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Abstract—The ultimate goal of distance metric learning is
to use discriminative information to keep data samples in the
same class close, and those in different classes separate. Local
distance metric methods can preserve discriminative information
by considering neighborhood influence. We propose a discrim-
inative distance metric approach by maximizing local pairwise
constraints. Based on the local learning framework, we then
extend this approach to a multiple metrics approach, local
discriminative distance metrics (LDDM), by learning distance
metrics on the local vicinity of each training sample. This
extension avoids the global optimization for irrelevant pairwise
constraints and can thus maximize the discriminative information
in each local area. Theoretical analysis for the error boundof
the proposed methods has been provided. In addition, we have
studied three challenging real-world problems: crater detection,
crime prediction, and accelerometer based activity recognition.
We design and apply three local distance learning metrics to
achieve the best performance for each particular task.

I. I NTRODUCTION

Real world applications usually possess various unique
properties, and hence any single algorithm cannot apply to all
real world problems. In this paper, we work on three different
types of real world applications: a Mars crater detection project
funded by National Aeronautics and Space Administration
(NASA), a crime prediction project funded by Department of
Justice (DOJ) and an accelerometer based activity prediction
project funded by National Institutes of Health (NIH).

Many machine learning and data mining approaches can
be used to analyze these real world tasks, e.g., K-means, K-
Nearest Neighbors, kernel SVMs [16], [19], [21]. Among these
metric-related approaches, distance metric learning plays a
crucial role.

These distance learning tasks fall into two categories:
unsupervised and supervised distance metric learning. In su-
pervised distance metric learning [18], the ultimate goal is to
use discriminative information in distance metric learning to
keep all the data samples in the same class close and those
from different classes separated. Zhanget al. [20] have shown
that a distance metric incorporating discriminative information
from labeled data usually outperforms the standard Euclidean
distance in classification tasks.

Supervised distance metric learning can be further divided
into global and local distance metric learning. The first step is
to learn a global distance metric from training data to satisfy
all pairwise constraints simultaneously [22], [17]. The most

representative work is Xing’s algorithm [17], which learnsa
distance metric on a global scale which minimizes the distance
between data pairs according to equivalence constraints, while
separating data pairs from each other according to inequiva-
lence constraints. If data classes exhibit multimodal distribu-
tions, equivalence or inequivalence constraints from different
data distributions may conflict with each other. Therefore,it
is difficult to satisfy all the constraints on a global level.
Local distance metric learning is introduced to cope with this
problem by considering the locality of data distribution [13],
[15], [5]. These local algorithms only consider neighboring
pairwise constraints and avoid adopting conflicting constraints.
By incorporating neighboring constraints, many approaches
have achieved great successes in manifold learning [7], [11].

All aforementioned approaches try to learn a single metric
on all data samples. The deficiencies of learning a single
metric include: 1) a single metric is likely to be inappropriate
for pairwise constraints from all training samples, and many
pairwise constraints may be irrelevant to others; 2) a single
local metric may be easily influenced by pairwise constraints
from noisy samples; 3) a single global metric cannot deal with
the multimodal distribution problem. It is recommended to
learn multiple metrics to describe different localities oftraining
samples [6], [15], [2], [3].

In this paper, we firstly propose a local distance metric
approach and then show how it can be extended to a multi-
ple local distance metrics technique. A key strategy for the
distance learning approach is to design appropriate distance
metrics based on the particular data properties of real world
data. For example, global distance metrics can explore struc-
ture information and is suitable for datasets with a single mode
distribution; a single local distance metric can be designed for
a dataset with multimodal distribution but it cannot handle
noisy data samples and irrelevant local constraints. On the
other hand, multiple local distance metrics can cope with noisy
samples as well as extensive irrelevant local constraints,which
is often the case of classification with many classes such that
the constraints from one class are irrelevant to the constraints
from other classes. In addition, for multidimensional data,
it is necessary to extend the vector based distance metric
approaches to tensor form in order to take into account the
geometric location of the data in spatial-temporal domain.

Based on the proposed solution, we have studied three chal-
lenging real-world problems: crater detection, crime prediction
and accelerometer based activity recognition. We design and



apply three local distance learning metrics to achieve the best
performance for each particular task. Crater detection from
remote sensing images is an important task in planetary sci-
ence, since impact craters are topographic features on planetary
surfaces resulting from impacts of meteoroids and crater counts
are the only available tool for measuring remotely the relative
ages of geologic formations on planets [10]. Crater detection
is a task of binary classification (a crater or not a crater) and
for each class it may obey multimodal distributions due to
different crater formations, and so we apply a single local
distance metric for this problem. Crime prediction is also a
binary classification problem but the data involves spatial-
temporal information. When using the vector based approach,
the geometric structure will be broken [8]. To address this
problem, we extend our single local distance metric approach
to tensor form in order to directly deal with tensor inputs.

The rest of the paper is organized as follows: Section 2
gives the formal definition of the distance metric problem.
Section 3 explains how to learn a single local discriminative
distance metric. Section 4 discusses our multiple local dis-
criminative distance metrics approach and Section 5 provides
theoretical analysis. Section 6 gives our local distance metric
learning applications to three real world applications. Section
7 concludes the paper.

II. D EFINITION OF DISTANCE METRIC

A. Problem Definition

Given a set ofd-dimensional training samplesX =
[x1,x2, · · · ,xn], where {xi}n1 ∈ R

d, and their associated
labels Y = [y1, y2, · · · , yn], a generic distance metric to
measure two samplesxi,xj is in the form of

dA(xi,xj) = ‖xi − xj‖A =
√

(xi − xj)TA(xi − xj), (1)

whereA is positive semi-definite, and parameterizes a family
of Mahalanobis distances [17]. Technically, it allows pseudo-
metrics, such thatdA(xi,xj) = 0 does not implyxi = xj .

ReplacingA with WTW in Equation (1), whereW =
A1/2, we get:

dA(xi,xj) =
√

(xi − xj)TWWT (xi − xj)

=
∥
∥WT (xi − xj)

∥
∥ . (2)

To solve the matrixA in Equation (1) orW in Equation
(2), there are two basic approaches: 1) using the structural
information based approach, e.g., PCA [4], LDA [4]; 2) using
the pairwise constraints based approach. Structure information
based approaches are mostly global approaches, while pairwise
constraints based approaches can be global or local depending
on whether to use the global or local pairwise constraints.

B. Pairwise constraints

The pairwise constraints based approaches have achieved
great performance [15]. Pairwise constraints consist of two
parts: similar pairs and dissimilar pairs. We can have certain
pairs of them being “similar” and “dissimilar” based on their

labels (supervised learning) or geo-location information(un-
supervised learning). Under a desired distance metric, similar
samples have a smaller distance while dissimilar samples have
a larger distance. Distance metric approaches either minimize
the similarity constraints as well as penalize the dissimilarity
constraints or maximize the dissimilarity constraints together
with constraining the similarity constraints. Based on this
property, we can form the following objective function:

argmin
A

∑

(xi,xj)∈S d2
A
(xi,xj),

s.t.
∑

(xi,xj)∈D d2
A
(xi,xj) ≥ θ

(3)

where θ is a parameter,S and D are the similarity and
dissimilarity sets, respectively.S contains pairs of samples that
share the same class label or have closed geo-location distance,
while D contains pairs of samples with different class labels
or have large geo-location distance.

The global distance metric approaches constructS andD
using the entire training dataset, e.g., Xing [17], while the local
distance metric approaches only consider pairs of samples in a
local vicinity [9]. The different forms ofS andD distinguish
the global and local approaches.

In addition, as shown in Equation (3), the main objectives
of different algorithms are the same. The merits of differences
are embodied in the constraint termθ, which optimizes the
dissimilarity constraints. For example, typical global approach
Xing’s method [17] setsθ = 1, while LMNN[15], a represen-
tative local approach, has

θ = 1 +
∑

(xi,xj)∈S

d2
A
(xi,xj).

Comparing different definitions ofθ, we can tell LMNN
has a stronger constraint on the dissimilar pairs. A largerθ
corresponds to a longer pairwise distance between dissimilar
samples. From this aspect, LMNN is expected to incorporate
more discriminative information, since dissimilar samples are
forced to have longer distance and thus form a larger margin
between data samples in two different classes.

III. D ISCRIMINATIVE DISTANCE METRIC

In this section, we propose a more aggressive constraint on
dissimilar samples by simply maximizing theθ and minimizing
the similar constraints simultaneously.

Here we define two new objective functions to min-
imize/maximize the distance of two data samples in
same/different class:

argmin
A

∑

(xi,xj)∈S d2
A
(xi,xj), (4)

and

argmax
A

∑

(xi,xj)∈D d2
A
(xi,xj). (5)

Using a parameterβ to align two objectives in Equations (4)
and (5), we have

argmin
A

∑

(xi,xj)∈S d2
A
(xi,xj)− β

∑

(xi,xj)∈D d2
A
(xi,xj).

(6)



Substituting Equation (2) into Equation (6), we have

argmin
W

∑

(xi,xj)∈S

∥
∥WT (xi − xj)

∥
∥
2

2

−β
∑

(xi,xj)∈D

∥
∥WT (xi − xj)

∥
∥
2

2
.

(7)

To learn a local distance metric from Equation (7), we form
the similar pairwise constraint setS and the dissimilar pairwise
constraint setD by incorporating neighborhood information.
SetsSi andDi are constructed for each training samplexi as:

Si = {(xi,xj)|xj ∈ Xi, yi = yj},
and

Di = {(xi,xj)|xj ∈ Xi, yi 6= yj},
whereXi is the set of samples inxi’s local vicinity [9], also
known as a local patch in [20], which containsxi the k1
samples with the same class label ofxi andk2 samples with
the different class label ofxi. The projection matrixW to
optimize the pairwise constraints in the local vicinity ofxi

can be defined as

argmin
W

∑

(xi,xj)∈Si

∥
∥WT (xi − xj)

∥
∥
2

2

−β
∑

(xi,xj)∈Di

∥
∥WT (xi − xj)

∥
∥
2

2
.

(8)

Reorganizing Equation (8) in matrix form, we have the
equivalent optimization problem:

argmin
W

tr(WTXiLiX
T
i W), (9)

whereLi ∈ R
(k1+k2+1)×(k1+k2+1) is defined as

Li =

[∑k1+k2

j=1 (wi)j −wT
i

−wi diag(wi)

]

, (10)

and thewi is the coefficient vector defined as

wi =





k1

︷ ︸︸ ︷

1, · · · , 1
k2

︷ ︸︸ ︷

−β, · · · ,−β



 (11)

Since Equation (9) optimizes the pairwise constraints in
samplexi’s vicinity, after summing over all the local vicinities,
we have the equivalent optimization form for Equation (7):

argmin
W

tr(WTXLXTW), (12)

whereXLXT =
∑

i XiLiX
T
i

To make the projection matrixW linear and orthogonal,
we imposeWTW = Id, whereId is a d× d identity matrix.
Equation (12) is then deformed to:

min tr
(
WTXLXTW

)
s.t.WTW = Id. (13)

Solutions of Equation (13) can be obtained with the standard
eigen-decomposition:

XLXTu = λu. (14)

Let the column vectorsu1,u2, · · · ,ud be the solution of
Equation (14), ordered according to eigenvaluesλ1 ≤ λ2 ≤

· · · ≤ λd. The optimal projection matrixW is then given by:
W = [u1,u2, · · · ,u′

d], whered′ < d. OnceW is calculated,
the local discriminative distance metricA can be calculated
using Equation (2).

IV. L OCAL DISCRIMINATIVE DISTANCE METRICS

A. Multiple metrics

If only one distance metric is used to describe the whole
training space, the tradeoff between the learning system and the
number of samples may limit the learning performance [14].
The performance of this learning system can be measured as
VC-dimension, which depicts the maximum number samples
this learning system can shatter. From this aspect, it is well
motivated to use multiple learning systems with each learning
system only taking effect on a small portion of the data[14].
A typical classifier using multiple local learning systems is K-
Nearest-Neighbor (KNN), which uses a small portion of the
data to form a prediction on a local area.

A distance metric describes a distance space to be used
for a learning system. Since there are multiple local learning
systems, using multiple local distance metrics seems to be a
natural extension. From the local learning theory, one single
learning system cannot shatter all data samples. Similarly, one
single distance metric cannot fulfill all pairwise constraints,
which means some constraints have to be compromised during
optimization.

To avoid pairwise constraints being compromised, we adopt
a local optimization for each samplexi. In one optimization
procedure, we only optimize those pairwise constraints con-
taining samplexi. Other irrelevant constraints are excluded in
the optimization so that the local vicinity ofxi can reflect our
full expectation on this local area without any interference.

As shown in Equation (9), with the constraintWT
i Wi =

Id, we can have a local discriminative distance metricWi for
the vicinity of xi as

argmin
Wi

tr(WT
i XiLiX

T
i Wi), s.t.W

T
i Wi = Id. (15)

B. A Probabilistic Approach for Ensemble Classifiers

Based on Equation (15), a distance metricAi is defined
on samplexi as afocal sample.

Given an unknown test samplexj , let o be the class label
of focal samplexi, the number of possible classes isNo, the
probability of xj belonging to the classo, Pri(o|xj), using
the local distance metricAi of the ith focal samplexi is

Pri(o|xj) =

{∑n
k=1

{θ(xk∈V(xi))θ(yk=o)}
∑

n
k=1

θ(xk∈V(xi))
if xj ∈ VK(xi)

1
No

otherwise
(16)

whereVK(xi) is the local vicinity of training samplexi which
containsK nearest neighbors ofxi with respect to the learned
local distance metricAi. θ(·) is an indicator function that
returns 1 when the input argument is true, and 0 otherwise.
θ(xj ∈ VK(xi)) = 1 indicatesxj is amongK nearest
neighbors ofxi with respect toAi, which is calculated in
Equation (14). Otherwise, the focal samplexi has no influence
on the unknown test samplexj . V(xi) defines a circular



clique whose center is the focal samplexi. The radiusr is the
distance between the focal sample and the test samplexj under
the learned local distance metricAi. ProbabilityPri(o|xj) is
calculated as purity of circular cliqueV(xi). Please note that
we propose a new prediction method in Equation (16) instead
of the traditional KNN rules because of our objective function
defined in Equation (15). We expect the vicinity of the focal
sample to contain as many similar samples as possible. In this
case, if a test sample is not in theK nearest neighbors of
the focal sample, it is expected not to be similar to the focal
sample. The metric is expected topull the samples with the
same/different label as the focal samplexi closer to/away from
xi. Note that if the test samplexj is the closest sample toxi

in VK(xi), the probability is 1 for the test samplexj to be
assigned as the same class label asxi.

As illustrated in Figure 1 from our published paper [9] ,
because the clique of the red circleV(xi) contains a focal
sample, four red circles and one blue square, probability for
the test sample belonging to the red circle class is5

6 .

Focal sample

r

Fig. 1. Local distance metric prediction. Red circles and blue squares belong
to two classes. The yellow triangle is an unknown test sample. The red circle
in the center is the focal samplexi. Figure illustrates the local distance metric
spaceAi learned from the focal sample and its vicinity. The solid-line circle is
VK(xi) and the dashed-line circle representsV (xi). The probability for the
yellow triangle belonging to the red circle class is the number of red circles
in V (xi) divided by total number of training samples inV (xi).

We can obtain a set of locally learned classifiers described
in a different data space, using the local classifier defined in
Equation (16) under each local distance metric. This approach
makes these local classifiers independent of each other to
facilitate the alignment operation. Each obtained local distance
metric best measures the vicinity of the focal sample and
places the same class samples close to the focal sample and
the different-class samples far away from the focal sample.
To make the training model adjustable according to different
test samples, we add a weight coefficientφ when combining
n local predictionPri(o|xj) for a given test samplexj .
Weight φ is decided by the distance between the test sample
and focal sample. A final prediction is made by aligningn
outputs in a probabilistic framework. The alignment process
is formally defined as

Pr(o|xj) =
1

n

n∑

i=1

φiPri(o|xj), (17)

where n is the number of classifiers andPri(o|xj) is the
probability of samplexj belonging to classo predicted by
the ith local classifier. To simplify this process, we give all
the training samples equal weights by lettingφi = 1. This
makes the ensemble process behave like equal weight voting.
The class label with the highest probability is the final label
of test sample.

An overall summary of our local discriminative distance
metrics (LDDM) method is described in Algorithm 1. In the
training procedure, we need to calculateWi by decomposing
a (k1 + k2 + 1)× (k1 + k2 + 1) matrix XiLiX

T
i in Equation

(14) for each focal samplexi which has time complexity
O(n(k1 + k2 + 1)3). When testing an unknown sample, it
is linear time O(n) to the training set size, since all the
local distance metrics were already obtained in the training
phase. The test time complexity only depends on Equation (16)
and Equation (17) which is just the ensemble of results ofn
training samples using pre-calculated local distance metrics.
Note that the projection for all the training samples into the
distance metric space can be conducted in the training phase.
Despite the high training cost, we can parallelize the proposed
model to make it scalable for large-scale problems. Local
classifiers could also be learned offline in advance. For detailed
performance and efficiency comparisons between LDDM and
other distance metric approaches please refer to our paper
published on Pattern Recognition [9].

Algorithm 1 LDDM: a multiple distance metrics approach for
classification
Training procedure

1: for each training samplexi do
2: Get the focal vicinityXi for xi

3: Build the discriminative matrixLi using Equation (10)

4: solve the projection matrixWi by Equation (14)
5: end for

Test procedure
1: for each test samplexj do
2: Calculate the probability ofxj belonging to classo

when using the training samplexi as the focal sample,
Pri(o|xj) by Equation (16)

3: Ensemble all the predictions by different training sam-
ples according to Equation (17)

4: end for

V. THEORETICAL ANALYSIS

We now theoretically prove the stability and efficiency of
the proposed LDDM method by analyzing the convergence rate
of the local discriminative distance metric and generalization
bound of the local metrics and classifiers ensemble.

We assume that all the samples and their labels can be
represented by an unknown distributionF (x,y), defined by
pairs (x,y) ∈ R

d × R
1. The pair (x,y) is denoted asz

for short. Modelx → f(x, α) of the outputy is controlled
by a parameterα ∈ Λ. f(x, α) refers to the local classifier
defined in Equation (16) for LDDM. The0 − 1 loss function
Q(y, f(x, α)) (or Q(z, α) for short) measures the quality of
estimation byf(x, α) for outputy ∈ {−1,+1}. The global
risk function is defined as

R(α) =

∫

Q(z, α)dF (z) (18)

over all functions{f(x, α), α ∈ Λ}, and samples{zi}ni=1 are
independently drawn from the unknown distributionF (z).
The empirical risk function with respect to the training samples



{zi}ni=1 is

Remp(α) =
1

n

n∑

i=1

Q(zi, α). (19)

In local algorithms, the local risk functionR(α,x0) depends
on the focal samplex0 and the vicinity ofx0. The nonnegative
locality function D(x,x0, A), which embodies the vicinity
information of the focal sample, is defined as

D(x,x0, A) =

{
1 if ‖x− x0‖A ≤ r

0 otherwise,
(20)

whereA is the distance metric obtained by lettingx0 be the
focal sample andr is the soft threshold of the locality function,
which is defined by the distance between the focal sample and
the test sample, and illustrated in Figure 1 for LDDM, where
K is number of neighbors to be considered in the vicinity. The
norm of the locality function is defined as

‖D(x0, A)‖ =

∫

D(x,x0, A)dF (z). (21)

Based on the definition of the locality function, samples
and labels can be represented by a new distributionF (z, A)
corresponding to local distance metricA. The distribution is
defined as

∫

A

dF (z, A) =

∫

A

D(x,x0, A)

‖D(x0, A)‖
dF (z). (22)

The local distance metric-based unnormalized local risk func-
tion is defined as:

R(α,A,x0) =

∫

Q(z, α)D(x,x0, A)dF (z), (23)

and the local empirical risk function is based on the summation
over all focal samples, which is defined as:

Remp(α,A,x0) =
1

n

n∑

i=1

Q(zi, α)D(xi,x0, A). (24)

Next, we give the bound on the convergence rate of a local
classifier, risk bound of one local classifier and risk bound of
the ensemble of a set of local classifiers.

A. Convergence Rate of Local Classifier

In this paper, we define the concept of local domain-based
VC-dimension, which is a VC-dimension of a set of functions
under a local vicinity. Convergence rate bound of the global
risk function only depends on the number of training samples
and the VC-dimension that measures the complexity and the
expressive power of the set of loss functions{Q(z, α), α ∈ Λ}.

In the existing distance metric learning methods, all the
VC-dimension and loss functions are under the same distance
metric. Thus these distance metric methods obey the bound in
the following theorem [14].

Theorem 5.1:Let {Q(z, α), α ∈ Λ} be a set of nonnega-
tive real functions with VC-dimension h. Then the following

bound holds

P






sup
α∈Λ

R(α)−Remp(α)
√
∫
Q2(z, α)dF (z)

> ǫa(ǫ)






(25)

< 12

(
2ne

h

)h

exp

{

− ǫ2n

4

}

,

where

a(ǫ) =

√

1− 1

2
ln ǫ.

Theorem 5.1 shows the bound for the test errorRemp(α).
The left part is a probability corresponding to the difference
between training errorR(α) and test errorRemp(α). The
probability approaches0 when the test error and the training
error have an acceptable difference This probability has been
proved to be converged to0 when there are enough training
samples [14]. For our local discriminative distance metrics
algorithm, the loss functions are different according to the
focal samples since they obey their own local distance metrics
obtained from the focal samples. To obtain the convergence
rate of a local classifier, we assume that the loss function with
the local distance metric satisfy the following mild condition:

sup
α,A

√
∫
Q2(z, α)dF (z, A)

∫
Q(z, α)dF (z, A)

< τ. (26)

This means that the probability thatsupα Q(z, α) exceeds
some value will decrease quickly with the value increasing.
Value τ determines how fast it decreases. We can get the
following theorem for convergence rate of local risk function
which is bounded in the term of local domain-based VC-
dimensionh∗.

Theorem 5.2:Let the vicinity of x0 be under the lo-
cal distance metricA and the set of loss functions
{Q(z, α)D(x,x0, A), α ∈ Λ} have the local domain based
VC-dimensionh∗. Then the following bound holds:

P

{

sup
α∈Λ

R(α,A,x0)−Remp(α,A,x0)

R(α,A,x0)
>

τǫa(ǫ)
√

‖D(x0, A)‖

}

(27)

< 12

(
2Ke

h∗

)h∗

exp

{

− ǫ2K

4

}

where

a(ǫ) =

√

1− 1

2
ln ǫ.

Proof is shown in section Appendix A.

Theorem 5.1 gives the convergence rate for the approaches
based on a single distance metric in Equation 2. Theorem 5.2
gives the convergence rate using the local domain based VC-
dimension for a single distance metricAi. In the following
theorem, we show the risk bound of a local classifier according
to Theorem 5.2.



B. Bound of Local Classifiers

For local classifiers learned on local distance metrics ac-
cording to Equation 16, we have the following theorem.

Theorem 5.3:Let the distance metric of the vicinity ofx0

beA. The set of loss functions{Q(z, α)D(x,x0, A), α ∈ Λ}
have the local domain-based VC-dimensionh∗. The following
inequality holds for allα ∈ Λ with probability 1− η:

R(α,A,x0) ≤
1

‖D(x0, A)‖
· (28)

[

Remp(α,A,x0) + ν

(

1 +

√

1 +
4

ν
Remp(α,A,x0)

)]

where

ν = 2
(h∗) {ln[2K/(h∗)] + 1} − ln η

24

K

Proof is shown in Appendix B.

C. Bound of Classifiers Ensemble

We now further explain the generalization bound of the
classifier ensemble method discussed in Section 4. Since every
training sample will be treated as a focal sample in turn,n
samples drawn from the unknown distributionF (x,y) can
generaten local distance metrics. For each unknown test
samplex, the base classifierfi(x, Ai) ∈ H can be obtained by
Equation (16), whereAi is the local distance metric learned
by focal sample(xi, yi), which embodies local discriminative
information and the size ofH is n. According to the alignment
procedure in Equation (17), we define the final classifier after
ensemble as

g(x) = sign(
n∑

i=1

fi(x, Ai)). (29)

In Equation (29),g(·) gives a wrong prediction on the sample
(x,y) only if yg(x) ≤ 0. fi(x, Ai) is the ith element of
f(x,A). The margin function is given byyg(x). Equation (29)
is fundamentally a majority vote on all base classifiers. [12] has
shown a bound which applies to all majority-vote classifiers.
Inspired by this, we show the following theorem which states
that the generalization error of the ensembled classifier can
be bounded in terms of the number of training samples with
the margin below a thresholdθ and in the capacity of base
classifier spaceH.

Theorem 5.4:Let S be a set ofn samples independently
drawn from the distributionF (x,y) over X × {−1,+1}.
Assume that the base-classifier spaceH is finite, and letσ > 0.
Then with probability at least1 − σ over the random choice
of the training setS, every weighted average functiong(·)
satisfies the following bound for allθ > 0:

PF (yg(x) ≤ 0) ≤ PS(yg(x) ≤ θ) (30)

+O

(

1√
n

(
logn log |H|

θ2
+ log(1/σ)

)1/2
)

.

For detailed proof please refer to Theorem 1 in [12].

VI. EXPERIMENTS

A. Crater Detection

Crater detection from panchromatic images faces unique
challenges when compared to traditional object detection tasks.
Craters are numerous, have a large range of sizes and textures,
and continuously merge into image backgrounds. There are
various reasons for the formation of the Mars impact craters.
Therefore, crater images with different ages, shapes and tex-
tures yield a multi-modal distribution dataset. In Fig. 2, crater
images may have shadows in different areas and rims are not
always clear; non-crater images are different to crater images
in their own ways.

Fig. 2. Sample crater images. The top two rows correspond to real crater
images. The bottom two rows correspond to non-crater images.

There are extensive studies showing that local distance
metric approaches, which consider the neighborhood infor-
mation, perform better than global approaches in the multi-
model distribution case [9]. Therefore, we apply our local
distance metric approach described in Equation (13) to tackle
this problem.

A scale, location, and rotation invariant feature, Biolog-
ically Inspired Haar Feature [10], is extracted to represent
the crater images. The left panel of Fig. 3 show the 2-
dimensional PCA space of the original crater images, which
roughly demonstrates the distribution and the complexity of
the dataset. The right panel of Fig. 3 shows the proposed
2-dimensional discriminative distance metric space underthe
new feature representation, from which we can tell even though
the original data may have a complicated distribution, under a
good feature representation and discriminative method, craters
and non-craters are well separated. Therefore a single distance
metric is good enough for this dataset. A simplified version of
LDDM method, denoted as Discriminative Locality Alignment
(DLA) [10], [20], has been used in this experiment . We have
2,085 true craters and 2,085 non-craters. Under a 10-fold cross
validation, we can achieve 0.93 F1 score, which is higher than
the state-of-the-art method, transfer learning based boosting
[1], with 0.90 F1 score, shown in Fig. 4.

B. Crime Prediction

Police agencies have been collecting an increasing amount
of information to better understand patterns in criminal activity.
Recently there is a new trend in using the data collected to
predict where and when crime will occur. Crime prediction is
greatly beneficial because if it is done accurately, the police
administrator would be able to allocate resources to the geo-
graphic areas most at risk for criminal activity and ultimately
make communities safer. In this paper, we discuss a new four-
order tensor representation for crime data. The tensor encodes
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Fig. 3. Impact dataset visualization under 2-dimensional PCA space (left)
and 2-dimensional discriminative distance metric space (right).
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Fig. 4. The comparison of DLA and KNN, and boosting algorithmon crater
detection.

the longitude, latitude, time, and other relevant incidents. Using
the tensor data structure, we propose the Empirical Discrimi-
native Tensor Analysis (EDTA) algorithm to obtain sufficient
discriminative information while minimizing empirical risk
simultaneously, which is a natural extension of the distance
measurement in vector space. Detailed implementation can be
found in [8].

We aim to predict residential burglaries. Each residential
burglary is encoded by spatial and temporal information,
including longitude, latitude, and time. We also collect other
relevant geo-coded events selected by domain scientists that
are believed to be associated with criminal activity, including
construction permits, foreclosure, mayor hotline inputs,motor
vehicle larceny, social events, and offender data. Crime data
is rasterized into small grid cells because it is infeasibleto
make precise longitude and latitude coordinate predication.
Fig. 5 further explains the internal structure of the third-order
tensor using residential burglary as an example. The numberof
residential burglaries for a specific grid cell is the summation
of all the crimes happened inside this grid cell. We aggregate
the data by month and perform monthly prediction because
daily crime data is too few and cannot provide sufficient
features from the crime data collected in this northeasterncity.
Therefore, the ultimate objective of this crime forecasting task
is to predict whether a grid cell will have high residential
burglaries for a given month. Experimental results, comparing
to other tensor based approaches, on predicting residential
burglary prediction in 2007 using historical data are shown
in Fig. 6.
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Fig. 5. The residential burglary third-order tensor example. Each map refers
to a residential burglary map in different time. The combination of these maps
by time forms a three order tensor.

Fig. 6. Methods comparison on residential burglary prediction for 12 months
in 2007.

C. Accelerometor data

The negative health consequences and rampant growth
of childhood obesity causes it to be a major public health
concern. Exercise is known to best combat childhood obesity.
One popular method to measure the amount of exercise done
by children is to estimate energy expenditure from attached
accelerometers as they perform various activities. However,
it remains an open research problem to accurately translate
accelerometer output to estimates of energy expenditure due
to the complexity of motion sensor data. Recent studies have
shown that classifying physical activities can significantly
improve estimation accuracy of energy expenditure. Totally
there are 19 activities in 5 categories: Sedentary, Chores,
Locomotion, Interactive Video Games, Exercise and Sports
with 5487 samples. 5 percentile features and 9 autocorrelations
features are used in this experiment. The high number of
classes greatly raise the optimization constraints as shown in
Equation 3. Therefore, LDDM is most appropriate for this
complex dataset. The results can be found in Table 1 and
the experimental result is reported in Leave One Person Out
(LOPO).

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have studied the properties of the lo-
cal/global distance metric and single/multiple distance metric.
We further present the single local discriminative distance
metric and its multiple distance metrics form LDDM. We
theoretically prove the convergence rate bound and the risk

SVM NaiveBayes NeuralNetwork kNN LDDM
LOPO 74.02 61.14 78.59 74.93 80.21

TABLE I. A CCURACY (%) OF SEVERAL CLASSIFIERS IN PREDICTING

ACTIVITY CATEGORY LABELS .



bound for local classifiers by introducing a new concept of
local domain based VC-dimension. We also prove the risk
bound of final classifiers ensemble. For different types of
real world applications, we select different distance metric
approaches. In the future, we plan to explore more properties
for multiple distance metrics learning and extend it to more
real world applications.
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APPENDIX

A. Proof of Theorem 5.2

Proof: Theorem 5.1 implies the following inequality:

P






sup
α∈Λ

R(α,A,x0)−Remp(α,A,x0)
√
∫
Q2(z, α)D2(x,x0, A)dF (z)

> ǫa(ǫ)






(31)

< 12

(
2Ke

h∗

)h∗

exp

{

− ǫ2K

4

}

,

whereK is the size of the focal vicinity defined in Equation
(16). According to Equation (20) and Equation (22), we have

√
∫

Q2(z, α)D2(x,x0, A)dF (z)

≤
√
∫

Q2(z, α) ‖D(x0, A)‖ dF (z, A). (32)

According to Equation (22), (23) and (26), we have
√
∫

Q2(z, α)dF (z, A) < τ

∫

Q(z, α)dF (z, A) = τ
R(α,A,x0)

‖D(x0, A)‖
.

(33)

According to Equation (32) and (33), we have
√
∫

Q2(z, α)D2(z,x0, A)dF (z) < τ
R(α,A,x0)
√

‖D(x0, A)‖
. (34)

The inequality Equation (27) can be obtained from Equations
(31) and (34) immediately.
This completes the proof.

B. Proof of Theorem 5.3

Proof: In Equation (27), letη/2 denote the right-side.
By solving the equation

12

(
2Ke

h∗

)h∗

exp{− ǫ2K

4
} = η/2 (35)

and replacing the result into Equation (27), we obtain the
following inequality with probability1− η/2.

R(α,A,x0) ≤Remp(α,A,x0) + ν

(

1 +

√

1 +
4

ν
Remp(α,A,x0)

)

(36)

where

ν = 2
(h∗) {ln[2n/(h∗)] + 1} − ln η

24

n
.

By defining the normalized empirical risk for the vicinity of
x0

R(α,A,x0) =

∫

Q(z, α)
D(x,x0, A)

‖D(x0, A)‖
dF (z),

we can get Equation (28) by dividing both sides of inequality
Equation (36) by‖D(x0, A)‖.
This completes the proof.
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