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Abstract 

This paper presents a high-tech solution to meet the 

challenges in calibrating transportation simulation models. 

Like any simulation software, model calibration prior to its 

application plays a crucial role in producing reliable results. 

However, transportation professionals face difficulties in 

performing the daunting tasks of calibrating a model for 

each transportation network design to satisfy the targeted 

traffic flow demand, especially during data collection and 

distillation. Our innovative approach utilizes sensor and 

geography networking technology to seamlessly collect data 

about real world network, traffic, and driver behavior. This 

data is then distilled as needed by data mining before 

feeding the data to a simulation model. The data is validated 

automatically to instantaneously reflect the real world and to 

avoid typographical errors often involved with human 

intervention, resulting in a more accurate model. 

We conduct a feasibility study for our vision of model 

calibration automation. The research flexes 

multidisciplinary expertise in traffic flow simulation, 

geosciences, sensing/networking, and knowledge discovery. 

As a proof of concept, we implement a prototype that 

demonstrates how to convert sensor data about traffic flow 

collected by a state department of transportation into a 

format taken by CORSIM, a popular traffic simulation 

model. A running example shows encouraging results. 

 

1. INTRODUCTION 

Transportation simulation tools have been used 

intensively by transportation professionals to aid their 

decision making of modifying or building infrastructures for 

increased traffic capacity and improved level of service. 

Computer models capture the real world by the 

environmental characteristics such as the number of lanes 

on a highway and by the traffic flow at microscopic or 

macroscopic views. However, there is a wide consensus that 

traffic models, often not properly calibrated or validated 

with real-world traffic conditions, produce unrealistic or 

misleading results. Without model calibration to validate 

that the base-year model reproduces the existing traffic 

conditions with an acceptable accuracy, any transportation 

simulation tool would fail to predict the future for a sound 

design-year model. Transportation professionals such as 

those in Wisconsin Department of Transportation (DOT) 

recently issued a guideline that assesses a model with 

realism tests in terms of mathematical targets and overall 

traffic patterns [Wisconsin DOT 2010]. 

Model calibration/validation accompanies a model life 

cycle as a part of testing processes to compare the model 

with actual system behavior and to improve the model 

iteratively. A model life cycle contains four stages: Problem 

Definition to collect data on the real system behavior and to 

identify system's inputs/outputs, Model Conceptualization to 

design the system structure associating inputs/outputs and to 

develop theories explaining the system behavior, Model 

Implementation to computerize the conceptual model on a 

platform with a programming language, and Model 

Application to assist transportation professionals with 

solving real-world problems or making decisions. 

Specifically, model calibration should be done after Model 

Implementation and before Model Application, where 

various parameters in model structure are adjusted to reach 

an acceptable level of model accuracy [Ni et al 2004]. 

Model developers, model users, and decision makers should 

be aware of a spectrum of traffic flow modeling. This 

includes multiple scales such as macroscopic view of traffic 

operation in a region and microscopic view with details on 

vehicles interacting with each other to maintain safe 

positions in traffic stream [Ni 2010]. 

Traffic data collection coordinating within geographic 

environment plays an important role during the entire life 

cycle of modeling. It serves as the basis for the first stage, 

Problem Definition, continues to guide the rest of the stages, 

and highlights model calibration at the fourth stage, Model 

Application. Deploying different technology for traffic data 

collection and traffic processes has found wide applications 

in transportation operation and management. For example, 
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Maryland DOT has piloted a real-time sensor web 

(integrating satellite remote sensing, low cost UAVs, fleet 

tracking devices, individual vehicle GPS collections, in 

addition to geo-based anchored sensors and traffic 

monitoring cameras) to infer traffic flow and enable 

dynamic pricing schemes to mitigate congestion [Halem 

2007]. We envision automatic calibration of transportation 

simulation models by collecting traffic data automatically 

with sensor technology, transferring them seamlessly with 

wireless communication and the Internet, and using data 

mining to discover traffic patterns ready for use in model 

calibration. 

In this paper, we propose a novel approach to calibrate 

transportation simulation models towards automation by 

seamless traffic data collection and processing using sensor 

technology, geography networking, and knowledge 

discovery. Currently, we report the results of our feasibility 

study. We begin with a historical perspective of 

transportation simulation over fifty years followed by an 

analysis of challenges in model calibration. We then present 

our solution to the challenges that integrates network 

simulator, traffic simulator, and driver simulator with 

geography technology, wireless sensor network, and data 

mining to fuse the real world transportation in its computer 

model. A quick prototype proves the concept. Finally, we 

conclude our study and identify the future work. 

 

2. TRANSPORTATION SIMULATION REVIEW 

There exists a wealth of literature in traffic flow 

modeling and simulation and, consequently, only a small 

portion is cited here to establish the state of the art. 

Omission of other work is not meant to imply that it is 

irrelevant or unimportant. 

Generally, traffic simulation has been pursued at three 

levels: macroscopic, mesoscopic, and microscopic. 

Representing one extreme of the spectrum, macroscopic 

simulation models traffic flow as a one-dimensional 

compressible fluid where disturbances in traffic propagate 

like waves. Fundamental to this type of simulation is the 

conservation law. The first-order form of this law is 

mass/vehicle conservation, a model based on which is called 

a first-order model. In addition to vehicles, other quantities 

such as momentum and energy can also be conserved. A 

model is of higher-order if it incorporates the latter types of 

conservation. Considering the limited benefit offered by 

higher-order models may not justify their added complexity, 

efforts of numerical solutions and simulators were mainly 

centered on first-order models. The following are some 

examples of macroscopic simulators: KRONOS, KWaves, 

CTM, FREFLO, FREQ, and CORQ. Macroscopic 

simulation can model a very large (geographical) scope but 

with a low modeling fidelity. 

The next level is mesoscopic simulation. This type of 

model tries to model macroscopic behaviors of traffic flow 

from the understanding of its microscopic basis and thus 

have to introduce a statistical approach - such as the kinetic 

theory. Though simulators of the kinetic type are rare, 

another type of mesoscopic simulator, TRANSIMS, is well-

known. Rather than treating traffic as a continuous fluid, 

TRANSIMS models traffic as discrete particles without 

masses and personalities. These particles traverse a 

discretized time-space grid, hopping from one cell to 

another governed by some pre-defined local rules such as 

maximum speed constraints. Mesoscopic simulation 

represents a balance between modeling scope and fidelity. 

Next in the spectrum is microscopic simulation which 

models driver-vehicle units as particles without masses but 

with personalities. The behaviors of these particles are 

governed by car-following, lane-changing, and gap-

acceptance models. Several approaches have been identified 

in modeling car-following behavior, among which are 

stimulus-response models [Gazis et al 1961], desired 

measure models, psycho-physical models, intelligent driver 

model, and rule-based models. After continuous evolution 

and refinement over about half a century, some of these 

models have resulted in a variety of transportation 

simulators including CORSIM, VISSIM, INTEGRATION, 

Synchro, AIMSUN, and S-Paramics, just to name a few. 

Representing the current state of the art of traffic simulation, 

microscopic simulation can achieve a high modeling fidelity 

but with a limited modeling scope. 

 

3. ISSUES IN MODEL CALIBRATION 

A traffic simulation model is a computerized model 

which is created within a traffic simulator and meant to 

represent part of the real world system. One of the benefits 

of creating a computer model is to allow repeated testing of 

the target system in a safe and controllable environment 

which is otherwise infeasible in the real world. 

Consequently, the trustworthiness of the test results depends 

largely on how close the simulation model resembles its real 

world counterpart, and the procedure to ensure such 

resemblance is called model calibration. 

Since a real world transportation system consists of 

roadways, vehicles, and drivers, the major task to calibrate a 

simulation model is to obtain or fine tune the sets of data 

that represent the above transportation components. More 

specifically, items to be calibrated typically include but are 

not necessarily limited to:  

 Data that describe the transportation network: 

roadways, intersections, and traffic control devices. 

Details for roadways include number of lanes, speed 

limit, curvature, road type, etc.; details for intersections 

are intersection type (at grade, grade separated, and 

interchange), priority rules, number of approaches, and 

outlets; details of traffic control devices can be type of 

device (e.g. signals, signs, and markings), implied rules 



(e.g. priority rules), and control logic (e.g. timing plans 

for signals). 

 Data that describe the traffic: origin-destination (O-D) 

flows, traffic mix (types of vehicles in the traffic), and 

details of vehicles (e.g. power, mass, and dimension). 

 Data that describe the driving population: the selection 

of underlying car-following, lane-changing, gap-

acceptance, and route choice models and parameters 

within these models. 

Challenges of traffic simulation model calibration are 

frequently brought about by data collection and distillation. 

More specifically, the following issues are identified in the 

process of model calibration: 

 Resource consumption: Calibrating a simulation can be 

very time-consuming and labor-intensive. For example, 

field data collection can go anywhere from a few hours 

to many years, from one location to a regional network, 

and from one person to the collaboration and 

coordination of several teams. 

 Calibration methodology: A conventional calibration 

process adjusts model parameters until reasonable 

resemblance between model and the real system is 

obtained. Such a process is not only tedious but also 

prone to subjective error. A more systematic approach 

would be to treat the process as an optimization 

problem which searches for the best fit between the 

model and its real world counterpart [Chu et al 2003]. 

 Measures of performance: This issue is related to how a 

calibration process is evaluated. For example, what 

indicates a successful calibration and when a model is 

sufficiently calibrated [Hellinga 1998]. 

 Data availability: Depending on the nature of the 

problem, the collection of the data that is required for 

calibration may be very difficult or sometimes simply 

infeasible. For example, the model involves many 

origins and destinations so that the determination of O-

D flow becomes a daunting task. In addition, some 

simulation requires such a fine level of detail that it 

becomes very challenging to calibrate model 

parameters, e.g. the composition of road vehicles 

(including their static and dynamic properties) and 

driver population (including parameters that describe 

the perception and reaction process of each driver 

group). These problems can be even more challenging 

when the size of the network under analysis becomes 

large. 

 Timing issue: A typical calibration process minimizes 

estimation errors (OD-matrix and/or parameters) and 

uses data obtained from a certain period of time in a 

typical day. However, this data may not represent a 

wide range of all likely demand conditions observed at 

a facility [Lee and Kaan 2008]. 

To address these issues, a number of calibration 

procedures are found [Jayakrishnan et al 2001], [Chu et al 

2003], [Hourdakis et al 2003], [Turley 2007], [Balakrishna 

et al 2007], [Lee and Kaan 2008]. In addition, some of them 

have provided techniques that are able to deal with one or 

more of the above issues. 

 

4. PROPOSED SOLUTION FOR CALIBRATION 

We propose a system to automate calibration of a 

microscopic traffic simulator by collecting data from real 

world transportation with sensor and geography networking 

technology and processing data for information retrieval. 

We choose CORSIM (Corridor-microscopic simulation 

program), developed by University of Florida, because 

CORSIM can act as a simulation engine invoked by other 

applications. Figure 1 depicts our system architecture. Three 

components  Transportation Network at right, Traffic Flow 

at bottom, and Driving Population at left  feed CORSIM 

information about roadway structures along with traffic 

control devices, number of cars per unit of time, and 

parameter distribution of car-following, lane-changing, gap-

acceptance, and route choice. Simulation Output at top will 

loop back to compare with input for validation and tuning. 
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Figure 1. System Architecture 

The following sections deal with issues and provide 

solutions for each of the components. Section 5 discusses 

the integration of GIS (Geographic Information System) to 

retrieve information about roadway structures and traffic 

control devices. Traffic flow is modeled from data collected 

with a variety of sensor technologies, presented in Section 6, 

and processed for traffic pattern recognition using data 

mining in Section 7. Apart from the current approaches of 

inferring driving population data from demographic 

statistics, we directly collect them from very high resolution 



satellite or sensors with noise filtered out, which are also 

discussed in Sections 5, 6, and 7. In Section 8, we present a 

prototype that demonstrates the feasibility of our solution. 

 

5. GEOGRAPHY INTEGRATION 

Managing the sensing resources as well as interpreting 

the collected data requires a distributed infrastructure. A 

GIS based Multi-Agent Geo-Simulation architecture was 

proposed with the purpose of analyzing not only potential 

interactions between sensors but also with the real 

geographic environment where physical sensor are deployed 

[Mekni 2008]. At lower level, a GIS as the software 

platform is essential to reproduce real spatial data in the 

simulation environment. It actually serves as the spatial 

database, the functional background and the visual tool to 

supervise the geographic environment. The simulated 

environment is constructed from reliable GIS data, 

including raster/grid data (land cover, land use, elevation, 

etc) and vector data (transportation network).  

ESRI ArcGIS supports a full structure of transportation 

data models using an object-oriented data modeling 

approach. Its transportation data model, UNETRANS 

(Unified Network for Transportation) developed by UC 

Santa Barbara provides best-practice templates for 

integrating static transportation network data and time-

varying traffic flow data from a variety of sources, including 

characteristics of intersections, stop lines, signal timings, 

public transport stops, passenger flows, bus or transit lanes. 

In addition, ESRI ArcGIS Server 10 provides the ability to 

create, manage, and distribute GIS services over the Web to 

support desktop, mobile and Web mapping applications. It 

will assist in developing a large transportation infrastructure 

database with friendly Web access by decision makers, 

scientists, engineers and other users. 

Aside from massive available GIS transportation data, 

remote sensing is a leading technology providing the update 

data at large spatial extent for many transportation 

applications, such as roadway delineation, traffic flow, road 

quality, and pollution assessment [Halem 2007]. The 

transportation application of remote sensing can be traced 

back to 80 years ago. In 1927, aerial photography was used 

to estimate traffic densities on a highway between Baltimore 

and Washington [Angel 2002]. Commercial satellite 

imaging has been available since late 1990s. In 1994, the 

U.S. government allowed civil commercial companies to 

market high spatial resolution remote sensor data. This 

resulted in the creation of a number of commercial consortia 

that have the capital necessary to create, launch, and market 

high spatial resolution digital remote sensor data. Since 

then, digital high spatial resolution remote sensing becomes 

increasingly available. The new sensors provide inexpensive 

and stable digital fine spatial resolution data from satellite 

platforms that enables better use of their applications which 

require a high level of detail, particularly transportation. The 

most notable companies are DigitalGlobe, Inc. and GeoEye, 

Inc. Multi-spectral imagery can be obtained at spatial 

resolutions 1.65 m and the panchromatic imagery can be 

obtained at spatial resolution at 0.41 m (GeoEye-1). 

 

6. SEAMLESS DATA COLLECTION 

Transportation traffic can be measured by various types 

of sensors. Inductive loop detectors installed in pavement 

are the most widely used sensors. The disadvantage of these 

sensors is that they can be easily damaged and are hard to 

replace and maintain. Traffic detection using video cameras 

on overhead structure [Cheng 2005] is an alternative. The 

accuracy of traffic estimation in this approach depends 

heavily on the image processing techniques. Traffic counts 

by video cameras may be inaccurate because video sensing 

and content analysis could be affected by lighting changes, 

headlight reflection and rainy/snowy weather condition. In 

addition, specific requirements such as video cameras at 

heights above 25 feet limit their applications. 

There is increasing interest in using non-intrusive 

sensors such as active/passive infrared, acoustic array 

sensors, and ultrasonic sensors in traffic monitoring 

applications. The costs of these sensors may be a problem. 

Microwave radar has gained the popularity due to its 

insensitiveness to weather condition and capability of 

multilane detection. However, microwave radar has 

limitations to detect low speed (less than 15 mph) moving 

objects such as vehicles, which especially degrades the 

accuracy of estimating traffic congestion. 

Our system extracts traffic data from wireless/mobile 

sensors, classifies and stores in a well-defined format input 

to a traffic simulator for automatic calibration. Our previous 

work has demonstrated how static sensors such as 

Automatic Traffic Recorder (ATR) stations collect traffic 

data [Ni and Leonard 2004], [Ni 2010]. 

There are several challenges to seamlessly collecting 

traffic data in real-time from wireless/mobile sensors. The 

first challenge is the power limitation of wireless sensors. In 

many applications, replacing/recharging power supply is 

close to infeasible. One approach to overcome this obstacle 

is to use environmental energy such as solar energy. 

Topology design is another challenge for energy-efficient 

data collection. Network topology should be designed to 

minimize the power consumption and increase the 

throughput, and guarantee a uniform load distribution. 

A new data collection approach using a mobile sink, in 

which the burden of data gathering is shifted from the 

sensor nodes to the mobile sink, results in improvements in 

energy efficiency and real-time performance. Mobile sink 

based approach is suitable for seamless transportation data 

collection in some applications. Energy supplies in mobile 

sinks are easily replaceable. It can be periodically returned 

to a support center for recharging, removing resource 

constraints. The sink can come in various forms ranging 



from a man riding a vehicle to a robot programmed to visit 

the network. It travels according to some pre-determined or 

random schemes through the network and gathers data from 

sensor nodes. One drawback of using mobile sink is that the 

sensor nodes have to wait for the sink to visit the area before 

they can transmit their data. Infrequent visiting of a certain 

area can also result in increased data delivery delays. On the 

other hand, having a mobile sink traveling inside the 

network helps in collecting data from sensors located in 

physically remote or isolated regions. 

In traffic applications, data collection patterns can be 

classified in three main categories. 

 Periodic sensing: Sensors monitor a predefined variable 

and transmit data to the control sink continuously. 

 Event-driven: Sensors send a message whenever they 

detect a pre-determined event. 

 Query-based: Sensors transmit data packets after 

receiving a query from the control center.  

 

7. DATA MINING FOR MODEL CALIBRATION 

Traffic models should be properly calibrated with 

actual traffic behavior. However, prediction of models may 

deviate significantly from the ground truth without thorough 

understanding of the factors responsible for this discrepancy 

[Ni and Leonard 2004], [Ni 2010], [Lattner 2010]. 

To deal with the challenges of resource consumption 

and calibration methodology described in Section 3, we use 

association pattern mining to automatically identify 

controlling factors of model parameters associated with 

discrepancy between the model and ground truth. This 

improves traditional methods of manually adjusting model 

parameters to comply with the real system. Data mining 

yields a map of change between the two instances—actual 

and modeled—of the system. The potential drivers of model 

discrepancies are the model parameters. We then find 

controlling patterns of model parameters that discriminate 

between traffic flows for which there is a large discrepancy 

between the data predicted by the model and the actual 

traffic data. We summarize the patterns in super patterns of 

model parameters associated with discrepancy using our 

super-patterns concept. The goal of this evaluation is to 

provide model designers with controlling factors (super 

patterns) of model parameters associated with wrong 

predictions on traffic data. We then evaluate several, 

progressively improved, versions of the model. 

Super-patterns are agglomerated clusters of similar 

patterns [Stepinski 2010], [Ding 2009]. While each pattern 

represents precise but local nuggets of information, their 

clusters provide more generalized but global information. 

To calculate the super-patterns, we first calculate a distance 

matrix between each pair of patterns and then perform 

agglomerative clustering directly from the distance matrix. 

We use agglomerative clustering because it would aggregate 

objects without breaking the patterns. The end product of 

this synthesis tool is a small number of super-patterns, each 

describing a bundle of change motifs. Such knowledge gives 

an in-depth insight into combinations of factors that drive 

the change between a predictive model and actual traffic. 

Furthermore, to address the challenges of data 

availability and timing issue discussed in Section 3, density 

based clustering is applied to traffic flow data to remove 

noise and outliers. Cars that do not belong to any aggregated 

clusters are viewed as incorrect counts and are discarded. 

Association rule mining is applied on driving population 

data to identify the relationship of the age/gender group with 

driving behavior to generate more accurate and coherent 

model input data for better calibration. 

 

8. A QUICK PROTOTYPE 

This prototype focuses on the two main challenges in 

calibrating traffic models. The first challenge is how to 

abstract real-world traffic conditions for base-year 

modeling. The other is how to prevent typographical errors 

such as those in the origin-destination matrix. As mentioned 

in Section 4, our solution uses CORSIM, a microscopic 

traffic simulation software, as the core of our automatic 

system. CORSIM contains two sets of microscopic 

simulators to represent an entire traffic environment: 

NETSIM for urban street traffic and FRESIM for freeway 

traffic. For a proof of concept, we use NETSIM. 

Our goal is to automatically generate the input file to 

CORSIM from real world sensor data for accurate model 

calibration. The CORSIM input file contains characteristics 

that vary over time such as traffic volumes, turn movements, 

traffic regulations, and signal timing, as well as 

characteristics that vary over space such as traffic geometry, 

and types of roads [CORSIM 2006]. Real world data comes 

from traffic flow data collected by Minnesota DOT 

[Minnesota DOT 2009]. 

 

8.1. CORSIM Input Methods 

CORSIM is commonly used via its built-in Graphic 

User Interface (GUI) to enter traffic geometry, the amount 

of flow into each node, and all pertinent data, one step at a 

time, as shown in Figure 2. 

 
Figure 2. CORSIM Input GUI 



We facilitate an automated input, entitled CORSIM 

Input Generator, which minimizes the need for human 

interaction at traffic simulation, thereby reducing 

typographical errors involved in tedious manual work. More 

importantly, getting all inputs from real world sensors, the 

turnaround time from gathering information to result can be 

greatly decreased, allowing the system to be calibrated 

quicker and more accurately. Our Input Generator logically 

separates the input file to four sections. 

(1) Header and run control data: Contains title, run control, 

time period specification, time interval, time steps per 

time period, and report information. Most of the data 

are constant such as time intervals set to 12 two-hour 

intervals with measurements every hour. A user inputs 

the remaining information of title, identification, date, 

and description as seen in Figure 3. 

 
Figure 3. Header and Run Control Data Input 

(2) Transportation network data: Obtained from satellite 

and map data, provides traffic geometry, traffic link, 

and signal control data as shown in Figure 4. 

 
Figure 4. Transportation Network and Parameter Distribution Data Input 

(3) Dynamic parameter distribution data: Obtained from 

car-following, lane-changing, gap-acceptance, and 

route choice models, models driver behavior also 

shown in Figure 4. 

(4) Traffic flow data: Obtained from real world sensors 

such as ATR, provides the number of vehicles per hour 

entering a given node in the traffic network from 

outside the system. Entry and internal nodes are 

specific to the traffic geometry generated after the 

transportation network data and parameter distribution 

data are entered. Figure 5 shows the GUI to select an 

entry node, internal node, and traffic data to generate 

the traffic flow input data to CORSIM. One or more 

files may be added to calculate the traffic flow for each 

entry node into the network. 

 
Figure 5. Traffic Flow Data Input 

 

8.2. CORSIM Output Methods 

The CORSIM software provides two outputs: graphical 

and text-based. The graphical output shows the geometry of 

the network and a visual representation of the traffic flow. 

For our automation purposes, the text output contains 

statistics and details that will be of greater use. 

CORSIM’s graphical output shows the traffic geometry 

in the form of roads. The traffic flow is shown by cars 

driving, with colors representing different direction, and 

incidents shown by yellow and red. In addition, the time of 

the simulation as well as the frame delay and frame/time 

step can be modified to change the simulation output. Figure 

6 is a screenshot of CORSIM’s graphical output. 

 
Figure 6. CORSIM Output GUI 

 

CORSIM text-based output is one text file with a 

―.out‖ extension that echoes the input to the simulator and 

shows the resulting statistics. NETSIM simulation contains 

an output section that is time period specific. The CORSIM 

text-based output includes four main sections: 

(1) Input data echo: Consists of a copy of the input file and 

tables stating the complete specification of the traffic 

environment and run options, including all the user-

supplied inputs and default values. This can be used for 

checking the validity and acceptability of values and 

parameters. 

(2) Initialization results: Show how the vehicles filled the 

network at different time intervals prior to the network 

reaching equilibrium. The initialization results are not 

included in the cumulative results. CORSIM starts 

accumulating statistics after equilibrium has been 

reached. 

(3) Intermediate results: Optionally printed out at the end 

of user specified intervals.  

(4) End of time period results: Similar to intermediate 

results, but printed out at the end of time periods rather 

than at the end of option user specified intervals. 

Intermediate and end of time period results include 

measures of effectiveness (MOE) that are used to evaluate 

traffic systems [CORSIM 2006]. 



 

8.3. A Running Example 

Our running example consists of two nodes: an entry 

node and an exit node. The system only concerns with the 

entry traffic, so we input the traffic flow for the initial node. 

The traffic geometry contains one stretch of 1012 foot road 

with a 0% grade and a free flow speed of 30 mph. 

 

8.3.1 Real World Traffic Flow 

Traffic flow is obtained from the Minnesota DOT for 

January 1, 2009 at Station 101, North of Garfield Avenue in 

Duluth, St. Louis County; heading north. Table 1 shows a 

small segment of the data. Each day has an entry for all 24 

hours and a total column at the end [Minnesota DOT 2009]. 

Table 1. Sample Sensed Traffic Flow 

DATE DAY 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 

1-Jan-09 Thursday 220 211 216 248 211 

2-Jan-09 Friday 92 74 53 49 69 

3-Jan-09 Saturday 151 117 124 60 59 

4-Jan-09 Sunday 79 75 79 29 41 

5-Jan-09 Monday 45 68 50 39 110 

6-Jan-09 Tuesday 88 94 52 43 90 

7-Jan-09 Wednesday 89 88 54 60 99 

8-Jan-09 Thursday 120 164 68 55 87 

 

8.3.2 CORSIM Input File 

CORSIM input is a text file consisting of 80 one 

character columns. The three columns to the right (78-80) 

contain the record type number, which specifies what type 

of information the row is displaying to CORSIM. Figure 7 

displays the input file, corresponding to the sample 

Minnesota DOT traffic data, generated by our CORSIM 

Input Generator. It constructs the traffic geometry, traffic 

parameters, and traffic flow in a way that the CORSIM 

simulator recognizes. This sample of the input file contains 

the traffic for the first two hours. The full input would 

replicate the 50 and 53 record types (flow rate at the entry 

node in an interval and its variation) for all 12 two hour 

intervals. 

 
Figure 7.  Sample Generated CORSIM Input File 

 

9. CONCLUSION AND FUTURE WORK 

Our study demonstrates that it is feasible to automate 

model calibration of transportation simulation. We have 

successfully implemented a quick prototype, called 

CORSIM Input Generator, which downloads traffic flow 

data from the Automatic Traffic Recorder (ATR) by 

Minnesota DOT and converts the data into the CORSIM 

Input File, ready for simulation. A running example on the 

prototype supports the fidelity of the proposed system 

architecture. Our system integrates the modeling 

components: network simulator, traffic simulator, and driver 

simulator for an environment of transportation simulation. It 

automates the process of data collection and distillation as 

part of the model calibration by utilizing a distributed 

infrastructure of various wireless sensors integrated with the 

real geographic environment and by applying association 

pattern mining methodology to identify controlling factors 

of model parameters for closing the gap between the model 

and the ground truth. Though it is a long way towards full 

automation since model calibration currently lacks standards 

to assess the accuracy of modeling, our work sheds light on 

its feasibility. 

Automatic calibration of transportation simulation 

models promises a fertile field for multidisciplinary 

research. However, many technical details need to be 

worked out. Innovative sensors beyond inductive loop 

detectors and video cameras should be investigated for data 

collection at desired scopes with manageable resource 

consumption and prompt response timing. Geography 

integration of the real world environment with the 

computerized representation should make all transportation 

data, including network, traffic, and driver, available all the 

time everywhere and in ready-for-use format. Once data is 

delivered, it all boils down to knowledge discovery in 

particular domains with endless endures. 
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