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Abstract

Large amounts of remotely sensed data calls for data min-

ing techniques to fully utilize their rich information content.

In this paper, we study new means of discovery and sum-

marization of knowledge contained in the spatial patterns

of remote sensing datasets. Several geospatial feature vari-

ables are fused together, and the vector of their values at

each spatial cell is considered as a transaction to be used

in association analysis. The concept of emerging patterns

is applied to ascertain the variables that exert dominant in-

fluence on the distribution of a selected class variable. A

new value-iteration method is introduced to optimally split

the spatial domain of the selected variable into two classes.

This division is used to calculate the set of patterns that are

emerging with respect to the two classes; these patterns are

the controlling factors—they are responsible for the spatial

distribution of the class variable. A method for a concise

summarization of controlling factors is introduced using a

similarity measure that is custom-made for the type of pat-

terns stemmed from remote sensing measurements. Using

such a similarity measure, controlling factors are clustered

providing brief description of different manners, in which

the class variable is constrained by the explanatory vari-

ables. We evaluate our method in a real-world application

pertaining to the density of vegetation within the continen-

tal United States. Examination of patterns related to the

high vegetation cover provides a summary of data depen-

dencies that helps to develop a better empirical model of

the vegetation growth.
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1 Introduction.

Remote sensing data, pertaining to geosciences, consists
of satellite observations of climate, vegetation cover, ter-
rain topography, lithology, soil properties, etc. A large
number of such datasets is available in the public do-
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main within the framework of Geographic Information
Systems (GIS). For example, PRISM [22] provides spa-
tial datasets related to climate (precipitation, temper-
ature, etc.) within the continental United States and
incorporates measurements that has been dated from
1971. Datasets such as PRISM offer an unprecedented
opportunity for studying various aspects of Earth Sci-
ence and to predict and address environmental and
other ecological problems. For example, understand-
ing the spatial variation of drainage density—the den-
sity of land surface dissection by river networks—is re-
lated to the problem of assessing the risk of damage
and degradation of the landscapes. Studying the spa-
tial distribution of carbon flux, controlled by land pre-
cipitation, land and ocean temperature, and terrestrial
biomass loss, leads to a better understanding of global
warming. Sufficient data exist to address such problems,
what is lacking is a methodology that can efficiently dis-
till vary large amount of data into a usable knowledge.
Data mining techniques are well suited to provide such
methodologies. In this paper, we introduce a concept
of geospatial discriminate patterns and a new similarity
measure to capture and summarize complex interactions
among geospatial variables.

Given a geospatial dataset classified into two binary
(yes/no) classes, the goal of this paper is to discover
patterns of additional (explanatory) variables that are
capable of distinguishing between the two classes. Such
patterns are emerging with respect to one of the two
classes; they can be used to establish factors control-
ling spatial distribution of the class variable. Emerg-
ing patterns have been proposed and well studied in
[6, 11, 14, 13, 15, 7, 17] as means to understand the
patterns contrasting two different classes. However, not
much work has been done to understand the contrasts
between spatially extended classes. Generalizing the
methods of standard emerging patterns to spatial do-
main is a non-trivial task. Geospatial data often con-
tain continuous variables that need to be categorized
in order to be subjected to association analysis. Cate-
gorization inevitably leads to information loss as it in-
troduces sharp artificial boundaries between different
regions. Furthermore, in contrast to the assumption



that data instances are independent in traditional data
mining, spatial patterns often exhibit spatial continuity
and high autocorrelation among geographically nearby
features.

Our proposed methodology aims at addressing these
problems. Specifically, we focus on the following three
challenges: (1) identifying representative patterns of
explanatory variables that capture statistical differ-
ence between geospatial classes, (2) seeking the opti-
mal spatial boundary between classes from which the
class-discriminating patterns can be derived, and (3)
summarizing the identified patterns and presenting do-
main experts with a relevant report. To address chal-
lenges (1) and (2), we introduce the concept of geospa-
tial discriminating patterns and propose a new value-
iteration method designed to find the optimal geospa-
tial boundary between classes using a reinforcement-
learning model. To address challenge (3), we define a
similarity measure using information theory and use the
proposed similarity metric to summarize identified pat-
terns by clustering them into a small number of “super-
patterns”. We design and implement a set of algorithms
to efficiently mine class-discriminating patterns. We ap-
ply our methods to a real-world case study focusing
on understanding the variations of vegetation density
within the continental United States. Specifically, we
find patterns of explanatory variables that control ge-
ographical extent of “high” density of vegetation. Ex-
amination of discovered patterns provides a summary
of data dependencies that helps to develop a better em-
pirical model of the vegetation growth.

Outline. The remainder of the paper is organized
as follows. Section 2 discusses related work. Section 3
gives formal definition of the research problems. Sec-
tion 4 presents the value-iteration method for optimal
boundary discovery. Section 5 defines a similarity mea-
sure for patterns. Algorithm design is discussed in Sec-
tion 6. We report our experimental results in Section 7
and conclude the paper in Section 8.

2 Related Work.

First introduced by Dong et al. in [6], emerging pat-
terns are the patterns whose supports increase signifi-
cantly from one dataset to another. Li et al. [11, 15]
have systematically studied various statistical measures
of “emergence”, including relative risk ratio, odds ratio,
risk difference, and delta-discriminative emerging pat-
terns. In this paper, we adopt the relative risk ratio as
the measure of pattern emergence. Emerging patterns
have been applied to many scientific applications, in-
cluding medical science [2, 14, 12, 15], network traffic
control [5], and data credibility analysis [21], etc. For
example, in medical studies, a single dataset of subjects

can be divided into two mutually exclusive and exhaus-
tive classes: subjects in a case group with a disease
and those in a control group without the disease [27].
The research design of the case and control groups is
to look backward in time to find what risk factors are
more likely to cause the disease. Hence, the task is to
mine patterns that are frequent in the case group but
less frequent in the control group. The identified pat-
terns are usually used to build a classifier to predict the
disease from the presence or absence of particular symp-
toms. However, little work has been done with respect
to analyzing emerging patterns in spatial datasets.

Identifying emerging patterns in spatial datasets
has its own challenges. Geospatial variables are highly
coupled through a complex chain of interactions result-
ing in their mutual inter-dependability. Ceci et al. [4]
applied emergence to spatial databases where spatial
interactions between different sets of spatial objects are
stored in relational tables. We propose a different solu-
tion by seeking the optimal spatial boundary between
the classes from which geospatial discriminating pat-
terns are identified. Our ultimate goal is to discover
a set of controlling factors that provides knowledge for
building empirical models of chosen phenomena (repre-
sented by a given class variable).

Other studies indirectly related with our present
work are spatial association rule mining [25, 10] and spa-
tial co-location mining [25, 28, 9, 29]. These methods
have done excellent work on discovering spatial associa-
tions or spatial features whose instances are frequently
located together. Our work is to find patterns that cap-
ture statically important differences between two classes
of a given geospatial variable.

3 Problem Formulation.

Geospatial variables consist of measurements acquired
by means of satellite remote sensing. Different instru-
ments on different satellites provide variables that re-
flect different aspects of the real world. Let R =
label(xdx, ydy), x = 1, . . . , Nx, y = 1, . . . , Ny, be a
raster having dimensions of (Nx, Ny), covering the en-
tire spatial extent of a dataset. The raster is an ar-
ray of constituent grid cells (pixels), each having an
area of dx × dy. Let a geospatial dataset O be the
fusion of all explanatory variable F1, . . . ,Fm and one
geospatial class variable CL, overlaying on the raster
R. F1, . . . ,Fm and CL are co-registered rasters having
the same dimensions of (Nx, Ny), see Figure 1. Thus,
each pixel in R is mapped one-to-one to an object in O
having the form of {x, y; f1, f2, ..., fm; c}, where x and
y are spatial coordinates in the raster R, feature value
fi ∈ Fi, i = 1, . . . , m, and c ∈ {0, 1}. Each object is
labeled “interesting” (c = 1) or not (c = 0) accord-



Figure 1: An illustrative example for a geospatial
dataset O.

ing to its value cl ∈ CL and a user-specified threshold
tCL. For example, in our case study, an object is la-
beled c = 1 (high vegetation density), if its vegetation
density ≥ 166.3. The dataset O is then classified into
two mutually exclusive and exhaustive classes: dataset
Op including all the objects with c = 1 and dataset On

including all the objects with c = 0.
Challenge 1: Given the spatial dataset O that

contains two mutually exclusive classes Op and On,
what are the effective representative patterns that con-
trast these two geospatial classes?

We seek patterns (thereafter referred to as geospa-
tial discriminating patterns) that effectively capture sta-
tistical difference between the two classes. This ap-
proach is based on the concept of association analysis,
in particular, closed patterns [20] and emerging patterns
[6].

Disregarding the location information (x, y) and
the class label c, each object in O can be viewed
as a fix-length transaction containing a set of items
{f1, f2, ..., fm}. An itemset is a set of items. Thus, each
object in the datasetO can be viewed as a transaction of
m-itemset, which contains exactly m items. The dataset
O can be viewed as a set of Nx × Ny transactions. A
transaction is said to support an itemset if the itemset
is a subset of the transaction. For example, a 5-item
transaction {f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5}
supports an itemset {f1 = 1, f3 = 3} or an itemset
{f2 = 2, f4 = 4, f5 = 5}, but not {f1 = 1, f2 = 5}
because the last itemset is not a subset of this 5-item
transaction. An itemset is frequent if the number of
transactions that support the itemset are greater than
a user-specified minimum support threshold.

Definition 3.1. (Closed Pattern). A closed pattern
is an itemset X in the dataset O, X = {C | C ⊆
I ∧ ¬∃C ′ ⊆ I, C ⊂ C ′, support(C) = support(C ′)},

Table 1: An example of closed frequent patterns.

TID Items (3 features: f1, f2, f3)
T1 f1=1, f2=2, f3=3
T2 f1=2, f2=3, f3=1
T3 f1=1, f2=2, f3=2
T4 f1=3, f2=3, f3=1
T5 f1=3, f2=3, f3=1

Closed
Frequent Patterns sup(), ρ = 40%
{f1 = 1, f2 = 2} 2

5 = 40% (T1,T3)
{f2 = 3, f3 = 1} 3

5 = 60% (T2,T4,T5)
{f1 = 3, f2 = 3, f3 = 1} 2

5 = 40% (T4,T5)

where I is the set of all items in O, and support count
support() refers to the number of transactions that
support a particular itemset. In other words, if X is
a closed pattern, none of its immediate supersets has
exactly the same support count as X.

Closed patterns effectively reduce the total number
of itemsets because they present minimal representation
of a set of non-closed itemsets without losing their
support information. The support count for the non-
closed itemsets can be calculated directly from the
closed itemsets.

We are interested in frequent patterns because
infrequent itemsets are likely to be insignificant trivial
patterns that happen by chance.

Definition 3.2. (Closed Frequent Pattern). A
pattern X of the dataset O is a closed frequent pattern
if X is closed and its support

sup(X) =
support(X)

|O| ≥ ρ

where ρ is a user-specified support threshold.

Example. Table 1 shows a small 3-feature dataset
of 5 objects. The following itemsets are closed frequent
patterns, assuming the support threshold ρ = 40%:
{f1 = 1, f2 = 2}, {f2 = 3, f3 = 1}, {f1 = 3, f2 =
3, f3 = 1}. Pattern {f1 = 1} is not a closed pattern
because its immediate superset {f1 = 1, f2 = 2} has
exactly the same support. Even though {f1 = 3, f2 =
3, f3 = 1} ⊃ {f2 = 3, f3 = 1}, both patterns are
closed because their immediate supersets have different
supports.

We define the footprint of an itemset to measure its
spatial distribution.

Definition 3.3. (Footprint). The footprint of an
itemset X, fprint(X) = {ΠR(T ) | T ⊇ X,T ∈ O},



Figure 2: (a)Vegetation coverage using the Normalized Difference Vegetation Index. (b) The footprint of high
vegetation region defined by a categorized class variable is shown in green. A zoomed-in window centered on the
states Virginia and Maryland shows sharp unnatural boundaries of high vegetation footprint in details.

is the projection of the objects that support X into R,
the spatial reference system of the dataset O. Function
ΠR(T ) defines a pixel of R whose correspondent object,
or in this case, a transaction T , supports the itemset X.

Lemma 3.1. The union of footprints of all closed pat-
terns of the dataset O covers the entire spatial extent of
O losslessly.

Proof. (Proof by Contradiction.) Assume that pixel
p = {f ′1, f ′2, . . . , f ′m} is not covered by the union of the
footprints of all closed patterns of O. If this is the case,
the pattern {f ′1, f ′2, . . . , f ′m} is not closed, and it is not a
superset of any closed patterns according to Definition
3.3. Hence, this pattern must be a proper subset of at
least one closed pattern. Recall that p is not closed. In
this case, p has the same support as at least one closed
pattern according to Definition 3.1, otherwise p would
be closed. Thus p is in the footprint of at least one
closed pattern, contradicting our assumption that p is
not covered by the union of the footprints of all closed
patterns.

Lemma 3.1 indicates that, in addition to provid-
ing the minimal representation of a set of non-closed
itemsets, closed patterns completely dominate the whole
spatial extent of the dataset in a lossless way.

Our goal is to identify patterns that distinguish
between geospatial classes, such patterns should possess
two properties: (1) their footprints should cover a good
portion of the class of interest Op (good representative),
and the patterns should be more frequent in Op but rare
in On. We define geospatial discriminating patterns to
satisfy such needs.

Definition 3.4. (Geospatial Discriminating Pat-
tern). Let O be a dataset consisting of Op with all
c = 1 objects and On with all c = 0 objects, a pattern
X is defined as a geospatial discriminating pattern if X
is closed and its growth ratio

DEPX
O =

sup(X,Op)
sup(X,On)

≥ δ

where δ is a user-defined minimum growth-ratio thresh-
old.

Combining the strength of closed patterns and emerg-
ing patterns, we submit that geospatial discriminating
patterns can effective capture statistical distinctions be-
tween the two geospatial classes.

4 Discovery of Optimal Boundary.

In geospatial domain, both class and explanatory vari-
ables frequently contain real-valued entries. For exam-
ple, the vegetation density shown in Figure 2(a) uses the
Normalized Difference Vegetation Index, a real numeric
value, to measure the amount of green vegetation in a
given location. If vegetation density is the class vari-
able, we need to classify the continental United States
into two (high density, not-high density) regions using
a user-specified threshold. Selecting such a threshold
value is an arbitrary user choice. This creates artificial
sharp boundary between those two sets which inevitably
leads to information loss. Figure 2(b) depicts the spa-
tial footprints of such datasets. Smooth transition from
high to low vegetation is observed in Figure 2(a), but
the footprint of the categorical high-vegetation dataset
has unnatural sharp and complicated boundary in Fig-
ure 2(b).



Challenge 2: Instead of using a user-specified
arbitrary threshold, how can we learn the optimal
boundary between Op and On that maximizes the
discovery of geospatial discriminating patterns?

It is clear that good class-discriminating patterns
should be significantly frequent in Op and rather rare
in On. Hence, we can use the footprints of the best
patterns to guide our learning algorithm to find the
optimal boundary between Op and On. We present a
value-iteration method to calculate the optimal bound-
ary between Op and On using a reinforcement learning
model. The method is defined by the following four
components:

1. Initial State: S0 defines an initial boundary be-
tween Op and On based on an arbitrary threshold.

2. Transition Model: Transit(s, a, s′) denotes the
probability of reaching state s′ if action a is done
on state s. The transitions are Markovian, that is,
the probability of reaching s′ from s depends only
on s and not on the history of earlier states.

3. Reward Function: Reward(s) defines the set of top
k geospatial discriminating patterns that have the
highest values of growth ratio in state s.

4. Utilities of States: Utility(s) = Reward(s) +
maxa

∑

s′
Transit(s, a, s′)Utility(s′). Utility(s) is

the sum of rewards of the immediate reward for
state s and the expected utility of the next state,
assuming that an optimal action a is chosen. Note
that Utility(s) and Reward(s) measure different
quantities; Reward(s) calculates the current re-
ward for being in state s, whereas Utility(s) is the
overall total reward from s onwards.

The definition of the utilities of states, Utility(s),
is essentially a Bellman Equation [1] in reinforcement
learning. The utilities of the states can be solved by
Bellman update [1]:

Utilityi+1(s) ← Reward(s)+(4.1)

maxa

∑

s′
Transit(s, a, s′)Utilityi(s′)

We start with an initial state, calculate the right-
hand side of the equation, and plug it into the left-
hand side—thereby updating the utility of each state
from the utilities of its neighbors. The fixed point of
the algorithm is the optimal boundary solution. In
each state, we learn a boundary closer to the optimal
solution. We repeat this until the iteration converges.
It has been proved that value iteration is able to
converge to a unique solution of the Bellman equation

Figure 3: An example for Vote Cellular Automaton.

[24]. We utilize this reinforcement learning method to
use observed rewards to learn the optimal boundary
between the geospatial classes Op and On.

For Transit(s, a, s′), the optimal action a is exe-
cuted by a complete iteration on boundary modifica-
tion using the following 3 steps: we first identify top k
geospatial discriminating patterns of O; we then cal-
culate the union of the footprints of the top k pat-
terns; finally, we iteratively modify the boundary be-
tween Op and On in current state s to produce the new
boundary for O′p and O′n in next state s′, using the
footprints of the k patterns; here k is a user-specified
threshold. A Cellular Automaton (CA) tool, Vote CA
[8], is used to modify the boundary between Op and
On. Before a Vote CA can be applied, we introduce
another dataset O−p ⊂ On as the buffer zone for the
boundary modification. Recall, tCL is a user-defined
threshold to determine whether an object is interesting
(c = 1) or not (c = 0). O−p contains the objects whose
values on cl are closest to the threshold tCL. Formally,
O−p = {o | o ∈ On, abs(cl(o) − tCL) ≤ ε}, where the
parameter ε control the size of the buffer zone.

We use the Vote CA as a finite state machine
to “smooth-off’ jagged edges. The Vote CA can be
described as follows: the dataset O is mapped to a
grid lattice having values of 0, 1, 2. Each object o
in the lattice has one of the 3 values: 1 if o ∈ Op,
2 if o ∈ (O−p ∩ ∪Xi∈top k patternsfprint(Xi)), and 0,
otherwise. A pixel has a value 1 if it belongs to the
class of interest Op; it has a value 0 (not an interesting
value at all) if it is in On and is not included in the
footprints of any top k patterns; it has a value 2 if it is
in the intersection of the buffer zone O−p and the union
of the footprints of the top k patterns. We will modify
the boundary using the value-2 pixels. At each update
of the Vote CA, the new value of a pixel is determined
according to the values possessed by the nine sites in its
Moore neighborhood (See Figure 3). The rules of the
Vote CA are given in Table 2. A value-2 pixel will be



Table 2: A table for the voting rules of the Vote CA.

Neighborhood Pixel New
Pixel Value Value Pixel Value

any value 1 1
any value 0 0

at least one of
the 8 neighbors is 1 2 1

upgraded to a value-1 pixel (its class is changed from On

to Op) if it has at least one value-1 pixel in its Moore
neighborhood. To complete the transition from s to s′,
the optimal action a is that we run the Vote CA through
the entire spatial extent of O repeatedly until no more
pixels are updated. The new boundary is propagated
globally by means of local updates in each pixel’s Moore
neighborhood.

The overall value-iteration algorithm modifies the
boundary between Op and On iteratively, using the
footprints of the best top k geospatial discriminating
patterns. The algorithm will converge when no more
new top k geospatial discriminating patterns can be
identified. The converged boundary is the optimal
boundary between Op and On with respect to the k
best geospatial discriminating patterns.

5 Pattern Summarization

In the value-iteration method, a relatively large k needs
to be selected to give near-complete coverage on the
footprint of Op. In our case study experiments we use
1, 500 to 2, 000 best geospatial discriminating patterns.
Once the optimal boundary between Op and On are
identified, it is desirable to summarize the top k patterns
derived from classes Op and On so the results are
usable to a domain scientist. Such summarization
is achieved by clustering the k patterns into a small
number of “super-patterns”. A distance function has
to be defined beforehand in order to enable a clustering
algorithm. One typical way to measure the distance
is using similarity measure between the patterns and
then convert it into a distance measure with distance =

1
similarity − 1.

In this paper, we define a new similarity measure
between patterns, based on information theory and in-
spired by the method proposed by Lin in [16]. Our
similarity measure takes advantage of the fact that dis-
cretization of explanatory variables results in a set or-
dinal (rather than categorical) variables. This is be-
cause original real-valued data has a natural orientation
(large-to-small).

Given two geospatial discriminating patterns X and

Table 3:
The ith feature between patterns X and Y .

Cases X Y
Case 1 Xi Yi

Case 2 – Yi

Case 3 Xi –
Case 4 – –

Y of O, we define the similarity between them as:

s(X, Y ) =
∑m

i=1 s(Xi, Yi)
m

(5.2)

where Xi, Yi is the value of ith feature, fi, of patterns
X and Y , respectively. Lin in [16] defines a similarity
metric in information theoretic terms, which has been
proved to be effective for measuring the similarity
between ordinal values. Specifically, the similarity
between two ordinal values Xi and Yi is measured by
the ratio between the amount of information on the
commonality of Xi and Yi and the information needed
to describe both Xi and Yi. However, in the context
of geospatial discriminating patterns, a feature fi is
not always present in both patterns. There are four
possible arrangements of the presence of the ith feature
between patterns X and Y . Here we use “–” to denote
the feature that is not present in a pattern.

For Case 1, the similarity between two ordinal
values Xi and Yi is

s(Xi, Yi) =(5.3)
2× log P (Xi ∨ Z1 ∨ Z2 . . . ∨ Zk ∨ Yi)

log P (Xi) + log P (Yi)

where P () is probability distribution and Z1, Z2, . . . , Zk

is the intervals delimited by Xi and Yi. The commonal-
ity between two ordinal values is the interval delimited
by them.

For Case 2, if feature fi is absent in a pattern X,
it is necessarily to check every value of fi present in
the footprint of X with respect to Yi. Let feature fi

overall have n ordinal values Z1, Z2, . . . , Zn, we define
the similarity between “–” and Yi as

s(−, Yi) =
n∑

k=1

PX(Zk)s(Zk, Yi)(5.4)

where PX(Zk) is the probability of value Zk in all trans-
actions that support pattern X. Yi ∈ {Z1, Z2, . . . , Zn}
(Yi is one of the Z’s) and

n∑

k=1

PX(Zk) = 1. For a feature



dataset Fi, it is straightforward to calculate the proba-
bility of value Zk. Notice that PX(Zk) = 0, if a Zk does
not exist in the footprint of X at all. Here s(−, Yi) is
a weighted average between all ordinal values presented
in the footprint of patterns X and Yi.

Similarly, for Case 3, the similarity between Xi and
“–” is

s(Xi,−) =
n∑

k=1

PY (Zk)s(Xi, Zk)(5.5)

where PY (Zk) is the probability of value Zk in all
transactions that support pattern Y .

For Case 4, feature fi is absent in both patterns. We
check the probability distribution of all ordinal values
Z1, Z2, . . . , Zn in patterns X and Y , and calculate a
weighted average of using a pairwise comparison

s(−,−) =
n∑

l=1

n∑

k=1

PX(Zl)PY (Zk)s(Zl, Zk)(5.6)

In summary, we align geospatial discriminating
patterns, calculate the similarity between every feature
of f1, . . . , fm, and we take the mean of the m similarity
values as the overall similarity between the patterns.

6 Algorithm Descriptions.

We have designed and implemented the algorithms for
data preprocessing, geospatial discriminating pattern
mining, and pattern summarization. Figure 4 depicts
the flow chart of the whole procedure. The method
for data preprocessing will be discussed in Section 7.
The method for similarity measure has been discussed
in detail in the previous section. In this section,
we present our design for the algorithm mineGDP
to identify top k geospatial discriminating patterns
using the proposed value-iteration method. Given
two geospatial classes Op and On, our method seeks
the optimal boundary between Op and On, using top
k geospatial discriminating patterns. The algorithm
consists of the following 3 steps (see Algorithm 1):

1. Mine top k geospatial discriminating patterns ofOp

and On (lines 1-5).

2. Construct the footprints of the union of the top k
patterns (lines 10-11).

3. Modify the boundary of Op and On using the top
k patterns until no new patterns can be generated
in the k patterns (lines 3-16).

The closed-frequent-pattern generation function
closedFrequentPattern-gen at line 4 uses a closed fre-
quent itemset method introduced by Burdick et al. in
[3]. A main computational part of the algorithm is at

Step 2 for constructing the footprints. Instead of enu-
merating every single pattern of the k patterns, lines
10 and 11 in Algorithm 1 shows that we can speed
up the computation by simply computing the intersec-
tion of the footprints of 1-itemsets that are represented
by the top k patterns. For example, the footprint of
{f1 = 3, f3 = 2} is the intersection of the footprint of
{f1 = 3} and that of {f3 = 2}. The upper boundary of
the size of 1-itemsets is determined by the total num-
ber of items in I, which is usually significantly lower
than k. In addition, the top k patterns often share sub-
patterns with each other. The size of 1-itemsets to be
computed tends to be much less than the total number
of items. Another gain in performance is that we uti-
lizes multi-thread programming. Lines 12 and 13 shows
that Vote Cellular Automaton (Vote-CA) is used to it-
eratively modify the boundary of Op and On using the
footprints of the union of the top k patterns. We im-
plement the Vote CA using multiple threads in parallel
because the new value of each grid cell is determined
solely by its 9 grid cells in Moore neighborhood.

7 Experimental Results.

In this section, we present the results of applying our
methods to a case study featuring real geospatial data.
We have constructed a fusion of several datasets that
pertain to the distribution of topography, climate, and
soil properties across the continental United States. Our
purpose is to identify dominant factors responsible for
spatial distribution of the region of high vegetation den-
sity. The datasets are summarized in Table 4. The spa-
tial distribution of vegetation density is approximated
by the distribution of the Normalized Difference Veg-
etation Index (NDVI). The NDVI is an index calcu-
lated from visible and near-infrared channels of satel-
lite observations, and it serves as a standard proxy for
vegetation density. The 8 explanatory variables can be
divided into climate-related (average annual precipita-
tion rate, average minimum annual temperature, av-
erage maximum annual temperature, and average dew
point temperature), soil-related (available water capac-
ity, permeability, and soil pH), and topography-related
(elevation). The available water capacity is the volume
of water that soil can store for plants. The pH measures
the degree to which water in soil is acid or alkaline. Bulk
permeability relate to the physical form of the soil. The
dew temperature is an indicator of relative humidity.
These datasets are from different sources and are avail-
able in different spatial resolutions. We have fused all
the datasets to 9 co-registered latitude-longitude grids
with a resolution of 0.5o × 0.5o. Each grid has 618 ×
982 pixels, of which 361,882 pixels (59.6% = 361882

618×982 )
have values for all the 9 variables.



Figure 4: The flow chart of our method.

Table 4: Nine geospatial datasets used in our case study.

Variable Abbreviation Short Description
1. tmax Average annual maximum temperature

PRISM climate mapping system [22]
2. tmin Average annual minimum temperature

PRISM climate mapping system [22]
3. dew Average dew point temperature

PRISM climate mapping system [22]
4. awc Available water capacity

ORNL for biogeochemical and ecological data [19]
5. ppt Average annual precipitation

PRISM climate mapping system [22]
6. elev Elevation

USGS National Map Seamless Server [18]
7. ph Soil pH

ORNL for biogeochemical and ecological data [19]
8. perm Soil permeability

ORNL for biogeochemical and ecological data [19]
9. aveveg Vegetation growth average

USGS National Map Seamless Server [18]

Figure 5: Growth ratio plots of geospatial discriminating patterns. (a) Geospatial discriminating patterns
identified in the first iteration. (b) Geospatial discriminating patterns identified in the last iteration.



Figure 6: Experimental Results of the vegetation-cover dataset. (a) Original boundary between high vegetation
cover and not-high vegetation cover. (b) Optimal boundary of high vegetation cover. (c) Optimal boundary vs.
original high vegetation cover and the buffer zone. (d)-(h) Footprints of 5 groups of geospatial discriminating
patterns. Color: orange - footprints of Op, yellow - footprints of O−P , blue - footprints of On, green - footprints
of identified 5 super-patterns.



Algorithm 1 mineGDP: Mining geospatial discriminating patterns
Require: .

(1) Geospatial classes Op and On

(2) Buffer dataset O−p
(3) A minimum support threshold ρ for closed frequent patterns
(4) A minimum growth-ratio threshold δ for geospatial discriminating patterns
(5) Parameter k for the top geospatial discriminating patterns

1: old Op = Op; old On=On;
2: pre kCandidateset = ∅;
3: loop
4: candidateSet = closedFrequentPattern-gen(Op, ρ); {Mine closed frequent patterns in Op using the minimum

support threshold ρ}
5: kCandidateSet = pattern-gen(candidateSet, Op, On, δ) {Identify top k geospatial discriminating patterns

using the minimum growth-ratio threshold δ}
6: if pre kCandidateset == kCandidateSet then
7: return Op and On, and the k geospatial discriminating patterns.
8: else
9: pre kCandidateset = kCandidateSet; {Remember the k geospatial discriminating patterns identified in

the current iteration}
10: CF1 = ∪ oneItemSet-gen(candidateSet); {Identify all unique 1-itemsets represented by the closed frequent

patterns}
11: fprint kCandidateset = ∩ fprint(CF1); {Construct the footprints of the union of the top k geospatial

discriminating patterns}
12: M = fprint-gen(Op, On, O−p , fprint kCandidateset); {Construct a raster M . Each grid cell has one of

the 3 values: 1 if o ∈ Op, 2 if o ∈ O−p ∩ fprint kCandidateset, and 0, otherwise}
13: M = Vote-CA (M);
14: {Op, On}= boundary-change(old Op, old On, M); {Modify the boundary of old Op and old On according

to M}
15: end if
16: end loop

Table 5: Statistics of the nine geospatial datasets.

Dataset Mean Median STD Sn

1. tmax 1823.6 1778.0 543.4 584.3
2. tmin 461.5 414.0 535.8 579.6
3. dew 392.4 349.0 550.5 590.3
4. awc 13.3 12.0 8.1 4.8
5. ppt 80490.7 76359.0 45656.0 48913.3
6. elev 778.4 472.0 729.8 524.7
7. ph 6.49 6.57 1.15 1.16
8. perm 7.66 5.13 6.98 3.35
9. aveveg 143.8 143.0 14.6 15.5

Data Preprocessing. All the co-located datasets
are subjected to a categorization procedure. Z-score
transformation is a widely used method in geospatial
domain. For example, Tan and Kumar et al. in [26]
calculate the z-score of Earth Science time series data
by subtracting off the monthly mean and dividing by the
monthly standard deviation. However, a closer exami-
nation of the 9 datasets used in our case study indicates
that not all the 9 datasets have the bell-shaped distri-
butions suitable to the z-score transformation. Table 5
shows the statistics of the 9 datasets. The numerical
values of the explanatory variables come from their re-
spective distributions having quite different functional
forms. The difference between columns Median and
Mean indicates how off the center distribution is from
the location of the bulk of the data. The difference be-
tween columns STD (standard deviation) and Sn indi-
cates whether variables has skewed distribution of their
values. Sn is introduced in [23] as a typical distance
for symmetric and asymmetric distributions to measure
how far away observations are from a central value. The



Sn estimator is :

Sn = 1.1926 medi{medj |xi − xj |}(7.7)

where med is the median operator. Given a set of
numbers {x1, . . . , xn}, for each xi, we compute the
median of {|xi − xj |, j = 1, . . . , n} to yield n numbers,
then the median of the n numbers gives estimator
Sn. The dataset statistics show that all datasets
have more or less skewed distributions. We decide to
use the standard K-means clustering algorithm as this
algorithm is typically applied to real-valued objects. K-
means identifies natural break points by picking the
class breaks that best group similar values and maximize
the differences between classes. In our experiments, we
classify each dataset to 7 classes labeling the cluster
from the minimum-centroid as 1 to the maximum-
centroid as 7. Except for the class variable aveveg,
the 8 datasets are transformed into categorical datasets
containing values from 1 to 7. The vegetation density
dataset aveveg is initially divided into two subsets, Op

with c = 1 (combined categories 6 and 7) and On with
c = 0 (combined categories 1 to 5) before the mineGDP
algorithm is applied. Figure 6(a) shows the footprints of
Op in orange, On in blue. O−p ⊂ On is in yellow, which
is in category 5, the closest category to categories 6 and
7 of vegetation density.

Boundary Optimization. The optimal boundary
between Op and On are depicted in Figure 6(b). Figure
6(c) overlays the footprints of the new Op with the
original Op and O−p . As illustrated in the figure, the
boundary is expanded in the buffer zone of O−p , but
it does not exactly overlay the buffer zone. In our
experiments, the value-iteration algorithm converges in
the 4th iteration when no new patterns can be identified.
Using a support threshold of 1%, top 1, 500 out of 4, 267
geospatial discriminating patterns are selected in the
first iteration. Figure 5(a) plots the growth ratio of all
4, 267 patterns. Notice that 20 patterns have growth
ration of infinity. This means that those patterns
are only supported in the dataset Op. k = 1500 is
determined visually as the elbow position of the growth-
ratio plot. Starting from second iteration, we choose
a higher value k = 2000 because the elbow position
shifts to the right after new patterns are added into the
group. The value-iteration algorithm converges quickly,
identifying 1176, 616, and 7 new patterns in each
iteration, respectively. Figure 5(b) plots the growth
ratio of all 4, 381 patterns in the last iteration. The
top geospatial discriminating patterns, derived from the
optimized split between Op and On, have significantly
higher growth ratio than the top patterns derived from
an initial, arbitrary boundary. This is exactly what we
have expected because the boundary is optimized using

those top patterns.
Pattern Summarization. We classify the top

2, 000 emerging patterns into 5 groups of super-patterns
using K-means clustering algorithm. Figures 6(d-h) de-
pict the footprints of the 5 super-patterns. The super-
patterns represent five different major combinations of
controlling factors that lead to high vegetation density;
high vegetation density is associated with different fac-
tors in different spatial locations. Each super-pattern
can be succinctly described on the basis of its con-
stituent patterns. For example, the super-pattern de-
picted on Figure 6(g) represents high values of temper-
ature and humidity and low values of elevation, whereas
the super-pattern depicted on Figure 6(d) represents
only average values of temperature and humidity but
higher values of elevation. Both combinations are ap-
parently compatible with high vegetation density, but
they occur in different geographical locations. The re-
sults conform to the domain knowledge of the climate
and soil conditions that support high density of vegeta-
tion. Overall, our case study shows that the range of
patterns supporting high vegetation density is not com-
pletely separated in the spatial domain as is made clear
from overlaps of footprints shown on Figures 6(d-h).
The results indicate that it does not exist highly nonlin-
ear dependence of vegetation density on its controlling
factors. Examination of patterns related to the high
vegetation cover provides a summary of data dependen-
cies that helps to develop a better empirical model of
the vegetation growth.

8 Conclusion.

In this paper, we have formulated the problem of mining
geospatial discriminating patterns in the domain of geo-
science. This domain uses remote sensing datasets that
are mostly in the form of spatially co-registered rasters,
which exhibits complex interactions among multiple at-
tributes. We propose a value-iteration method gear-
ing to identify the optimal boundary between geospatial
classes, thus maximizing the patterns to be identified.
We introduce a new similarity metric that is specially
designed for ordinal variables. Discovered patterns con-
form to existing knowledge about the types of climates
and soils that are inductive to high density of vegeta-
tion, and they deliver this knowledge in a quantitative,
as well as comprehensive and systematic manner.
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