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Abstract—The ultimate goal of distance metric learning is  representative work is Xing’s algorithm_[17], which learas
to use discriminative information to keep data samples in te distance metric on a global scale which minimizes the destan
same class close, and those in different classes separatecél between data pairs according to equivalence constraitie w
distance_ me_tric me_thods can preserve discriminative infmnatio_n separating data pairs from each other according to inequiva
by considering neighborhood influence. We propose a discrim  |ance constraints. If data classes exhibit multimodalritist
inative distance metric approach by maximizing local pairwise tions, equivalence or inequivalence constraints fromediffit

constraints. Based on the local learning framework, we then CAm e . . .
extend this approach to a multiple metrics approach, local data distributions may conflict with each other. Therefatre,

discriminative distance metrics (LDDM), by leamning distance IS difficult to satisfy all the constraints on a global level.
metrics on the local Vicinity of each training Sampie. This Local distance metric |earn|ng is introduced to COpe witils th
extension avoids the global optimization for irrelevant parwise problem by considering the locality of data distributior8],1
constraints and can thus maximize the discriminative infomation [15], [B]. These local algorithms only consider neighbgrin
in each local area. Theoretical analysis for the error boundof pairwise constraints and avoid adopting conflicting caists.
the proposed methods has been provided. In addition, we have By incorporating neighboring constraints, many approache

studied three challenging real-world problems: crater deection,  haye achieved great successes in manifold learning[[7], [11
crime prediction, and accelerometer based activity recogtion. -

We design and apply three local distance learning metrics to All aforementioned approaches try to learn a single metric
achieve the best performance for each particular task. on all data samples. The deficiencies of learning a single
metric include: 1) a single metric is likely to be inapprate
. INTRODUCTION for pairwise constraints from all training samples, and ynan

airwise constraints may be irrelevant to others; 2) a singl

Real world applications usually possess various U”iqu%cal metric may be easily influenced by pairwise constsaint
properties, and hence any single algorithm cannot applyl to afom nojisy samples; 3) a single global metric cannot deah wit
real world problems. In this paper, we work on three différen jhe muyltimodal distribution problem. It is recommended to

types of real world applications: a Mars crater detectia)emt  |eam multiple metrics to describe different localitiesaining
funded by National Aeronautics and Space Adm|n|strat|onsamp|es [6],T15], 121, [T3].

(NASA), a crime prediction project funded by Department of
Justice (DOJ) and an accelerometer based activity predicti In this paper, we firstly propose a local distance metric
project funded by National Institutes of Health (NIH). approach and then show how it can be extended to a multi-
Many machine leaming and data mining approaches ca le local distance metrics technique. A key strategy for the
éistance learning approach is to design appropriate distan

be used to analyze these real world tasks, e.g., K-means, K-* "~ : .
Nearest Neighbors, kernel SVMs [16].[19]. [21]. Among thes ) etrics based on the particular data properties of realdvorl

metric-related approaches, distance metric learningspkay ¢
crucial role.

ata. For example, global distance metrics can explore-stru
ure information and is suitable for datasets with a singtelen
distribution; a single local distance metric can be dedidioe
These distance learning tasks fall into two categories@ dataset with multimodal distribution but it cannot handle
unsupervised and supervised distance metric learningudn snoisy data samples and irrelevant local constraints. On the
pervised distance metric learnirig [18], the ultimate geatoi  Other hand, multiple local distance metrics can cope wiisyno
use discriminative information in distance metric leagnio ~ Samples as well as extensive irrelevant local constrawtt&h
keep all the data samples in the same class close and thoseoften the case of classification with many classes sudh tha
from different classes separated. Zhangl. [20] have shown the constraints from one class are irrelevant to the cangéra
that a distance metric incorporating discriminative imfation ~ from other classes. In addition, for multidimensional data
from labeled data usually outperforms the standard Euatide it iS necessary to extend the vector based distance metric
distance in classification tasks. approaches to tensor form in order to take into account the

) ) ) ) o geometric location of the data in spatial-temporal domain.
Supervised distance metric learning can be further divide

into global and local distance metric learning. The firspste Based on the proposed solution, we have studied three chal
to learn a global distance metric from training data to $atis lenging real-world problems: crater detection, crime préoh
all pairwise constraints simultaneously [22], [17]. Thesho and accelerometer based activity recognition. We desigh an



apply three local distance learning metrics to achieve tst b labels (supervised learning) or geo-location informatfan-
performance for each particular task. Crater detectiomfro supervised learning). Under a desired distance metridjagim
remote sensing images is an important task in planetary scéamples have a smaller distance while dissimilar samphas ha
ence, since impact craters are topographic features optpign  a larger distance. Distance metric approaches either rizaim
surfaces resulting from impacts of meteoroids and crateniso  the similarity constraints as well as penalize the dissinty
are the only available tool for measuring remotely the hetat constraints or maximize the dissimilarity constraintsetgr
ages of geologic formations on planetsi[10]. Crater dedacti with constraining the similarity constraints. Based onsthi
is a task of binary classification (a crater or not a crated an property, we can form the following objective function:
for each class it may obey multimodal distributions due to

different crater formations, and so we apply a single local

distance metric for this problem. Crime prediction is also a arg min Z(xi,xj)es da (xi, %;),

binary classification problem but the data involves spatial stAZ &, (x5, %;) > 0

temporal information. When using the vector based approach e (xixg)ED TARTD T =
the geometric structure will be brokenl [8]. To address thiswhere # is a parameter,S and D are the similarity and
problem, we extend our single local distance metric apgroacdissimilarity sets, respectivelg. contains pairs of samples that
to tensor form in order to directly deal with tensor inputs.  share the same class label or have closed geo-locationcksta
hile D contains pairs of samples with different class labels
r have large geo-location distance.

3)

The rest of the paper is organized as follows: Section
gives the formal definition of the distance metric problem.
Section 3 explains how to learn a single local discrimiretiv The global distance metric approaches constfueind D
distance metric. Section 4 discusses our multiple local disusing the entire training dataset, e.g., Xingl[17], while kbcal
criminative distance metrics approach and Section 5 pesvid distance metric approaches only consider pairs of samplas i
theoretical analysis. Section 6 gives our local distance&ime local vicinity [9]. The different forms ofS and D distinguish
learning applications to three real world applicationsctie®  the global and local approaches.

7 concludes the paper. In addition, as shown in Equatiohl (3), the main objectives

of different algorithms are the same. The merits of diffesn
Il.  DEFINITION OF DISTANCE METRIC are embodied in the constraint terfn which optimizes the
dissimilarity constraints. For example, typical globapegach

A. Problem Definition Xing's method [17] set® = 1, while LMNN[15], a represen-

Given a set ofd-dimensional training sampleX =  tative local approach, has
[x1,X2, " ,X,], Where {z;}7 € R?, and their associated
labels Y = [y1,y2, - ,yn], @ generic distance metric to _ 20 o
measure two samples;, x; is in the form of 0=1 +( Z) SdA(X“XJ)'
Xi,Xj)€

Comparing different definitions of, we can tell LMNN
da(xi,xj) = [|xi — x5, = \/(Xi —x;)TA(x; —x;), (1) has a stronger constraint on the dissimilar pairs. A lafyer

. . . . . ._corresponds to a longer pairwise distance between dissimil
where A is positive semi-definite, and parameterizes a fam'lysamples. From this aspect, LMNN is expected to incorporate
of Mahalanobis distances [17]. Technically, it allows p@U  more discriminative information, since dissimilar sanspiee

metrics, such thatia(x;, x;) = 0 does not implyx; = x;. forced to have longer distance and thus form a larger margin

ReplacingA with WTW in Equation [[1), wherew =  Detween data samples in two different classes.
A2 we get:

1. DISCRIMINATIVE DISTANCE METRIC
da(xi,x;) Z\/(Xz‘ —x;)TWWT (x; — x;) In this section, we propose a more aggressive constraint on
_ HWT(XZ_ _ Xj)|| . ) dlssw_mIar samples _by S|n_1ply maximizing thend minimizing
the similar constraints simultaneously.
To solve the matrixA in Equation [(1) orW in Equation Here we define two new objective functions to min-

(@), there are two basic approaches: 1) using the structuréinize/maximize the distance of two data samples in
information based approach, e.g., PCA [4], LDA [4]; 2) using same/different class:

the pairwise constraints based approach. Structure iraom argmin ¥, g A3 (x4, %), 4)
based approaches are mostly global approaches, whileipairw A B
constraints based approaches can be global or local defendigng
on whether to use the global or local pairwise constraints. o

arg max > (xixy)e D A (Xir X5). (5)
B. Pairwise constraints Using a parametef to align two objectives in EquationEl(4)

The pairwise constraints based approaches have achievéfd [3). we have
great pgrf_orman_ce [15]. Pa!rvylse constraints consist af tw argIHiIIZ(x7,,xj)es di(xmxj) _ 52(&%)6[) di(xi,xj)-
parts: similar pairs and dissimilar pairs. We can have oerta A
pairs of them being “similar” and “dissimilar” based on thei (6)



Substituting Equatior{2) into Equatiol (6), we have -+ < A\g. The optimal projection matri¥ is then given by:

W = [uy,uy, -+ ,u}], whered’ < d. OnceW is calculated,
) the local discriminative distance metri& can be calculated
argvénin Y empyes Wi =) - using Equation[{2).
2
—B Z(xi,xj)eD HWT(Xi - Xj)||2 . IV. LOCAL DISCRIMINATIVE DISTANCE METRICS

To learn a local distance metric from Equatibh (7), we form” Multiple metrics

the similar pairwise constraint sétand the dissimilar pairwise If only one distance metric is used to describe the whole
constraint setD by incorporating neighborhood information. training space, the tradeoff between the learning systehtten
SetsS; and D; are constructed for each training sampleas:  number of samples may limit the learning performarice [14].

Sy = {(xs,%;)[%; € Xs, s = y;) The performance of this learning system can be measured a

¢ O o dh VC-dimension, which depicts the maximum number samples

and this learning system can shatter. From this aspect, it i$ wel

D; = {(xi,x;)|x; € Xi,yi # y;} motivated to use multiple learning systems with each leayni
system only taking effect on a small portion of the data[14].
A typical classifier using multiple local learning systerad<-
Nearest-Neighbor (KNN), which uses a small portion of the
data to form a prediction on a local area.

whereX; is the set of samples ir;’s local vicinity [9], also
known as a local patch in_[20], which contaiss the k;
samples with the same class labelxgfand k2 samples with
the different class label ok;. The projection matrixXW to

optimize the pairwise constraints in the local vicinity of A distance metric describes a distance space to be usec
can be defined as for a learning system. Since there are multiple local lewyni
) . 9 systems, using multiple local distance metrics seems to be &
arg o 2(xi, (xi —x5)[|; natural extension. From the local learning theory, onelsing
S T(x; — X‘)||2 (8) learning system cannot shatter all data samples. Similainly
Xi ¢ J/N2 single distance metric cannot fulfill all pairwise consttaj

which means some constraints have to be compromised during
Reorganizing Equatior{(8) in matrix form, we have theoptlmlzatlon

equivalent optimization problem: o _ _ _
To avoid pairwise constraints being compromised, we adopt

arg\;’mn tr(W'X,L; X W), (9) a local optimization for each sampig. In one optimization
procedure, we only optimize those pairwise constraints con
whereL; € R(k1tka+1)x(kitka41) 5 defined as taining samplex;. Other irrelevant constraints are excluded in

the optimization so that the local vicinity of; can reflect our
full expectation on this local area without any interferenc

)DL (TS PRy : : .
L; = |&J=1 Al diao(w | (10) As shown in Equation[{9), with the constraiW’ W, =
—Wi iag(w;) I, we can have a local discriminative distance meWg for
and thew; is the coefficient vector defined as the vicinity of x; as
k1 ko argmin tr(W! X, L, XIW,), st WI'W, =1,. (15)
w; = 1) ) 1 _6 6 (11) ’

B. A Probabilistic Approach for Ensemble Classifiers

Since Equation[{9) optimizes the pairwise constraints in Based on Equatiori (15), a distance meth¢ is defined
samplex;’s vicinity, after summing over all the local vicinities, on samplex; as afocal sample

we have the equivalent optimization form for Equatibh (7): Given an unknown test sampig, let o be the class label

arg min t((WTXLXTW), (12) of focal samplex;, the number of possible classesNs, the
probability of x; belonging to the class, Pr;(o|x;), using
whereXLX” — ¥, XL, XT the local distance metrid; of the i*" focal samplex; is
To make the projection matri¥V linear and orthogonal, Pri(olx;) = ZZ:l{Zikf(Z::Q/)(i%:O)} if x; € Vi(x;)
we imposeW? W = 1,, wherel, is ad x d identity matrix. O%; 1 otherwise
h . N,
Equation [[ID) is then deformed to: ° (16)

: T T T
min tr (W XLX W) 5t.WIW = 1. (13) whereV k (x;) is the local vicinity of training samplg; which
Solutions of Equation{13) can be obtained with the StandargontamsK nearest neighbors of; with respect to the learned

eigen-decomposition: local distance metricA;. 6(-) is an indicator function that
returns 1 when the input argument is true, and O otherwise.

XLX"u = Au. (14)  0(x; € Vk(x;)) = 1 indicatesx; is among K nearest

neighbors ofx; with respect toA;, which is calculated in

Let the column vectorsi;, us, - -+ ,ug be the solution of Equation[[I#). Otherwise, the focal sampglehas no influence

Equation [(14), ordered according to eigenvalues< A\, <  on the unknown test sample;. V(x;) defines a circular



cligue whose center is the focal sampgle The radius- is the An overall summary of our local discriminative distance
distance between the focal sample and the test saxyplader  metrics (LDDM) method is described in Algorithi 1. In the
the learned local distance metd;. Probability Pr;(o|x;) is  training procedure, we need to calcula¥; by decomposing
calculated as purity of circular cliqu¥€(x;). Please note that a (k; + ko + 1) x (k1 + ko + 1) matrix X,;L; X7 in Equation
we propose a new prediction method in Equatiod (16) instead4) for each focal sample&; which has time complexity
of the traditional KNN rules because of our objective fuaoti  O(n(k1 + k2 + 1)3). When testing an unknown sample, it
defined in Equation{15). We expect the vicinity of the focalis linear time O(n) to the training set size, since all the
sample to contain as many similar samples as possible.dn thiocal distance metrics were already obtained in the trginin
case, if a test sample is not in tH€ nearest neighbors of phase. The test time complexity only depends on Equdtidn (16
the focal sample, it is expected not to be similar to the focahnd Equation[(17) which is just the ensemble of results of
sample. The metric is expected pall the samples with the training samples using pre-calculated local distance iogetr
same/different label as the focal samglecloser to/away from Note that the projection for all the training samples inte th
x;. Note that if the test sampte; is the closest sample to; distance metric space can be conducted in the training phase
in Vi (x;), the probability is 1 for the test samplg to be  Despite the high training cost, we can parallelize the psepo
assigned as the same class labekas model to make it scalable for large-scale problems. Local
) o ) classifiers could also be learned offline in advance. Foilddta
As illustrated in FiguréIl from our published paper [9] . performance and efficiency comparisons between LDDM and

because the clique of the red circk(x;) contains a focal qther distance metric approaches please refer to our pape
sample, four red circles and one blue square, probability fopplished on Pattern Recognitidn [9].

the test sample belonging to the red circle clasé.is

Algorithm 1 LDDM: a multiple distance metrics approach for
classification
Training procedure

1: for each training sample; do

2:  Get the focal vicinityX; for x;

3:  Build the discriminative matrix; using Equation[(0)

Focal sample

4:  solve the projection matri®; by Equation [(I}¥)
Fig. 1. Local distance metric prediction. Red circles aneldquares belong  5- end for
to two classes. The yellow triangle is an unknown test sanigie red circle
in the center is the focal samplg. Figure illustrates the local distance metric Test procedure
spaceA; learned from the focal sample and its vicinity. The solitelicircle is 1: for each test samplgj do
Vi (x;) and the dashed-line circle represehtéx;). The probability for the 2. Calculate the probability ij belonging to class
yellow triangle belonging to the red circle class is the nembf red circles . L .
in V(x;) divided by total number of training samples ¥(x;). when using the training samplg as the focal sample,
Pr;(o|x;) by Equation[(15)
Ensemble all the predictions by different training sam-
ples according to Equatiof{117)
4: end for

We can obtain a set of locally learned classifiers described™
in a different data space, using the local classifier defimed i
Equation [[I6) under each local distance metric. This amgfroa
makes these local classifiers independent of each other to
facilitate the alignment operation. Each obtained locsiadice
metric best measures the vicinity of the focal sample and V. THEORETICAL ANALYSIS
places the same class samples close to the focal sample and . . -
the different-class samples far away from the focal sample, e now theoretically prove the stability and efficiency of
To make the training model adjustable according to differenth® proposed LDDM method by analyzing the convergence rate

test samples, we add a weight coefficienwhen combining of the local discriminative distance metric and generélira
n local pred’iction Pri(ofx;) for a given test samplex; bound of the local metrics and classifiers ensemble.
i J J

Weight ¢ is decided by the distance between the test sample e assume that all the samples and their labels can be
and focal sample. A final prediction is made by aligning yepresented by an unknown distributidf{x, y), defined by
outputs in a probabilistic framework. The alignment praces pairs (x,y) € R? x R!. The pair (x,y) is denoted as
is formally defined as for short. Modelx — f(x,«) of the outputy is controlled
by a parameterr € A. f(x,«) refers to the local classifier
1 " defined in Equation (16) for LDDM. Theé — 1 loss function
Pr(olx;) = " Z‘Zbip”(‘)'xj)’ 17 Q(y, f(x,a)) (or Q(z,«) for short) measures the quality of
=1 estimation byf(x, ) for outputy € {—1,+1}. The global
risk function is defined as

where n is the number of classifiers anBr;(o|x;) is the
probability of samplex; belonging to class predicted by

the i*” local classifier. To simplify this process, we give all R(a) = /Q(Z’O‘)dF(Z) (18)
the training samples equal weights by lettisrg = 1. This

makes the ensemble process behave like equal weight votingver all functions{ f(x, «),« € A}, and samplegz;}!_, are
The class label with the highest probability is the final labe independently drawn from the unknown distributiéiiz).

of test sample. The empirical risk function with respect to the training sdes



{zi}ie, is bound holds

1 & _ ,
Remp(a) = - Z Q(zi, ). (19) P < sup F(0) = Remp(@) > eafe) (25)
i=1 aeh /[ Q*(z, )dF (z)
In local algorithms, the local risk functioR(«, xo) depends 2ne\" en
on the focal sample&, and the vicinity ofxy. The nonnegative <12 (T) exp {T} ,

locality function D(x,xg, A), which embodies the vicinity
information of the focal sample, is defined as where

I if [[x—xoll, <7 1
_ —/1-=Ine.
D(x, %0, 4) {0 otherwise, (20) ale) g e

where A is the distance metric obtained by letting be the

focal sample and is the soft threshold of the locality function, Thgolree}{n gtl iSS gogfoég%ilﬁgucnodrrgos;éz%ilgzsioeg]?raﬁf(fgén

which is defined by the distance between the focal sample a tween training erro(a) and test errorRem,(a). The
emp .

the test sample, and illustrated in Figllie 1 for LDDM, where robability approache8 when the test error and the training

K is number of neighbors to be considered in the vicinity. Thegrror have an acceptable difference This probability hasbe
norm of the locality function is defined as

proved to be converged t® when there are enough training
samples [[14]. For our local discriminative distance metric
| D(x0,A)|| = /D(X,X(),A)dF(Z)~ (21)  algorithm, the loss functions are different according te th
focal samples since they obey their own local distance oeetri
Based on the definition of the locality function, samplesobtained from the focal samples. To obtain the convergence
and labels can be represented by a new distribufi¢m, A) rate of a Io_cal classmer_, we assume that the Ios_s func_tld)_h wi
corresponding to local distance metric The distribution is  the local distance metric satisfy the following mild comalit

defined as \/
Q*(z, a)dF (z, A)
D(X X0 A) su f
- | 2704 p <T. (26)
J = [ pegiare. @ oA ] Qz.a)dF (2, 4)
The local distance metric-based unnormalized local risicfu This means that the probability thatip, Q(z, o) exceeds
tion is defined as: some value will decrease quickly with the value increasing.

Value 7 determines how fast it decreases. We can get the
R, A, x0) = /Q(z, a)D(x,x0, A)dF(z), (23) following theorem for convergence rate of local risk fupati
which is bounded in the term of local domain-based VC-

and the local empirical risk function is based on the sumonati dimension/.”.

over all focal samples, which is defined as: Theorem 5.2:Let the vicinity of 2, be under the lo-
cal distance metricA and the set of loss functions

1 _ _ {Q(z,a)D(x,%x0,A),a € A} have the local domain based
Remp(@, 4,%0) = n 2—21 Q(zi; ) D(xi; x0, A). (24) V¢ dimensionh”. Then the following bound holds:
Next, we give the bound on the convergence rate of a IocaIP R, A, x0) = Remp(a, A, %0) Tea(e)
classifier, risk bound of one local classifier and risk boufd o = | 2R R(, A, %0) 1D (x0, A]
the ensemble of a set of local classifiers. ’ 27)
2Ke\" K
A. Convergence Rate of Local Classifier <12 I XPY T

In this paper, we define the concept of local domain—baseg{,here
VC-dimension, which is a VC-dimension of a set of functions
under a local vicinity. Convergence rate bound of the global [ 1
risk function only depends on the number of training samples a(e) =4/1— 5 Ine.
and the VC-dimension that measures the complexity and the

expressive power of the set of loss functidid¥(z, o), a € A}. Proof is shown in section Appendid A

In the existing distance metric learning methods, all the .
vC-dimension and loss functions are under the same distance 'heoreniSll gives the convergence rate for the approache:

metric. Thus these distance metric methods obey the bound RpSed on a single distance metric in Equalibn 2. Thegrem 5.2
the following theorem([T4]. gives the convergence rate using the local domain based VC-

dimension for a single distance metrk;. In the following
Theorem 5.1:Let {Q(z,a),a € A} be a set of nonnega- theorem, we show the risk bound of a local classifier accgrdin
tive real functions with VC-dimension h. Then the following to Theoren 5.2.



B. Bound of Local Classifiers

VI. EXPERIMENTS

For local classifiers learned on local distance metrics acA. Crater Detection

cording to Equatio 16, we have the following theorem.

Theorem 5.3:Let the distance metric of the vicinity of,
be A. The set of loss functionéQ(z, o) D(x, %o, A),a € A}
have the local domain-based VC-dimensign The following
inequality holds for all. € A with probability 1 — »:

! (28)

Crater detection from panchromatic images faces unique
challenges when compared to traditional object detectiskst
Craters are numerous, have a large range of sizes and ®xture
and continuously merge into image backgrounds. There are
various reasons for the formation of the Mars impact craters
Therefore, crater images with different ages, shapes and te
tures yield a multi-modal distribution dataset. In Hi§. eater

R(O{, AaXO) S T~ AN . . R .
| D(x0, A)|| images may have shadows in different areas and rims are no
always clear; non-crater images are different to crategasa

in their own ways.

4
Remp (o, A, x0) + v (1 + \/1 + ;Remp(a, A,x@)]

where
(h*){In[2K/(h*)] + 1} —In 54
K

v=2

Proof is shown in AppendikIB.

C. Bound of Classifiers Ensemble
. L Fig. 2. Sample crater images. The top two rows corresponedb arater
We now further explain the generalization bound of theimages. The bottom two rows correspond to non-crater images

classifier ensemble method discussed in Section 4. Sincg eve
training sample will be treated as a focal sample in turn, There are extensive studies showing that local distance
samples drawn from the unknown distributidf(x,y) can  metric approaches, which consider the neighborhood infor-
generaten local distance metrics. For each unknown testmation, perform better than global approaches in the multi-
samplex, the base classifief;(x, A;) € H can be obtained by model distribution case[9]. Therefore, we apply our local
Equation [(16), whered; is the local distance metric learned distance metric approach described in Equation (13) toléack
by focal sample(x;, y;), which embodies local discriminative this problem.

information and the size df is n. According to the alignment

procedure in Equatiofi{17), we define the final classifierafte A Scale, location, and rotation invariant feature, Biolog-
ensemble as ically Inspired Haar Feature [10], is extracted to représen

the crater images. The left panel of Figl 3 show the 2-
dimensional PCA space of the original crater images, which
roughly demonstrates the distribution and the complexity o
the dataset. The right panel of Figl 3 shows the proposed
In Equation[[ZD)¢(-) gives a wrong prediction on the sample 2-dimensional discriminative distance metric space urtder
(x,y) only if yg(x) < 0. f;(x,A;) is the i" element of new feature representation, from which we can tell evenghou
f(x, A). The margin function is given byg(x). Equation[[ZD) the original data may have a complicated distribution, urede

is fundamentally a majority vote on all base classifiérs] fies ~ 90od feature representation and discriminative methaders
shown a bound which applies to all majority-vote classifiers@nd non-craters are well separated. Therefore a singlendist
Inspired by this, we show the following theorem which statesmetric is good enough for this dataset. A simplified versibn o
that the generalization error of the ensembled classifier calDDM method, denoted as Discriminative Locality Alignment

be bounded in terms of the number of training samples witdDLA) [10], [20], has been used in this experiment . We have
the margin below a threshold and in the capacity of base 2.:085 true craters and 2,085 non-craters. Under a 10-fokscr

classifier spacé. validation, we can achieve 0.93 F1 score, which is higher tha

the state-of-the-art method, transfer learning based timgps
Theorem 5.4:Let S be a set ofn samples independently [1], with 0.90 F1 score, shown in Fig] 4.

drawn from the distributionF'(x,y) over X x {—1,+1}.

Assume that the base-classifier spates finite, and let > 0.

Then with probability at least — o over the random choice

of the training setS, every weighted average functigs(-)

satisfies the following bound for afl > 0:

Pp(yg(x) <0) < Ps(yg(x) < 0) (30)

1 [lognlog|H]| 12
+0 <% (T +log(1/0)) ) :

For detailed proof please refer to Theorem 1[in| [12].

g(x) = sign(z fi(x, A43)). (29)

B. Crime Prediction

Police agencies have been collecting an increasing amoun
of information to better understand patterns in criminaivéty.
Recently there is a new trend in using the data collected to
predict where and when crime will occur. Crime prediction is
greatly beneficial because if it is done accurately, thecpoli
administrator would be able to allocate resources to the geo
graphic areas most at risk for criminal activity and ultieigt
make communities safer. In this paper, we discuss a new four-
order tensor representation for crime data. The tensordesco
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The negative health consequences and rampant growtt

of childhood obesity causes it to be a major public health
concern. Exercise is known to best combat childhood ohesity

the longitude, latitude, time, and other relevant incidebising ~ ON€ popular method to measure the amount of exercise done
the tensor data structure, we propose the Empirical Digcrim PY children is to estimate energy expenditure from attached
native Tensor Analysis (EDTA) algorithm to obtain suffiien 2ccelerometers as they perform various activities. Howeve

discriminative information while minimizing empirical sk It rémains an open research problem to accurately translate
simultaneously, which is a natural extension of the distancccelerometer output to estimates of energy expendituee du

measurement in vector space. Detailed implementation ean §C the complexity of motion sensor data. Recent studies have
found in [g]. shown that classifying physical activities can signifitant

improve estimation accuracy of energy expenditure. Tptall
there are 19 activities in 5 categories: Sedentary, Chores,
We aim to predict residential burglaries. Each residentialLocomotion, Interactive Video Games, Exercise and Sports

burglary is encoded by spatial and temporal informationwith 5487 samples. 5 percentile features and 9 autocoiaat
including longitude, latitude, and time. We also collecheat features are used in this experiment. The high number of
relevant geo-coded events selected by domain scientiats thclasses greatly raise the optimization constraints as ishiow
are believed to be associated with criminal activity, iohg ~ Equation[B. Therefore, LDDM is most appropriate for this
construction permits, foreclosure, mayor hotline inpuatstor ~ complex dataset. The results can be found in Table 1 and
vehicle larceny, social events, and offender data. Crinta dathe experimental result is reported in Leave One Person Out
is rasterized into small grid cells because it is infeasiole (LOPO).
make precise longitude and latitude coordinate predinatio

Fig.[3 further explains the internal structure of the thomder VIl. CONCLUSION AND FUTURE WORK
tensor using residential burglary as an example. The nupfber , ) .
residential burglaries for a specific grid cell is the suniomat In this paper, we have studied the properties of the lo-

of all the crimes happened inside this grid cell. We aggeegatcal/global distance metric and single/multiple distancstrio.

the data by month and perform monthly prediction becausdVe further present the single local discriminative dis&@anc
daily crime data is too few and cannot provide sufficientMetric and its multiple distance metrics form LDDM. We
features from the crime data collected in this northeastiyn theoretically prove the convergence rate bound and the risk
Therefore, the ultimate objective of this crime forecagtiask

is to predict whether a grid cell will have high residential SVM | NaiveBayes | NeuralNetwork | kNN | LDDM
burglaries for a given month. Experimental results, corimggar

to other tens.or.bas.ed approa.CheS'. Oﬂ_predicting resitlent aTI;\%EIEI 74.;-°E)(§CURACY("60:;“01:1.5EVERAL CLAS758I-F[:I_’EQRSZ\I4I;’9RBEDICTISI\?(.321
burglary prediction in 2007 using historical data are shown ACTIVITY CATEGORY LABELS.

in Fig.[8.




APPENDIX
. Proof of Theoreh 512
Proof: Theoren 5.1l implies the following inequality:

bound for local classifiers by introducing a new concept of
local domain based VC-dimension. We also prove the ris
bound of final classifiers ensemble. For different types o
real world applications, we select different distance metr

approaches. In the future, we plan to explore more progertie

for multiple distance metrics learning and extend it to more R(a, A, %0) — Remp (v, A, X0)

(31)

real world applications.
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According to Equation{32) and(B3), we have
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2(z,a)D?(z,%x9, A)dF (z) < T—/——"—=.
\//Q( W0 ) < T e AT

The inequality Equatior(27) can be obtained from Equations
(1) and [(34) immediately.
This completes the proof.
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we can get Equation_(28) by dividing both sides of inequality
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This completes the proof. ]
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