, and
in particular, hotspots, may not be restricted to convex shapes. Agglomerative
clustering algorithms are capable of yielding solutions with clusters of arbitrary
shape by constructing unions of small convex polygons. We adapt the MOSAIC
algorithm [5] that takes a set of small convex clusters as its input and greed-
ily merges neighboring clusters as long as ¢(R) improves. In our experiments
the inputs are generated by the SPAM algorithm. Gabriel graphs [12] are used
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Fig. 3. Clustering algorithms

to determine which clusters are neighbors. The number of clusters, k, is then
implicitly determined by the clustering algorithm itself. Fig. 3b illustrates that
MOSAIC identifies 9 clusters (4 of them are in non-convex shape) from the 95
small convex clusters generated by SPAM.

Density-Based Algorithms. Density-based algorithms construct clusters
from an overall density function. We adapt the SCDE (Supervised Clustering
Using Density Estimation) algorithm [13] to search feature-based hotspots. Each
object o in O is assigned a value of i(A, 0) (see Eqn. 2). The influence function of
object 0, fGauss(P,0), is defined as the product of i(A4, 0) and a Gaussian kernel:

. _ d(p,0)?
feauss(p,0) = i(A,0) X e 207 . (4)
The parameter o determines how quickly the influence of o on p decreases as
the distance between o and p increases. The density function, ¥(p) at point p is

then computed as:
W(p) = Z fGauss(p7 O)' (5)
0€O

Unlike traditional density estimation techniques, which only consider the spa-
tial distance between data points, our density estimation approach additionally
considers the influence of the interestingness i(A, 0). SCDE uses a hill climbing
approach to compute local maxima and local minima of the density function V.
These locales act as cluster attractors; clusters are formed by associating objects
in O with the attractors. The number of clusters, k, is implicitly determined by
the parameter o. Fig. 3c illustrates an example in which SCDE identifies 9 re-
gions that are associated with maxima (in red) and minima (in blue) of the
depicted density function on the right.
Grid-based Algorithms. SCMRG (Supervised Clustering using Multi-

Resolution Grids) [4] is a hierarchical, grid-based method that utilizes a divisive,
top-down search. The spatial space of the dataset is partitioned into grid cells.



Each grid cell at a higher level is partitioned further into smaller cells at the
lower level, and this process continues as long as the sum of the rewards of the
lower level cells ¢(R) is not decreased. The regions returned by SCMRG are
combination of grid cells obtained at different level of resolution. The number of
clusters, k, is calculated by the algorithm itself. Fig. 3d illustrates that SCMRG
drills down 3 levels and identifies 2 clusters (the rest of cells are discarded as
outliers due to low interestingness).

3 A Real-World Case Study: Ground Ice on Mars

Dataset Description and Preprocessing. We systematically evaluate our
region discovery framework on spatial distribution of ground ice on Mars. Mars
is at the center of the solar system exploration efforts. Finding scientifically
interesting places where shallow and deep ice abundances coincide provides im-
portant insight into the history of water on Mars. Shallow ice located in the
shallow subsurface of Mars, within an upper 1 meter, is obtained remotely from
orbit by the gamma-ray spectrometer [14] (see Fig. 4a, shallow ice in 5° x 5°
resolution). A spatial distribution of deep ice, up to the depth of a few kilo-
meters, can be inferred from spatial distribution of rampart craters [15] (see
Fig. 4b, distribution of 7559 rampart craters restricted to the spatial extent de-
fined by the shallow ice raster). Rampart craters, which constitute about 20%
of all the 35927 craters on Mars, are surrounded by ejecta that have patterns
like splashes and are thought to form in locations once rich in subsurface ice.
Locally-defined relative abundance of rampart craters can be considered a proxy
for the abundance of deep ice.

Using the preprocessing procedure outlined in Section 2 we construct a
generic dataset (<longitude, latitude>, z4;, 2s;) where <longitude, latitude>
is the coordinate of each rampart crater, z4; denotes the z-score of deep ice and
z¢; denotes the z-score of shallow ice. The values of these two features at location
p are computed using a 5° x 5° moving window wrapped around p. The shallow
ice feature is an average of shallow-ice abundances as measured at locations of
objects within the window, and the deep-ice feature is a ratio of rampart to all
the craters located within the window.

Region Discovery Results. SPAM, MOSAIC, SCDE, and SCMRG clustering
algorithms are used to find feature-based hotspots where extreme values of deep
ice and shallow ice co-locate on Mars. The algorithms have been developed in
our open source project Cougar? Java Library for Machine Learning and Data
Mining Algorithms [16]. In the experiments, the clustering algorithms maximize
the following fitness function g(R) — see also Eqn 1:

a(R) =Y (i({zai, 25}, 7) x size(r)?) (6)

reR

For the purpose of simplification, we will use z for #({z4;, zs: }, ) in the rest of the
paper. In the experiments, the interestingness threshold is set to be z;p = 0.15
and two different 3 values are used: 3 = 1.01 is used for finding stronger hotspots
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Fig. 4. Grayscale background depicts elevation of the Martian surface between lon-
gitude of —180° to 180° and latitude —60° to 60°. Legend indicates z value for each
cluster. Objects not belonging to regions identified are not shown (better viewed in
color).

characterized by higher values of z even if the sizes are small, and g = 1.2 for
identifying larger but likely weaker hotspots. Table 1 summarizes the experimen-
tal results. Fig. 4c shows the correspondent clustering results using 5 = 1.01.
And Fig. 4d demonstrates that larger (but weaker) hotspots are identified for
8 = 1.2. Objects (craters) are color-coded according to the z values of clus-
ters to which they belong. The hotspots are in the locations where objects are
coded by either deep red or deep blue colors. In the red-coded hotspots the two
variables have values from the same-side wings of their distributions (high-high
or low-low). In the blue-coded hotspots the two variables have values from the
opposite-side wings of their distributions (high-low or low-high).

Which clustering algorithm produces the best region discovery results? In
the rest of section, we evaluate the four clustering algorithms with respect to



Table 1. Parameters of clustering algorithms and statistical analysis

SPAM SCMRG SCDE | MOSAIC
6=101/8=1.2
Parameters k = 2000/k = 807 None c=01/c=12 None
q(R) 13502/24265 14129 / 34614 14709/39935 |14047/59006
# of clusters 2000/807 1597/644 1155/613 258/152
Statistics of Number of Objects Per Region
Max 93/162 523/2685 1258/3806 4155/5542
Mean 18/45 15/45 25/49 139/236
Std 10/25 31/201 80/193 399/717
Skewness 1.38/1.06 9.52/10.16 9.1/13.44 6.0/5.24
Statistics of Rewards Per Region
Max 197/705 743/6380 671/9488 3126/16461
Mean 10/46 9/54 12/65 94/694
Std 15/66 35/326 38/415 373/2661
Skewness 5.11/4.02 13.8/13.95 10.1/19.59 6.24/4.69
Statistics of /2 Per Region
Max 2.7/2.45 2.85/2.31 2.95/2.94 1.24/1.01
Mean 0.6/0.57 0.74/0.68 0.95/0.97 0.44/0.40
Std 0.38/0.36 0.31/0.26 0.47/0.47 0.24/0.22
Skewness 1.14/1.34 1.58/1.88 1.28/1.31 0.73/0.40

statistical measures, algorithmic consideration, shape analysis, and scientific con-
tributions.

Statistical Measures. Table 1 is divided into four sections. The first section
reports on the overall properties of clustering solutions: the parameters used by
the clustering algorithms, the total reward and the number of regions discovered.
The remaining three sections report on statistics of three different properties:
region size, its reward on the population of the constituent regions, and /z,
the square root of the interestingness of regions. The SPAM algorithm requires
an input parameter k, which is chosen to be a value that is of the same order
of magnitude as the values of k yielded by the SCMRG and SCDE algorithms.
Due to its agglomerative character the MOSAIC algorithm always produces a
significantly smaller number of clusters regardless of the size of its input provided
by the SPAM clustering solution. Thus the MOSAIC is separated from the other
solutions in the table.

To seek for feature-based hotspots of shallow ice and deep ice, the solution
that receives high value of ¢(R) and provides more clusters with the highest
values of /z is the most suitable. This is the solution having a large value of
skewness for the reward and +/z properties. Skewness measures the asymmetry
of the probability distribution, as the large value of skewness indicates existence
of hotspots (more extreme values). In addition a suitable solution has larger val-
ues of the mean and the standard deviation for the reward and /2 properties,
as they indicate existence of stronger hotspots. The analysis of Table 1 indicates



that SCDE and SCMRG algorithms are more suitable to discovery hotspots with
higher values in z. Furthermore, we are interested in evaluating the search capa-
bility, how the top n regions are selected by the four algorithms. Fig. 5a illustrates
the average region size with respect to the top 99" 97th 94th 90t 80", 60"
percentile for the value of interetingness z. Fig. 5b depicts the average value of
interestingness per cluster with respect to the top 10 largest regions. We ob-
serve that SCDE can pinpoint stronger hotspots in smaller size (e.g., size = 4
and z = 5.95), while MOSAIC is the better algorithm for larger hotspots with
relatively higher value of interestingness (e.g., size = 2096 and z = 1.38).

Algorithmic Considerations. As determined by the nature of the algo-
rithm, SCDE and SCMRG algorithms support the notion of outliers — both
algorithms evaluate and prune low-interest regions (outliers) dynamically dur-
ing the search procedure. Outliers create an overhead for MOSAIC and SPAM
because both algorithms are forced to create clusters to separate non-reward
regions (outliers) from reward regions. Assigning outliers to a reward region in
proximity is not an alternative because this would lead to a significant drop in
the interestingness value and therefore to a significant drop in total rewards.

The computer used in our experiments is Intel(R) Xeon, CPU 3.2GHz, 1GB
of RAM. In the experiments of = 1.01 the SCDE algorithm takes ~ 500s to
complete, whereas the SCMRG takes ~ 3.5s, the SPAM takes ~ 50000s, and the
MOSAIC took ~ 155000s. Thus, the SCMRG algorithm is significantly faster
than the other clustering algorithms and, on this basis, it could be a suitable
candidate to searching for hotspots in a very large dataset with limited time.

Shape Analysis. As depicted in Fig. 4, in con-
trast to SPAM whose shapes are limited to convex
polygons, and SCMRG whose shapes are limited to
unions of grid-cells; MOSAIC and SCDE can find
arbitrary-shaped clusters. The SCMRG algorithm
only produces good solutions for small values of (3,
as larger values of 3 lead to the formation of large,
boxy segments that are not effective in isolating the
hotspots. In addition, the figure on the right depicts
the area of Acidalia Plantia on Mars (centered at ~ —15° longitude, —40° lati-
tude). MOSAIC and SCDE have done a good job in finding non-convex shape
clusters. Moveover, notice that both algorithms can discover interesting regions
inside other regions — red-coded regions (high-high or low-low) are successfully
identified inside the blue-coded regions (low-high or high-low). It thus makes the
hotspots even “hotter” when excluding inside regions from an outside region.

Scientific Contributions. Although the global correlation between the
shallow ice and deep ice variables is only —0.14434 — suggesting the absence of a
global linear relationship — our region discovery framework has found a number
of local regions where extreme values of both variables co-locate. Our results in-
dicate that there are several regions on Mars that show a strong anti-collocation
between shallow and deep ice (in blue), but there are only few regions on Mars
where shallow and deep ground ice co-locate (in red). This suggests that shallow
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Fig. 5. Search capability evaluation.

ice and deep ice have been deposited at different geological times on Mars. These
places need to be further studied by the domain experts to find what particular
set of geological circumstances led to their existence.

4 Conclusion

This paper presents a novel region discovery framework for identifying the feature-
based hotspots in spatial datasets. We have evaluated the framework with a
real-world case study of spatial distribution of ground ice on Mar. Empirical
statistical evaluation was developed to compare the different clustering solutions
for their effectiveness in locating hotspots. The results reveal that the density-
based SCDE algorithm outperforms other algorithms inasmuch as it discovers
more regions with higher interestingness, the grid-based SCMRG algorithm can
provide acceptable solutions within limited time, while the agglomerative MO-
SAIC clustering algorithm performs best on larger hotspots of arbitrary shape.
Furthermore, our region discovery algorithms have identified several interesting
places on Mars that will be further studied in the application domain.
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