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Abstract

Counting craters is a paramount tool of planetary analysis because it pro-
vides relative dating of planetary surfaces. Dating surfaces with high spatial
resolution requires counting a very large number of small, sub-kilometer size
craters. Exhaustive manual surveys of such craters over extensive regions
are impractical, sparking interest in designing crater detection algorithms
(CDAs). As a part of our effort to design a CDA, which is robust and
practical for planetary research analysis, we propose a crater detection ap-
proach that utilizes both shape and texture features to identify efficiently
sub-kilometer craters in high resolution panchromatic images. First, a math-
ematical morphology-based shape analysis is used to identify regions in an
image that may contain craters; only those regions – crater candidates – are
the subject of further processing. Second, image texture features in combi-
nation with the boosting ensemble supervised learning algorithm are used
to accurately classify previously identified candidates into craters and non-
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craters. The design of the proposed CDA is described and its performance
is evaluated using a high resolution image of Mars for which sub-kilometer
craters have been manually identified. The overall detection rate of the
proposed CDA is 81%, the branching factor is 0.14, and the overall qual-
ity factor is 72%. This performance is a significant improvement over the
previous CDA based exclusively on the shape features. The combination of
performance level and computational efficiency offered by this CDA makes
it attractive for practical application.

Keywords: automatic crater detection; pattern recognition; craters; Mars

1. Introduction

Craters are topographic features on planetary surfaces resulting from im-
pacts of meteoroids. They are found on all hard-surface bodies in the so-
lar system but are most abundant on bodies such as the Moon or Mars
where they can accumulated due to slow surface erosion rates. Importance
of craters stems from their utility to provide relative chronology of different
planetary surfaces (Wise and Minkowski, 1980; Tanaka, 1986); simply put,
heavily cratered surfaces are relatively older than less cratered surfaces. Be-
cause statistics of crater sizes form the basis for geologic stratigraphy, crater
counting is a routine activity in planetary science (Hartmann, 1999; Hart-
mann and Neukum, 2001). Presently, all crater surveys are done by means of
visual inspection of images resulting in databases which are either spatially
comprehensive but restricted to only the largest craters (Barlow, 1988; Ro-
dionova et al., 2000; Andersson and Whitaker, 1982; Kozlova et al., 2001),
or size comprehensive but limited to very specific geographical location. The
size distribution of craters can always be approximated by the power-law
(Tanaka, 1986); large craters are rare and small craters are abundant. Counts
of large craters must be collected from spatially extended regions in order to
accumulate sufficient number of samples for accurate statistics. Thus, geo-
logic stratigraphy based on manually collected databases has coarse spatial
resolution. Finer spatial resolution of the stratigraphy can only be obtained
from statistics of smaller craters, and the only viable means to obtain spa-
tially comprehensive databases of smaller craters is through automating the
process of crater detection.

The literature on crater detections algorithms (CDAs) is extensive, (Sala-
municcar et al., 2011) tabulates 77 past publications on various CDA ap-
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proaches however, no algorithm capable of becoming a standard tool for
practitioners of planetary science has emerged. Crater counts continue to
be done via visual inspection of images even as data sets of high resolution
images keep on increasing. The lack of robust and practical CDA, that could
be utilized as an “off-the-shelf” application, is due to the fact that real (as
oppose to idealized) craters are difficult objects to detect in an image as
they lack specific features that can reliably discriminate them from other
objects (or collection of objects) also present on planetary surfaces. Craters
appearance in an image depends on their level of degradation, on their in-
ternal morphologies (presence of central peaks, peak rings, central pits, wall
terraces, etc.) and the degree of overlapping with other craters, on image
quality (illumination angle, surface properties, atmospheric state), and on
their sizes that may differ by orders of magnitude.

One challenge of a CDA is to find a set of features that best discriminates
between craters and non-crater objects. Such set of features will depend
on the type of surface, illumination properties, and the sizes and shapes
of craters. Existing algorithms focus on detection of larger craters located
on simple surfaces; such focus dictates a specific choice of image features.
However, an actual need is to detect smaller, sub-kilometer size craters, which
are not necessary located at smooth surfaces, and are present in an image
that may have variable level of illumination. Even smaller craters, having
sizes below 100 m cannot be utilized for surface dating because they erode on
relatively fast time scale and/or are results of secondary impacts. Thus, in
this paper we refer to craters as “small” if they have sub-kilometer size; note
that such “small” craters may contain hundreds or even thousands of pixels
in a high resolution image having resolution of the order of 1-10 meters/pixel.
An algorithm designed to detect sub-kilometer craters should be build around
different set of image features than an algorithm designed to detect large
craters located at a simple terrain. The need to detect small craters stems
from their shear number; much less abundant, larger craters can be detected
via visual inspection with substantial but not overwhelming effort, but vast
quantity of small craters all but requires an automated detection approach.

Another challenge of a CDA is to utilize an optimal detection technique.
Existing approaches to detection technique can be divided into two general
categories: unsupervised (fully autonomous) and supervised (which require
an input from a domain expert). Detailed discussion of how these two ap-
proaches are utilized in crater detection algorithms can be found in Bue and
Stepinski (2007); Stepinski et al. (2009). Unsupervised approaches rely on
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pattern recognition techniques to identify crater rims in an image as circu-
lar objects. Supervised approaches use machine learning techniques to train
a classifier that is subsequently used to separate craters from other objects
found in an image. Note that in both approaches craters are detected by a
process of narrowing a set of their potential candidates. In an unsupervised
approach the narrowing is achieved through thresholding a value of parame-
ter that measures how well a candidate fits a circle. In a supervised approach
the narrowing is achieved by thresholding a probability of positive detection
by a classifier. Thus, a good CDA requires a well chosen set of discriminative
features, an efficient method for finding all possible crater candidates, and
a set of criteria that can accurately separate craters from non-craters in the
set of candidates.

The purpose of this paper is to contribute toward development of a CDA
especially designed toward surveying sub-kilometers size craters in high reso-
lution planetary images. Our key insight is an observation that discriminative
features utilized to obtain a set of crater candidates do not have to be the
same as discriminative features utilized to extract craters from the set of
candidates. Indeed, we propose to use shape features for rapid identification
of a set of viable crater candidates and to use texture features for accurate
classification of the candidates.

Recently it was proposed (Urbach and Stepinski, 2009) that small crater
candidates can be conveniently and efficiently detected in an image because
each of them contains a pair of characteristic shapes. Planets on which
craters are preserved have very tenuous atmospheres, so all images are taken
in direct sunlight. Under such illumination conditions, small craters, which
are bowl-like topographic depressions, yield photographic imprints containing
semi-circular of crescent-like highlight and shadow regions. Note that larger
craters, which are not bowl-shaped, show no such imprints. A detection
method based on this idea utilizes mathematical morphology (Matheron,
1975; Serra, 1982) to design scale and rotation-invariant shape filters for
identification of such regions. Because a single application of shape filter to
an image identifies all crater candidates irrespective of their sizes (within a
limit) and orientation, the shape-based method is very efficient and thus well-
suited for detecting small crater candidates in large images. However, using
a single pair of shapes to distinguish between true craters and other objects
present in the set of candidates yields less than optimal classification results
(Urbach and Stepinski, 2009). Thus, the shape-based algorithm (Urbach
and Stepinski, 2009) is not the best complete crater detector, but it is a very
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efficient crater candidate detector.
Another recent study (Martins et al., 2009) has demonstrated that simple

image texture features (Papageorgiou et al., 1998) are effective in discrimi-
nating between craters and non-crater objects when coupled to a boosting
algorithm (Viola and Jones, 2004) that combines a number of most discrimi-
native single-feature weak classifiers into a sole, strong classifier. The boost-
ing approach, first proposed in the context of face recognition, is effective
because its learning strategy adopts well to a large variety found in images
of craters. On the other hand, such CDA has no build-in strategy for finding
crater candidates; the classifier is applied to an exhaustive set of image frag-
ments making it inefficient for detecting small craters in large images. Thus,
the texture-based algorithm is an accurate but inefficient crater detector. It’s
efficiency can be increased significantly by providing a compact set of crater
candidates, which would make performing an exhaustive search unnecessary.

In this paper we present a CDA, oriented toward detection of sub-kilometer
craters that uses shape features (Urbach and Stepinski, 2009) to detect ef-
ficiently a set of feasible crater candidates and utilizes texture features to
classify accurately the candidates into craters and non-craters. Thus, our ap-
proach utilizes the best characteristics of the two methods. We demonstrate
that such hybrid algorithm significantly outperforms an algorithm (Urbach
and Stepinski, 2009) based on shape features alone – the only other algo-
rithm designed for efficient detection of sub-kilometer craters. This work is a
continuation of early tests where we verified the effectiveness of this method
(Bandeira et al., 2010).

The rest of the paper is organized as follows. In Section II we describe
our shape-based methodology for finding crater candidates and in Section III
we describe our texture-based method for classification of the candidates into
craters and non-craters. In Section IV we introduce our test site, represented
by a panchromatic, high resolution image of cratered terrain on Mars, and
present results of calculations aimed at assessing the performance of our
method. Conclusions and direction of future research are given in Section V.

2. Finding crater candidates

The first phase of our sub-kilometer CDA is devoted to an efficient iden-
tification of a set of viable crater candidates. This set is to be submitted (in
the second phase of our CDA) to a classifier for separation of true craters
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from non-crater objects. Having a dedicated algorithm for finding crater can-
didates improves an overall efficiency of crater detection. In principle, a pool
of candidates could be created by an exhaustive search of an entire image.
In such an approach candidates are generated by extracting image blocks of
different sizes centered at each pixel in an image. This leads to an unneces-
sarily large number of image block extraction, and to a wasteful amount of
evaluations at the classification phase. There exist several methods for more
efficient identification of crater candidates in an image, including Bandeira
et al. (2007); Salamuniccar and Loncaric (2010). The recent method (Urbach
and Stepinski, 2009) based on shape features identifies sub-kilometer crater
candidates in a particularly efficient manner; we utilize this method in our
CDA.

input : High resolution panchromatic image of planetary surface.
output: The list containing crater candidates (ID number of a

candidate, x and y coordinates of candidate center, estimate
of candidate diameter.)

Invert the image;1

for image=original to inverted do2

Extraction of highlight (shadow) shapes;3

Removal of oversize shapes using median filter;4

Removal of shapes that lack sufficient contrast using power filter5

(Young and Evans, 2003);
Removal of undersize shapes using area filter;6

Apply shape filters to identify highlight and shadow shapes having7

geometries consistent with being parts of craters.
end8

Match identified highlights and shadows shapes into crater candidates.9

Calculate x and y coordinates and estimate diameters of crater
candidates.
Algorithm 1: Finding crater candidates using shape features.

The key insight of Urbach and Stepinski (2009) is an observation that
the craters (crater candidates) could be recognized in an image as a pair
of crescent-like highlight and shadow regions or shapes; hence we refer to
their method as based on shape features. Algorithm 1 identifies high level
steps needed to translate that insight into actual calculation. For detailed
description of the shape-based algorithm we refer the reader to the original
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  Figure 1: Examples of image blocks representing crater candidates C; each block is twice
the size of the candidate. Classification of the candidates (see Section III) assigns them
probabilities, H(C), of being a crater; (A) 0 < H(C) ≤ 0.4, (B) 0.4 < H(C) ≤ 0.6, (C)
0.6 < H(C) ≤ 0.8, (D) 0.8 < H(C) ≤ 1.0.

work (Urbach and Stepinski, 2009); here we provide only a short summary
of this technique. The input is a panchromatic image which contains many
highlight and shadow shapes. The algorithm identifies and processes high-
light and shadow shapes simultaneously using inverted image to identify and
process the shadow shapes (line 3 in the Algorithm 1). The goal of the chain
of processes (lines 4 to 7 in the Algorithm 1) is to eliminate all shapes that are
not indicative of craters. The shape processing utilizes extensively attribute
filters (Breen and Jones, 1996); these filters use criteria evaluated using nu-
merical attributes of shapes to decide whether to eliminate or keep any given
shape. The efficiency of the shape-based approach stems from translational,
rotational, and scale (only shape filters) invariance of attributes used in the
filters. Thus, a single application of any filter to an image removes all un-
desired shapes. In the final step (line 9 in the Algorithm 1), the remaining
highlight and shadow shapes are matched to each other to identify crater
candidates; for each candidate coordinates of its center and the estimate of
its diameter are calculated. The shape-based method was originally proposed
(Urbach and Stepinski, 2009) as a complete CDA, however, the set of crater
candidates identified by Algorithm 1 has a high number of false positive de-
tections. In Urbach and Stepinski (2009) the number of false positives was
reduced by classifying the output of Algorithm 1 using additional features
pertaining to relationships between a pair of (highlight and shadow) shapes
constituting each crater candidate. We submit that subjecting the output of
Algorithm 1 to a classifier based on texture features rather than additional
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shape features results in a more accurate CDA.

3. Detection of craters

Craters are detected from amongst the set of crater candidates (the out-
put of Algorithm 1) on the basis of image texture features using a variation
of the method proposed in Martins et al. (2009). The method has two com-
ponents. First, an overcomplete set of texture features is constructed to
represent an image block containing each crater candidate. Second, a simple
and efficient classifier/feature selector is built using the AdaBoost learning
algorithm to select features that discriminate best between craters and non
crater objects, and to assign probabilities of being a crater to each candidate.
Although a version of this algorithm is avaliable at Open Computer Vision li-
brary (http://opencv.willowgarage.com/wiki/FaceDetection), we decided to
implement our own version in Matlab, easier to integrate with previous work.

3.1. Image preprocessing

In a preprocessing step an image is subjected to histogram equalization
(Press, 2007) transformation. The purpose of such preprocessing is two-
fold: first, it increases contrast and make detection of craters easier; second,
it makes many different images, each having different level of illumination
and contrast, look similar thus minimizing the need for establishing separate
training set for each individual image. Subsequently, we apply a median filter
(with a 3x3 kernel) to smooth the noise introduced by the equalization.

3.2. Texture features

For each crater candidate a square image block, centered on the location
of the candidate and having a dimension twice the diameter of the candidate,
is extracted from an overall image representing the entire scene. Examples of
such image blocks, representing candidates having different sizes, are shown
in Fig. 1. Image blocks stemming from all identified crater candidates must
be encoded in terms of texture features. Texture feature extraction algo-
rithms can be grouped into statistical, geometrical, model based, and signal
processing based (Tuceryan and Jain, 1998). From the variety of possible
algorithms we have chosen a simple geometrical method of texture features
extraction first proposed in Papageorgiou et al. (1998), and popularized in
the context of face recognition by Viola and Jones (2004). Such texture fea-
tures are broadly utilized for object detection (for example, face detection)
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and have proven to work well for crater detection (Martins et al., 2009). Nu-
merical values of the features are calculated using a family of binary masks.
Each mask is a rectangular region subdivided into two kinds of sectors (re-
ferred to as black and white sectors for specificity). The value of a particular
mask-feature is obtained by placing the mask over a selected part of an
image block (representing a crater candidate) and subtracting the sum of
grayscale values of the pixels covered by black sectors of the mask from the
sum of grayscale values of the pixels covered by white sectors of the mask.
By changing the size of the mask, an arrangement of its sectors, and its
placement within an image block, a large set of mask-features is assembled.
This set provides a rich, overcomplete representation of crater candidates
and forms a basis for their classification into two classes of objects: true
craters and non-crater objects. An overcompleted representation of objects
is desirable because it helps to accommodate intra-class variability without
compromising inter-class discriminability.

Figure 2: Nine types of masks used for extraction of texture features.

Because we aim at detecting round craters characterized by large scale
shadows and highlights we decided to use only square mask-features in order
to significantly reduce the overall number of features. Note that in the con-
text of face detection, and even in the previous application of mask-features
to crater detection (Martins et al., 2009), a larger set of rectangular mask-
features was used. In the case of face detection rectangular features are
justified by existence of rectangular face components (nose, eyes), but in the
context of crater detection rectangular features are not necessary. In our im-
plementation of texture features, each crater candidate image block is resized
(using a bilinear interpolation method) from its original size to a standard-
ized size of 48×48 pixels. We use mask-features in four different sizes, 12×12,
24×24, 36×36 or 48×48 pixels, respectively. In each size nine different pat-
terns of black and white sectors are used (see Fig.1). These patterns are
chosen to detect edges of the crater as well as the shadows/highlight line
across the crater (see Fig. 1 for examples of image blocks containing craters).
Finally, each mask is applied in multiple spots located all across an image
block and separated from each other by a third of mask size. Overall, we
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represent each crater candidate (its corresponding image block) by 1089 fea-
tures. Each of the nine mask pattern types (see Fig.2) results in 121 features;
100 for 12×12 pixels size masks, 16 for 24×24 pixels size masks, 4 for 36×36
pixels size masks, and 1 for 48×48 pixels size masks. The features are lin-
early normalized to the range of (−1, 1) to eliminate dependence on size of
the mask. Efficient calculation of all features is achieved through so-called
“integral image representation” (Viola and Jones, 2004).

3.3. Feature selection and classification

Given a set of 1089 texture-based features and a training set containing
craters and non-crater objects, a number of machine learning approaches
(for example, decision tree, support vector machines, maximum likelihood,
or neural networks) could be used to derive a binary (crater vs. non-crater)
classifier. However, the purpose of having an overcompleted set of features
is to use a classifier that, during its training phase, automatically selects
only those features that are most useful in discriminating between crater
and non-craters. Note that whether any particular feature is discriminative
or not is not known a priori and feature selection is indeed a part of the
learning process. Following Martins et al. (2009) we use a variant (Viola
and Jones, 2004) of AdaBoost algorithm (Freund and Schapire, 1997) that
simultaneously selects the best features and trains the classifier.

In general, the AdaBoost selects a limited subset from a large pool of
simple, rather poorly performing learning algorithms (called weak classifiers)
and combines the selected algorithms into a strong, well-performing classifier.
The variant of the AdaBoost algorithm used in this paper identifies weak
classifiers with texture features. For each of our 1089 texture features a
simple classifier in the form of a single node decision tree (a decision stump)
is constructed

h(C; f, p, θ) =

{
1 if p · f(C) ≥ p · θ
0 otherwise

(1)

where C is an image block representing a crater candidate and f(C) is the
numerical value of a specific texture feature applied to C. The weak, feature-
specific classifier h(C) is parameterized by a threshold θ and a polarity (di-
rection of inequality) p = {1,−1} and yields values of 1 (crater) or 0 (non-
crater). Values of the parameters are set so the minimum number of crater
candidates in the training set is misclassified. Each weak classifier by it-
self is expected to perform poorly because no single texture-based feature
has sufficiently high discriminative power. However, different features reflect
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different aspects of discrimination between craters and non-craters, so the
combination of many weak classifiers is expected to perform well.

input : Training set of crater candidates (C1, y1), . . . , (Cn, yn), where
Ci is the ith crater candidate image block and yi = 0, 1 for
craters and non-craters, respectively.

output: The final strong classifier that assigns each Ci a probability
of being a true crater.

Initialize weights w1,i = (1/2m), (1/2l) for yi = 0, 1, where m and l are1

number of carters and non-craters, respectively in the training set;
for t = 1 to T , where T is a desired number of most discriminative2

weak classifiers do
Normalize the weights, wt,i ← wt,iPn

j=1 wt,j
;3

Select the weak classifier that minimizes the weighted error4

εt = minf,p,θ

∑
i wt,i|h(Ci, f, p, θ)− yi|;

Define ht(C) = h(C, ft, pt, θt), where ft, pt, and θt are the5

minimizers of εt;
Update the weights, wt+1,i = wt,iβ

1−ei , where ei = 0 if Ci is6

classified correctly, and ei = 1 if Ci is classified incorrectly;
βt = εt/(1− εt).

end7

The final strong classifier is given by8

H(C) =

{
crater if

PT
t=1 αt·ht(C)PT

t=1 αt
> µ

non-crater otherwise

where αt = log(1/βt) and µ is a threshold probability.

Algorithm 2: Building the strong, texture-based classifier through
boosting.

Algorithm 2 summarizes a variant of the AdaBoost procedure we uti-
lized for building the strong classifier. The algorithm requires a training set
of n image blocks depicting both craters and non-craters. It selects T most
discriminative weak classifiers from the total available pool of 1089 such clas-
sifiers. In order to achieve this goal the algorithm goes through T “rounds”
of weak classifier selection (the main loop spanning the lines 2-7 in the Al-
gorithm 2). In each round the weak classifier that minimizes the weighted
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Figure 3: Image of test site located in the region of Nanedi Valles on Mars, between
longitudes of −47 ◦.66’E/−48 ◦.68’E, and latitudes of 7 ◦.28’N/7 ◦.95’N (from the top-left
corner: X-Offset=1500, Y-Offset=36000 , Width=4700, Height=3200). The 3050 craters
manually identified by an analyst are shown as lighter gray circles with sizes proportional
to the diameters of the craters. Vertical lines indicate boundaries between West, Central,
and East sections.
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error (line 4 in the Algorithm 2) is selected. The algorithm also assigns an
importance, αt to the selected weak classifier; providing that εt ≤ 0.5, the αt

gets larger as εt gets smaller. All training examples are assigned the weights
(line 1 of the Algorithm 2). These weights are recalculated at the end of each
round (line 6 in the Algorithm 2) in such a way as to decrease the weights of
training examples correctly identified in the present round thus forcing the
algorithm to focus on other, “harder” examples in the next round. Once a
desired number of rounds are performed, the strong classifier is constructed
from the T selected weak classifiers and their importance factors (line 8 in
the Algorithm 2). The strong classifier, H(C), depends on the user-defined
value of probability threshold µ ≤ 1. Choosing a large value of µ minimizes
the value of false detection percentage (FDP) but results in a relatively small
value of true detection percentage (TDP), whereas choosing a smaller value
of µ results in increased values of both TDP and FDP.

3.4. Post-processing

Our shape-based methodology allows for multiple candidates, classified
as “craters,” to correspond to a single crater. For this, we use elimination
formulas consistent with earlier work on morphology based algorithm (Ban-
deira et al., 2010; Ding et al., 2011), where crater-labeled candidates fulfilling
the following criteria are taken to correspond to a single crater and grouped
together:

|di − dj|
max(di, dj)

≤ α and
dist(pi, pj)

max(di, dj)
≤ γ (2)

here, candidates i and j 6= i have diameters (positions) di (pi) and dj (pj),
respectively. We have determined experimentally the best choices for free
parameters α = γ = 0.5. The candidate having the highest value of H(C)
within the group is selected as a positive “identification” of a given crater;
the remaining candidates within that group are discarded without becoming
false negatives.

4. Test site results

4.1. Dataset and experimental setup

In order to test the performance of our CDA we use a portion of the
nadir panchromatic, 12.5 m/pixel image (h0905) of Mars taken by the High
Resolution Stereo Camera (HRSC) on-board the Mars Express spacecraft.
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The selected site is centered on Nanedi Valles – a prominent geologic fea-
ture; it extends ∼40 km (north-south) by ∼59 km (east-west) and covers
∼2360 km2 of heavily cratered terrain. In this site an analyst has manually
cataloged 3050 craters having diameters between 40 to 6600 meters. The
site and its cataloged craters are shown in Fig. 3, available for download
at http://cerena.ist.utl.pt/lpcbandeira/downloads.html, also with the detec-
tion results obtained. The Nanedi Valles passes through the middle of the
site introducing heterogeneity of the terrain. In order to account for this
heterogeneity in the evaluation of our CDA, three sections, labeled West,
Central (containing Nanedi Valles) and East, have been defined (see Fig. 3).
We recognize that our algorithm may not be able to detect smallest craters
identify by an analyst. Thus, our goal is not to compare the result of de-
tection to the entire manual catalog, but rather to determine the smallest
size of a crater that can be reliably detected by the algorithm. This size is
determined by the desire detection rate; we aim at detection rate of about
80%.

Applying Algorithm 1 to our test site results in identification of 14004
crater candidates. We have chosen n = 633 candidates, all located in the
northern half of the east section of the test site, to constitute the training
set; 211 of them are true craters and 422 are non-crater objects. The false
examples were randomly picked out from amongst the candidates not over-
laying any crater in the ground truth catalog. Note that the training set
contains only 7% of the craters in the entire site and is sampled from ap-
proximately 20% of the area of the site. Thus, our setup corresponds to a
likely use of the CDA, wherein a user wants to train the CDA on a small
image and use the CDA to find craters in a larger image. In the training
phase we have applied the Algorithm 2 to the training set using all features
(T = 1089). This is because we have no a priori knowledge about a number
of features that are sufficient for adequate performance. However, the Ad-
aBoost algorithm ranks the features by their importance factor αt providing
a tool for establishing the minimum required number of features for future
application. Fig. 4 shows the features selected by the algorithm in the first
six rounds (top six features). The selected features (except for the feature
# 5) appear to focus on detecting a boundary between the shadow and the
highlight portions of a crater. Note that the features were selected on the
basis of the entire training set, but are shown on Fig. 4 over a single, par-
ticularly regular crater. Thus, we cannot fully interpret the selection logic
without examining the entire training set.

14



  
Figure 4: The top six mask-features selected with AdaBoost using the training set as
described in the text. All six mask-features are shown on top of the same gray scale image
block showing a well-defined crater. A crater is a depression in the surface and appears in
an image as a pair of shadow and highlight semi-circular shapes. An illumination is from
the north-west.

4.2. Performance evaluation methodology

By running a series of calculations with progressively larger lower limit
on the size of allowable craters we have determined that only craters larger
than 16 pixels (200 m in the h0905 image) can be reliably identified in our
test site (detection rate of about 80%). Thus, our algorithm, which requires
a certain number of pixels to determine a shape and the texture of an image
block, cannot detect craters as small as the human eye can. Nevertheless,
the lower limit of 200 m is quite sufficient from practical point of view (see
Section 1.). In addition, the overall size of an image puts an upper limit on
the size of identifiable crater because of paucity of larger craters for inclusion
in the training set. We have determined that only craters smaller than 400
pixels (5000 m in the h0905 image) can be reliably identified in our test site.
Again, this is not a serious limitation because such craters are very rare (in
an area considered here) and can be easily counted manually. Thus, in our
test image, we compare the results of our CDA to an identifiable subset of
the craters cataloged by an analyst that consists of the craters in the range
of 16 pixels < diameter < 400 pixels. There are 1937 such craters; hereafter
we refer to them as the ground truth.

To evaluate the performance of our method we use quality factors (Shufelt,
1999): true detection percentage D = 100 ·TP/(TP +FN), branching factor
B = FP/TP , and quality percentage Q = 100 ·TP/(TP +FP +FN). Here,
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TP stands for the number of true positive detections (detected craters that
are actual craters), FP stands for the number of false positive detections (de-
tected craters that are not), and FN stands for the number of false negative
”detections” (non-detection of real craters). For completeness, TN is the
number of true negatives (non-craters correctly identified as such). D can be
treated as a measure of crater-detection performance (larger is better), B as
a measure of delineation performance (smaller is better), and Q as an overall
measure of algorithm performance (larger is better).

Determining “detection” of craters is nontrivial as the craters constituting
the ground truth catalog and the crater candidates labeled by our classifier
are not expected to correspond exactly to each other. We use the following
criteria to match a labeled candidate to a crater in the ground truth catalog
(gt):

|dgt − di|
max(dgt, di)

≤ β,
dist(pgt, pi)

max(dgt, di)
≤ 1, dist(pgt, pi) ≤ δ (3)

Values of β or δ determine desired strictness of the match between a candidate
and the ground truth crater; we have determined experimentally their best
values, β = 0.5 and δ = 26 pixels.

Figure 5: Inverted receiver operating characteristic (ROC) curves for the strong crater
detection classifier H(C) constructed using T = 10 top features (solid line) and 100, 150,
200, and 1089 features (dashed line).
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Table 1: Performance of our shape/texture-based CDA vs. the performance of the CDA
based exclusively on shape features. D stands for true detection percentage; Q for quality
percentage and B for branching factor.

Quality factors
type Entire test site West section Central section East section

shape/texture shape only shape/texture shape only shape/texture shape only shape/texture shape only
D (%) 80.7 63.53 79.1 59.37 78.3 61.52 86.9 75.48

B 0.136 0.248 0.115 0.259 0.243 0.247 0.0923 0.229
Q (%) 72.3 54.9 72.5 51.5 65.8 53.4 80.5 64.3

improvement in classification performance
type all regions west region central region east region

improv. D (%) 27.0 33.2 27.3 15.1
improv. B (%) 45.0 55.6 1.6 59.7
improv. Q (%) 31.7 40.8 23.2 25.2

4.3. Results

With the values of TP , FP and FN calculated according to a descrip-
tion given above we proceed to establish a minimum number of features
required to yield a satisfactory classifier. We calculated receiver operating
characteristic (ROC) curves (Fawcett, 2004) corresponding to crater detec-
tion classifiers, H(C), indexed by a number of features they use; classifiers
using 10, 100, 150, 200, and 1089 top features were evaluated. The ROC
curve is a parametric curve that compares two characteristics of the classi-
fier, true positive rate TPR=TP/(TP+FN) (the same as D but expressed
as a fraction) and false positive rate FPR=FP/(FP+TP ) as the probability
threshold µ changes. It depicts changes of relative trade-off between benefit
(TPR) and cost (FPR) with µ. Fig. 5 shows the inverted ROC curves for
considered classifiers. The curves for 100, 150, 200, and 1089 features are
identical on the scale of Fig. 5 and are represented by a single curve labeled
T = 1089. We use an inverted ROC curve (TPR on the x-axis and FPR
on the y-axis) in order to help the prospective user (likely to be a planetary
scientist) to chose a desired value of TPR and thus the probability threshold
µ. Note that in order to make Fig. 5 more easy to view we did not indicate
the changes of µ along the curves but this data is available.

Comparison of the ROC curves depicted on Fig. 5 indicates that a classifier
built with 100 top features is sufficient; inclusion of additional features does
not improve noticeably detection performance over any range of values of µ.
A classifier built with as little as 10 top features performs well but worse
than the one built with 100 top features. Therefore we conclude that it is
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sufficient to construct a classifier using only 100 (out of 1089) top features
to achieve optimal performance; if speed of the classification is an important
factor, a classifier with only 10 top features can also be considered. After
deciding on the number of features used to built a classifier, the next step
is to select a desired value of TPR which fixes a value of the probability
threshold µ. It is important to note that a variability of µ along the curve
depends on the classifier. For example, for the T = 10 curve the range is
from µ = 0.87 at the low-TPR/low-FPR end of the curve to µ = 0.4 at the
high-TPR/high-FPR end of the curve, whereas for the T = 1089 curve the
range is between µ = 0.65 and µ = 0.43.

For a more in-depth evaluation of our CDA, and to compare the perfor-
mance of our hybrid CDA with a performance of a CDA based on shape
features alone we chose a classifier built using 100 top features. Aiming at
TPR of about 0.8 we choose µ = 0.525 as read from the ROC curve anno-
tated with the values of µ. Table 1 lists values of quality factors D, Q, and
B for the entire test site and, separately, for its three sections (West, Cen-
tral, and East). For comparison, it also lists the values of the same quality
factors calculated for the CDA (Urbach and Stepinski, 2009) based exclu-
sively on shape features. The lower section of the table shows improvement
in the values of performance metrics calculated as {value(shape/texture)-
value(shape)}/value(shape).

Over the entire site our CDA achieves detection rate D = 80.7% with
branching factor B = 0.136 for the overall quality rate of Q = 72.3%. This
is a good performance for the CDA devoted to finding sub-kilometer craters;
this level of performance is acceptable for practical planetary research. For
illustrative purposes, in Fig. 6 we show some of these detections on a small
portion of the test site. Note that our CDA performs best in the East section
of an image which contains the training set. The performance drops some-
what in the West section of the image, which does not contribute samples
to the training set, but is characterized by a terrain similar to that found in
the East section. The performance drops further in the Central section of
the image, which also does not contribute samples to the training set, but its
terrain has markedly different character from the rest of the image. Because
the Central region contains crater candidates having character unaccounted
for in the training set the number of false positives and false negatives in this
region is higher than in the rest of an image. We could remedy this drop in
performance by selecting candidates from the Central region to the training
set. However, this would be contrary to our overall approach to testing carter
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detection methods in accordance with how they are expected to be used by
planetary scientists. In planetary application, the user would like to utilize
already available catalogs of craters as the training set. Such catalogs are the
results of exhaustive surveys over small sites rather than casual surveys over
large sites. Thus, the CDA should be able to generalize the knowledge from
a small site to the much larger region. If the larger region is inhomogeneous
with respect to appearance of the craters, the performance of the CDA is
expected to be spatially variable – exactly what we have found out in our
test site. See below, in the conclusions section, for how we propose to address
this issue in future research.

Figure 6: Detail of the test site showing the craters detected by our algorithm. Shapes in
gray are TP and outlined shapes are FP.

Table 1 clearly demonstrates superior performance of our new CDA based
on a combination of shape features (to identify the crater candidates) and
texture features (to classify the candidates) over the CDA (described in Ur-
bach and Stepinski (2009)) based solely on shape features. The last section of
Table 1 shows the improvement in classification performance that are gained
by incorporating texture into the CDA. All quality factors are improved by
double digits percentages, but the branching factor has improved the most
(except for the Central section of the image) indicating that texture features
significantly reduced the number of false positive detections.

A similar, possibly slightly higher, accuracy could be achieved by a clas-
sifier using only the texture features and relying on exhaustive search to
generate blindly crater candidates. Because the candidate set, as identified
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by Algorithm 1, includes vast majority of identifiable craters but not all of
them, texture-based algorithm with exhaustive search is expected to yield
slightly higher accuracy. However, an algorithm based on exhaustive search
is vastly slower. For image having size imgWidth × imgHeight pixels, the
number of square sub-windows having size subSize× subSize is

n(subSize) =

(
imgWidth− subSize

shift

) (
imgHight− subSize

shift

)
(4)

where shift is the number of pixels by which the window is moved to its
new position; we assume that shift is the same in horizontal and vertical
directions. For our test site imgWidth = 4700 and imgHeight = 3200.
For compatibility with our calculations we assume that sub-windows are
generated starting from subSize = 32 pixels and increase in size by the fac-
tor of 1.5 until they reach subSize = 546 pixels. We further assume that
shift = 0.03subSize. Under such conservative assumptions, the classifier re-
lying on exhaustive search needs to classify over 28 millions sub-windows as
craters candidates. This is over 2000 times more than 14004 evaluation per-
formed by our proposed method. Using a 3 GHz PC the computational cost
of classifying 14004 candidates is 84 sec using a classifier based on the 100
top features. There is an overhead of 866 sec for the Algorithm 1 to identify
the candidates in the test site. The algorithm based on exhaustive search
has also some small overhead associated with generation of sub-windows,
but its major computational cost is the 47 hours that are needed to clas-
sify all 28 millions of “candidates.” Considering that our test site constitutes
only 1/44 of the size of the entire HRSC image h0905, and that hundreds
of such images are ready to be utilized, the two orders of magnitude speed
gain of our approach over the exhaustive search approach makes the large
scale identification of small craters practical. Using faster computers and
more advanced versions of AdaBoost classifier (Lienhart et al., 2003) would
significantly reduce classification time, however, our method would maintain
a built-in advantage of having to evaluate orders of magnitude smaller set
of candidates in exchange for a small overhead associated with their identi-
fication using Algorithm 1. In paralell, we are exploring on how to adapt to
new surfaces with the training done in previous regions using techniques of
transfer learning (Ding et al., 2011).
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5. Conclusions

In this paper we presented a new, hybrid algorithm for detection of sub-
kilometer craters in high resolution panchromatic image. The presented algo-
rithm combine the efficiency of shape analysis in identifying crater candidates
with precision of texture features/AdaBoost classifier in distinguishing be-
tween craters and non-craters. The application of the new CDA to a test
image confirms our design assumptions; the new algorithm identifies sub-
kilometers craters with much better precision than an algorithm based on
shape features alone. It is also much faster than an algorithm based on
texture features alone that employs an exhaustive search. The training re-
quirements are not overwhelming (only 7% of the candidates are utilized
for training) and the performance of the new algorithm is sufficiently high
(D = 81%, B = 0.14, Q = 72%) for its utilization in research-oriented crater
counting application. Future research, aimed at further improvement of per-
formance and robustness of the algorithm, will focus on several shortcomings
of the present algorithm and lessons learned in the process of its development.

First, the weakest link (from the accuracy point of view) of the present
algorithm is the shape-based identification of crater candidates. Of the 1937
identifiable ground truth craters, 201 are not covered by any crater can-
didate thus becoming false negatives by “default.” With all ground truth
craters covered by candidates the detection rate of our algorithm could be
improved to up to 91% using the same training set. Thus, further research
should concentrate on improvements to the shape-based identification of the
candidates. One way to increase the number of candidates is to relax the
shape filter criteria. However, since the utility of the shape-based identifica-
tion of the candidates is its computational efficiency, this efficiency should
not be sacrificed by over-relaxed shape criteria.

Second, we have demonstrated on our test image, that, in the realistic
scenario of acquiring samples for the training set from spatially limited region,
the performance of the CDA will depend on the similarity of the crater
candidates to which it is applied to the candidates constituting the training
set. This is a basic property of supervised learning not limited to our specific
classifier. Future research should incorporate techniques of transfer learning
(see, for example, Dai et al. (2007)) in order to allow the user to modify (with
minimum necessary effort) the training set to take into account changing
character of craters at different images. The focus of such effort should be
on intelligent selection of new samples that exemplify differences between
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existing training set and the character of new candidates.
Finally, our texture-based features are not rotationally invariant. Apply-

ing our CDA with its present training set to an image taken at different solar
azimuth angle requires either rotating the new image, or rotating the image
blocks constituting the training set. The method, in its present form cannot
be applied to a mosaic of images taken at different solar azimuth angles.
Future research should address development of rotationally invariant texture
features.
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