
On The Efficient Use of Multiple Physical Channel Air Cache

Duc A. Tran Kien A. Hua
School of Electrical Engineering and Computer Science

University of Central Florida

Orlando, FL 32826, USA
Email:

�
dtran,kienhua � @cs.ucf.edu

Kiran Prabhakara
Oracle Corporation

Redwood Shores, CA 94065, USA

Email: Kiran.Prabhakara@oracle.com

Abstract—In limited and asymmetric bandwidth environments
such as wireless networks, push strategy can be used to allow a
large number of mobile users to access the shared data. Most of
today’s solutions assume that the server disseminates data on only
one physical channel. In this paper, we focus on the problem of
broadcasting data over multiple physical channels that cannot be
coalesced into fewer high-bandwidth ones. This introduces new
hurdles such as the heterogeneities of channels and data set. We
propose a novel broadcast design at the server side, which is aimed
at minimizing the response and download times. We also present
a caching policy at the client side to further enhance the perfor-
mance. Theoretical foundations and simulation-based studies are
also presented to substantiate the near-optimality and to assess the
advantages of the proposed technique.

Index Terms— Data dissemination, broadcast, wireless net-
works, caching.

I. INTRODUCTION

In recent years, mobile computing has attracted much at-
tention due to its appealing computing environment. However
the narrow bandwidth of wireless networks, and the relatively
short active-life of power supplies (or batteries) of mobile units
whose movement patterns are irregular make the problem of
transmitting information a lot more challenging than in wired
networks.

To overcome this obstacle, push strategy [1] has been used as
an effective way of making the information available simulta-
neously to a large number of users. Rather than requiring users
to explicitly request what they need as in the traditional pull ap-
proach, push-based techniques broadcast data in advance. Air
is treated as a virtual cache and mobile units as users of that.
This idea is very attractive and poses no bounds on the num-
ber of users reading from the air-cache. It also relieves the user
of many burdens such as having to spend an inordinate amount
of time polling known sites for updates and/or hunting on the
network for relevant sites. Crucial to push-based approaches is
the task of deciding what data to send and when to send them
in the absence of specific requests. Researchers have proposed
algorithms for designing broadcast schedules. These solutions
use pure push as in Broadcast Disks [2], [3], [4], [5] and hybrid
techniques (where most frequently accessed items are broad-
cast and the others are provided on demand) as in [6], [7], [8].
Other algorithms for scheduling broadcasts are introduced in
[9], [10], [11], [12].

Those methods are based on the assumption that there ex-
ists a single physical channel for data broadcast. However,
there are many scenarios where a server has access to multiple
low-bandwidth physical channels, which cannot be combined
to form a single high-bandwidth one. Some examples are pro-
vided below to justify this claim (more can be found in [13],
[14], [15], [16]):

� Application Scalability: If the server application needs to
be scaled to accommodate more mobile users, it may have
to acquire additional physical channels. If these channels
are in non-contiguous frequency ranges, they may have to
be treated as separate channels when broadcasting data.� Fault Tolerance: A base station can have more than one
server with a transmission capability. Let us assume that
servers A, B and C are broadcasting data in three non-
contiguous frequency ranges, all in the same cell. Now,
if servers B and C crash, the frequencies belonging to B
and C need to be migrated to A in order to provide service
to users of B and C. In such a case, these frequencies may
not be combined to form one or more logical channels.� Reconfiguration of adjoining cells: Let us assume there
are two adjoining cells each with one server broadcasting
at a different frequency range. If at some point in time,
it is decided that a single server can serve both cells (by
increasing the cell diameter), then the frequencies of one
server needs to be migrated to the residual server. In this
case also, the residual server gets multiple physical chan-
nels.

In this paper, we study the general case where the air cache
consists of data items of various sizes broadcast on a number
of channels with different bandwidths. The issues we address
include how to partition the data set over the physical channels,
and what ordering should be used to deliver a partition on its
assigned channel. We also discuss in this paper how cache is
managed at the client side to further improve the access time of
a client.

The remainder of this paper is structured as follows. The
details of the proposed technique are introduced in section II.
Client designs are discussed in section III. Our performance
study is reported in section IV. Finally in Section V, we give
concluding remarks and provide pointers to future work.

II. GENERALIZED AIR CACHE DESIGN

A. Model

Our broadcast system consists of a server, which has access
to a database and delivers data over known channels for mobile
units to read the data. We assume a discrete model for time,
bandwidth capacity and data size; a bandwidth of � means that
we can send � data units in a time unit. The server channels
may have different bandwidths. We denote by � the number of
channels which are indexed as channel 1, channel 2, .., channel� . Each channel � (���	�
�	�) has a bandwidth ��� and with-
out loss of generality we assume that ����	��������������� . The
objects broadcast by the server are organized as “data items”. In
practice, these items could be web pages, stock data or database
records that are requested by users. Data items can be organized
as “self-identifying” [16] or “indexed” [17]. Broadcasting of
indexed data items on multiple channels has been addressed
in [14], [15]. Complementarily, our work focuses on “self-
identifying” data items of various sizes. Let � be the number of
data items and ������� the size of item � for each �� � �"!$#%!&�'��!(�)� .
Each data item � associates with a weight *)�+��� that reflects
how often the item is accessed. They are normalized so that,�-.'/ *)�����102� .

We use push-periodic as the delivery mechanism, and as in
[6], we allow a supporting channel for mobile users to send re-
quests up to the server. In response to a request, the server,
based on the on-going schedule, informs the user of which
channel to tune in for the requested data item. Since the sup-
porting channel is only used for sending requests, not for re-
ceiving real data, the bandwidth consumed is infinitesimal. It is
furthermore not necessary to broadcast any item on more than
one channel, say channels � and 3 , because (1) doing this would
increase the waiting time for the other items; and (2) the server
always informs the client of the only channel (say channel �)
where the requested item will be available earlier. In this case,
there is no need to broadcast the item on channel 3 .

Our target clients are those having short-lived battery. There-
fore, we are interested in minimizing the mean active time of a
client session. Active time is computed as the delay between
when the client sends a request and when the client finishes re-
ceiving the entire requested item. The mean active time (MAT)
consists of

1) Mean Waiting Time (MWT): The average delay from
when the client requests data to when the user starts re-
ceiving it.

2) Mean Download Time (MDT): The average time the
client needs to download an item.

B. Server Design

In this subsection, we discuss broadcast techniques that are
employed by the server. For convenience, we refer to an ap-
pearance of an item in the broadcast as an instance of the item.
The spacing between two consecutive instances of an item is
the distance in terms of data size between the beginning of the

first instance and that of the second. The elapsed time of this
spacing is computed based on the channel bandwidth. For ex-
ample, from the current instance of an item if we have to send
100 Kbytes of data before the next instance, then the spacing
between these two instances is 100Kbytes and a bandwidth of
50Kbytes/second would result in a 2-second elapsed time. For
optimal broadcast scheduling on one channel it has been shown
that all instances of an item should have the same spacing [11].

We denote a schedule 4 as ([45 , 46� , .., 46�], 487) where 487:9;=<?>
is the spacing mapping and each 4 . 0 � �(@!(�A�"!B���'!C�AD$EF�

is the set of items broadcast on channel � (
, �.�/ 6G . 0H�).

Each instance of item �JI is 417 (�KI) apart from the next. Note
that when we mention an item G�L , we implicitly know that
this item is broadcast on channel G . Because a mobile unit
is equally likely to request at any instant of time, the aver-
age time it has to wait until receiving the earliest instance
of item � I on channel � is 487M�+� I �FN%�K#POQ� . � . Thus, we ob-
tain the mean waiting time of a schedule 4 as MWT(4) =, �.'/ � , D EI / �K*)�+�KI@�ROS487M���KI@�C�CN%�J#TOS� . �(� . Also, since it takes���+�+I@�FNU� . time units to download item �JI from channel � , the
average download time resulted by schedule 4 is MDT(4) =, �.'/ � , D$EI / *)��� I �VOW���+� I �FNU� . � . Since MAT = MWT + MDT,
our approach to minimizing MAT is to take the minimizations
of MWT and MDT into account. The theorems below give a
theoretical basis for the proposed scheme:

Theorem 2.1: [MWT-Minimization]
Let 4 be a schedule that minimizes the mean waiting time.

Then the following conditions must be satisfied:

1) 487M��� I �X0ZY ����� I �FN[*)��� I �\O , D$EL / Y *)��� L �\O]�^�+� L �
2) For any � between 1 and � ,

, D$EI / Y *)�+�KI@�_O`�����KI@� =, �L / , DbaI / Y *)�Kc'IB�RO`���+c'I@�dOS� . /
, �L / � L

The theorem will be proved using the lemma below:
Lemma 2.1: Assume that ef , eM� , .., eM�hg 0 and their sum

is a constant i . iV , i_� , .., i_� are � positive constants. Thene � N[i + e �� N[i � + .. + e �� N"i � is minimized if and only ife N[i = e � N[i � = .. = e � N[i � .
Proof: [Lemma 2.1]e � N"iR + e �� N[i_� + .. + e �� N[i_� = e � N"i\ + e �� N"i_� + .. +e ���j6 N[i_��j6 + (iSk�el%kl���Ak�eM��j6b� � N[i_� . This is a function

of �mk�� variables and we let it be n (ef , eM� , .., eo�djp). Sinceq@r�sq@t rE = 2(1/ iR + 1/ i_�) u 0, function n is minimized when
q&sq@t E

= 2(e . N"i . - (ivk�el
kw����k	eM�djpx�FN[i_�) = 0 y i from 1 to�zk��
{|e . N[i . = e � N[i � y}� from 1 to � -1. {|e N"i =e � N[i � = .. = e � N"i � .
Proof: [MWT-Minimization]

Statement 1: For each item �~I , � . I = ���+�KI@�CN[417M���KI) is the frac-
tion of channel � ’s bandwidth allocated to item �AI . Therefore we
have

, D$EI / � . I = 1. Let us denote � . I�0�*)���KI@��O��^�+�KIB�FN%�J#1Od� . � .
Since 4 minimizes MWT, given the set of items

� �$, �A� , .., ��D$EF�
broadcast on channel � , the spacing values of those items must
be chosen so as to minimize � . = (

, D EI / (f(� I) O SP(� I))/(2O1� .)) where � . represents the partial average waiting time on
channel � .

It is clear that � . 0 , D$EI / � . I[N�� . I20 , D$E~j6I / � . IUNU� . IT�� . D$EFN%����k�� . �k��'��k�� .+� D E j6(� � . Let this be a function� .
(� . , � . � , .. , � .�� D$E(j6(�) that has G . k�� independent vari-

ables. Since
� .

has to be minimized, we must have
q�� Eq@� E�� =

0 y%��� G . which is equivalent to the following: kV� . I / � �. I
+ � . D$E / � �. D E = 0 y��	� G . {�� � . I / � . I = � � . L / � . L y�� , c��
G . {�� . I = � � . I / , D$EL / � � . L y���� G . {������ I � / 487M�+� I � =

Y *)���KI&�\O`���+�+I@�FN%�J#�O�� . � /
, D$EL / Y *)��� L �\O]����� L �CN��K#�O`� . �){487M�+� I � = Y ����� I �CN"*)��� I �VO , D EL / Y *)��� L �_O`���+� L �

Statement 2: We have MWT(4) =
, �.'/ � , D$EI / �K*)�+� I ��O487M�+� I �C�CN%�J#�O�� . �(� . Replace SP(.) with the re-

sult from statement 1, we can rewrite MWT(4)0 , �.'/ � , D EI / �(Y *)���KI&�\O]�����KI@�(�C� � /(2 O1� .)). Let

us denote: � . =
, D$EI / Y *)�+� I �RO`����� I � , and =, �.'/ , D$EI / Y *)���KI&�\O`���+�+I@� . Then we have �6 + �¡� + ..

+ �¢� = . Clearly, is a constant for any schedule because
is the sum of every square-rooted multiplication of each item’s
size and weight.

MWT(4) = � � N��K#fOP� � + � �� N��K#fO�� � � + .. + � �� N%�J#fO����� . Following Lemma 2.1, we have: �£@NU�� = �¡��NU��� =��� = �¡�
N[��� = (�6 + �¢� + + �¡�) / (�� + ��� + .. +� �) {¤� . = � . O� /
, �I / � I { , D EI / Y *)�+� I �_O]���+� I � =, �L / , DbaI / Y *)�+c'I&�\O]���+c'I@�dOS� . /

, �L / � L
Theorem 2.2: [MDT-Minimization] Given 4 a schedule that

minimizes the mean download time, for every pair of items (�AI ,G"L) where ��� G (i.e., item �JI is broadcast on channel � , G�L on
channel G , and � . �¥��D), one of the following must be true:
(1) � . 0���D , or (2) *)���JIB�RO`�����KI@�_��*)� G"L �\O]�^� G[L � .

Proof: [MDT-Minimization] By way of contradiction
suppose that both the above statements are false. That is,*)��� I ��O��^�+� I ��u¥*)� G L ��O¦��� G L � and � . �§� D (� . u§� D can-
not happen since ��� G). We consider a new schedule 4©¨ that
is similar to 4 except that item � I and item G L are now broad-
cast on channel G and � , respectively. We have ª = «h¬M���J4X¨�� -«h¬M���J41�6�ª = *)� G"L �_O`�^� G[L �CNU� . + *)���KI&�_O����+�+I@� / �
D - *)���KI@�O������KI@� / � . - *)� G"L ��O���� G[L � / �
D�®ª = �J*)� G"L ��O���� G"L � - *)���KI@�OW�����KI@�(� (1/ � . - 1/ �
D).� . �Q� D implies 1/ � . - 1/ � D u 0. In association with � (� I)OP4 (� I) u�� (G L) OP4 (G L), we have ª¯�±° . Therefore schedule48¨ is strictly “better” than 4 conflicting with the assumption
that 4 is the MDT-optimal solution.

Since MAT = MWT + MDT, we expect both MWT and
MDT to be small in order to make MAT small. However, to
minimize both of these measures is not a trivial task in terms
of efficiency and time-complexity. On the one hand, the op-
timal solution to the MDT-minimization problem is to broad-
cast every item on the fastest channel � � . This solution would
have a very high MWT. On the other hand, the minimization
problem of MWT must be intractable since it is computation-
ally harder than the Knapsack problem [18]. Therefore, in-
stead of finding a solution having the optimal MAT, we pro-
pose a heuristic, but efficient way that tries to approximate the

minimum MAT value. Specifically, according to the MDT-
minimization theorem, in order to have small MDT, we should
broadcast item � on a channel faster than the channel on which
item � is broadcast if *)�����VOW�^�+���duh*)�'�²�ROS���'�²� . Furthermore
from the MWT-minimization theorem, in order to have small
MWT, the items

� � , � � , .., � D Eb� to be broadcast on a channel �
should minimize the difference between

, D$EI / Y *)��� I �\O`���+� I �
and 2O`� . N��+� ��� � �±�'�U��� � � .

The algorithm to distribute items over multiple channels is as
follows:

Algorithm 2.1: [Dispatcher]
Input: A list L of � items

� � , # , .., �)�
1) Sort L in the non-increasing order of *)�����_O`���+�A�
2) Let i � ���6�p³@cK´"�p3�³@� = � , � = 1, µ��^¶��A�%·bc+³ = 0, ?0,�-.�/ Y *)�����_O]�������
3) Allocate the �A¸ � element of L to channel i � ���6�p³�c+´^�p3^³@� .
4) Increase µ���¶��~�%·bcK³ by Y *)�+���\O`���+�A�
5) IF µ���¶��A�%·bc+³��¹ ºO���» ��¼ -[-"½ L'¾ -^¿b½ � N��+��d�w���
�:�'�%����):� Increment � . IF �©u�� Exit� Go back to step 3.
6) ELSE� Decrement i � ���6�p³�c+´^�p3^³@� , increment � , µ���¶��~�%·bcK³

= 0.� IF i � ���6�p³�c+´^�p3^³@�fu 0 and �8��� Go back to step 3� ELSE Exit
As a result of this algorithm, we know which items are to be

broadcast on any channel. Given the spacing of each item deter-
mined by statement 1 of the MWT-minimization theorem, we
need to schedule for them appropriately. Such a schedule can
be made as in [11] which relates the problem to the packet fair
queuing algorithm [19]. A similar online scheduler is presented
as follows:

Algorithm 2.2: [Scheduler]
Input: A list À of G items

� � , # , .., G � to be broadcast on a
channel, as the result of Algorithm 2.1.

1) Compute the optimal spacing SP(�) for each item � us-
ing statement 1 of MWT-minimization theorem: SP(�) =Y �������FN[*)�����_O , DI / Y *)�'�²�_O]�^���²� .

2) The current time is denoted by i�Á¢¶�¶U³@�6ÂA�V�~��³ , time to
broadcast the current and next instance of item � by�V�~��³BI and �V�~��³ ¨I . Initially, i�Á¢¶�¶U³@�6ÂA�V�~��³ = 0, �d�J�`³&I
= 0 and �d�J�`³�¨I = SP(�).

3) Select and broadcast the item � in À such that �V�~��³�IÃ�i�Á¢¶�¶U³@�6ÂA�V�~��³ and �V�~�`³�¨I is minimum.
4) �V�~��³ I 0±�V�~�`³@¨I ; �V�~��³�¨I = �V�~�`³ I + SP(�)
5) Once item � is completely transmitted, increasei�Á¢¶�¶U³@�6ÂA�V�~��³ by s(�) and go back to Step 3.

III. CLIENT CACHING

Client caching can be applied in several situations. For in-
stance, in order to maximize a client’s performance, it is a good
idea to exploit the local memory of the client machine (with

caching capability) to cache data [2]. The delay is zero for
those items residing in the cache. In an environment where a
proxy server is used on behalf of a group of mobile units to
contact the server, the proxy server can also leverage its local
storage to cache items from the air cache [20]. Any client in
this group can obtain a requested item very fast if it is available
in the cache. Although it is applicable to the proxy level, for the
sake of simplicity we assume that client caching is done at the
client machine.

In [2], the authors proposed that client cache not simply the
hottest items, but cache those items for which the local proba-
bility of access is significantly greater than the item’s frequency
of broadcast. This policy (called PIX) is very suitable for broad-
cast disks systems in which less frequently accessed items are
broadcast on slower “disks”. In our new technique designed for
the generalized multi-channel model (heterogeneous channels
and heterogeneous data items), that feature does not necessar-
ily hold since we have to take sizes of items into account. If
the client accesses an item frequently, that item should be in the
cache. Further more, if the average active time a client needs to
spend downloading an item from the air cache is very long, the
item should also be in the cache. From this observation, if there
are two items � and � such that ÄX�+�A��OP . u§ÄX���²�
OP RI , and
if we can cache just one item, we would choose item � . (Here,Ä (.) is the local access probability of the client, and . and \I
the average active time for item � and � , respectively, to arrive
on the air cache without using cache)

Let be the sum of Y *)���Å�_O]�^�(� � of all items in the database
and ��� the bandwidth of the channel item � is broadcast
on. Then . 0|487M�����FN%�K#WO��
�$� + �^�+���CNU�
� . From MWT-
Minimization theorem, we have 487M�+���CN%�J#�OM���$� = Y �������FN[*)�����Ow �OÆ� � / �J#PO , �L / � L �CN[� � = Y �������FN[*)�����lOw / �J#WO, �L / � L � . It implies that . = Y �^�+���CN[*)�+����O¯ / �K#QO, �L / � L � + �������CN[� � . Similarly, for an item � broadcast on
channel 3 , I = Y ���'�²�CN"*)�'�²�6O�
N%�K#VO , �L / � L � + � ¿ . There-
fore, Ä©������O� . uwÄX�'�²��O� RI�{�ÄX������O (Y �^�+���CN[*)�+����O	 /
(2 O , �L / � L � + �^�+���CNU�
�) u�Ä©�'�²�VO (Y ���'�²�CN"*)�'�²�VOS / (2 O, �L / � L � + � ¿).

Let i
��� � ³U4)�AÇ�³ be the size of client local memory used for
caching purposes. Let d�xÂAÁ¡�²cK48�~Ç�³ be the total size of the cur-
rent cache residents, and � the total server bandwidth. Let i
= �N%�J#TO]�Ã� . Each item � in the cache associates with a valueµo�+��� which is set to ÄX�+���RO (Y �������FN[*)�����\OXi + �^�+���CNU� ¿) when
the item is stored in the cache at the first time. Here, 3 is the
index of the channel broadcasting item � . Our caching replace-
ment policy is described in detail below.

Algorithm 3.1: [Cache Replacement] Suppose that we con-
sider bringing an item e from channel � to the cache.

1) Run a defragmentation on the cache
2) If d�xÂAÁ¡�²cK48�~Ç�³��Æ����eP�]�¹i
�²� � ³U4)�AÇ^³ , then item e is

stored in the cache. No current cache resident is removed.
3) Otherwise, find all cache-resident items � ’s such thatµl��������Ä©��eP��O (Y �^�+eP�CN"*)��eP�ÃOQi + ����eP�FNU� �) and ��bÂAÁ}��cJ4)�AÇ^³\k��������p���^�+eP�_��i
��� � ³U4)�AÇ�³

4) Among those, select the item � having smallest µM�+��� and
replace it with e in the cache memory.

5) Set µo�+eP� = ÄX��eP�dO (Y ����eP�FN[*)��e¦�\OPi + ���+eP�CN[� �)
6) d�bÂAÁ}�²cK4)�AÇ�³ = ��bÂAÁ¡�²cJ4)�AÇ^³ - ���+�A� + ����e¦�
The above replacement algorithm requires that both global

weight and local access distribution be known. When the client
requests the item via a back connection, the global weight of an
item can also be sent back by the server together with the chan-
nel index. For the local access probability, since our broadcast
model does not assume a priori knowledge of the ÄX�+��� , the best
we can do is to statistically estimate ÄX�+��� for each item � , based
on a history of requests to this item by the client. Let us callÄÈ¨K�+�A� the probability estimate for item � . In the beginning the
cache memory is free. When the client requests and then ob-
tains a data item � , the item is stored in the cache and has Ä)¨~�+�A�
set to 0. When item � is requested again, its probability esti-
mate is updated using the following formula: Ä8¨-"½AÉR�+��� = ÊZOÄÈ¨Ë L ¿ �+��� + ���dk�Ê)��OPÌ`NU¬S�KÌS!C�A� where Ê	 �Í °�!B�BÎ is a constant
controlling the relative weight of recent and past history in our
prediction, Ì is a positive constant representing how far back-
ward the history is taken into account, ¬W�+ÌS!C��� is the period
backward to the ÌW¸ � most recent request to item � . In other
words, ¬S�+ÌW!(��� = � if since � units of time ago the client has
requested item � for exactly Ì times, ¬W�+ÌS!C���10wÏ if up to the
current time item � has not been requested for at least Ì times.

Our approximation implementation is similar to the cache re-
placement policy in Algorithm 3.1 Ä5¨ (.) values are now used
instead of Ä (.) values.

IV. PERFORMANCE STUDY

In this section, we present simulation results for the proposed
technique. Let us use MCB (Multi-Channel Broadcasting) to
refer to this technique. We used MWT (Mean Waiting Time),
MDT (Mean Download Time) and MAT (Mean Active Time)
as the performance measures. In our simulation model, the
database is a collection of by default 1000 data items of pos-
sibly different sizes. The sizes are generated randomly and can
be as large as 100 Kbytes. To model the information retrieval
pattern, data items are requested according to a Zipf-like distri-
bution [21] with a default skew factor Ç = 0.7. In each an-hour
long simulation run, our workload generator generated requests
on behalf of mobile users using an exponential distribution with
a mean inter-arrival request rate of Ð (requests/second). This
rate in our experiments varied from 50 to 500 requests/second,
which is enough to show the reasonable comparisons among
the data delivery schemes. The default value of Ð is 300 re-
quests/second. We assumed that the server had multiple (50
by default) broadcast channels having bandwidths varying from
32Kb/s to 100Kb/s. We investigated the effect of data access
pattern, database size (number of items), client cache size, and
number of channels. The results are reported in the following
subsections.

A. No cache at client

In this study we wanted to compare non-caching MCB with
the optimal schedule. Since it seems unlikely to find out the
schedule having the minimum MAT, we decided to estimate
how our MWT and MDT are close to the optimal MWT and
the lower bound of MDT, respectively. If MCB has near-
minimal MWT and near-lower-bound MDT, we can conclude
that its MAT is close to the optimal MAT. We compute the
lower bound, upper bound for download time and minimum
mean waiting time as follows: (The lower bound and upper
bound for MDT are obtained if we put all items on the fastest
channel and slowest channel, respectively) «Æ�~�1�K«2ÑÆ��� =� , �.�/ , D$EI / �J*)��� I �}O������ I �(�C� � / �J#\O , �.�/ � . � , ÀXÒ�Ód³@¶%�K«h¬o���
=
, -.�/ ������� / ��� and Ô_Õ"Õ¡³@¶²�J«h¬M��� =

, -.'/ ������� / �� .
In all simulation runs under the change of skew factor, num-

ber of items and number of channels, MCB consistently keeps
very close to the optimal performance (about 1.3 times higher).
The mean-waiting-time gap is narrower as the server has more
bandwidth (Fig. 2) or smaller database size (Fig. 3). Under the
access pattern (Fig. 1), both techniques result in lower wait-
ing time under very skew distribution. When the distribution
is very uniform, MCB is approximately 1.1 times the optimal
mean waiting time. The download time is not affected under all
changes, however MCB is a little higher than the optimal mean
download time but too far from the worst case (with default pa-
rameters, MCB download time is 20% higher than the lower
bound and 1/3 as large as the upper).

B. Caching at client

In this study, we assume that the server has been broadcast-
ing data and there is only one requesting client. The local re-
quest probability is also a Zipf-like distribution however with
a skew factor independent of the skew factor of the global ac-
cess pattern. We first assess our caching policy under changes
of caching space, ranging from 2MB (4% of the database size)
to 20MB (40%). A caching space of 2MB is possible for a mo-
bile device while 20MB is possible for current proxy servers.
Fig. 4(Left) shows that MAT decreases quite linearly as more
memory is added to the cache.

Figures 4(Right) and 5 illustrate the difference among the
performance of MCB with different levels of client caching.
Specifically we chose cache sizes of 5MB, 10MB and 20MB.
The results show that MCB with a larger cache outperforms
MCB with smaller cache and this gap is more significantly ob-
vious as the server has very few channels (i,e., smaller band-
width). In the simulation with default parameters, the non-
cache MCB has a mean active time of 74 seconds while 5MB-
Cache MCB has 52 seconds (30% gain), 10MB-Cache MCB
has 40 seconds (46% gain) and 20MB-Cache MCB has 25 sec-
onds (70% gain). Note that 5MB, 10MB and 20MB are equiva-
lent to 10%, 20% and 40% of the entire database. This exhibits
a significant advatange of using client cache.

V. CONCLUSIONS

Previous data broadcast methods assume the model in which
the server delivers information on only one physical channel.
However, there are practical situations where the server has ac-
cess to multiple physical channels that cannot be combined to
form a single higher-bandwidth one. We have presented a novel
broadcast technique designed for a generalized model with mul-
tiple heterogeneous channels and various data item sizes. We
have also discussed an efficient way to leverage local storage
of clients for caching purposes. The proposed policies approx-
imate the minimum active time promisingly by trying to mini-
mize waiting and download times. The near-optimality is sup-
ported by mathematical proofs given in the paper and perfor-
mance advantages are assessed by an in-depth simulation. One
assumption of the proposed scheme is that the weights of items
are known a priori. In environments where these values may
vary as time goes by, we can re-determine them after every con-
stant period based on the history of accesses. In such a period,
the new scheme can be used to re-arrange the broadcast sched-
ule.

In the near future, we are trying to adjust the proposed tech-
nique so that it can work with real-time data and without a priori
knowledge about item weights. Additionally, it would be use-
ful to evaluate techniques for broadcasting on multiple channels
without letting the client know the channel index to tune in. In
this case, we need to find an efficient method for the client to
search the channel to join for the requested item.

REFERENCES

[1] M. Franklin and S. Zdonik, “Data in your face: Push technology in per-
spective,” in Proc. of ACM SIGMOD, Seattle, USA, June 1998.

[2] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks:
Data management for asymmetric communications environments,” in
Proc. of 1995 ACM SIGMOD, May 1995, pp. 199–210.

[3] S. Acharya, M. Franklin, and S. Zdonik, “Disseminating updates on
broadcast disks,” in Proc. of VLDB, September 1996, pp. 354–365.

[4] A. Bar-Noy, B. Patt-Shamir, and I. Ziper, “Broadcast disks with poly-
nomial cost functions,” in Proc. of IEEE INFOCOM, Jerusalem, Israel.,
2000.

[5] S. Baruah and A. Bestavros, “Pinwheel scheduling for fault-tolerant
broadcast disks in real-time database systems,” in Proc. of the 13th IEEE
DATA ENGINEERING, Birmingham, U.K., April 1997, pp. 543–551.

[6] S. Acharya, M. Franklin, and S. Zdonik, “Balancing push and pull for
data broadcast,” in Proc. of 1997 ACM SIGMOD, May 1997, pp. 183–
194.

[7] J. H. Oh, K. A. Hua, and K. Prabhakara, “A new broadcasting technique
for an adaptive hybrid data delivery in wireless mobile network environ-
ment,” in Proc. of IEEE International Conference on Performance, Com-
puting and Communications, USA, 2000.

[8] K. Stathatos, N. Roussopoulos, and J.S. Baras, “Adaptive data broadcast
in hybrid networks,” in Proc. of the 23rd VLDB Conf., Athens, Greece,
1997, pp. 326–335.

[9] A. Datta, A. Celik, J. Kim, D. VanderMeer, and V. Kumar, “Adaptive
broadcast protocols to support efficient and energy conserving retrieval
from databases in mobile computing environments,” in Proc. of the 13th
IEEE DATA ENGINEERING, Birmingham, U.K., April 1997, pp. 124–
133.

[10] A. Datta, A. Celik, and V. Kumar, “Broadcast protocols to support ef-
ficient retrieval from databases by mobile users,” ACM Transactions on
Database Systems, vol. 24, no. 1, pp. 1–79, March 1999.

[11] S. Hameed and N. H. Vaidya, “Log-time algorithms for scheduling sin-
gle and multiple channel data broadcast,” in Proc. of ACM MOBICOM,
Budapest, Hungary, 1997, pp. 90–99.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
35

40

45

50

55

60

65

70

75

80

Skew Factor

M
ea

n
W

ai
tin

g
T

im
e

(s
ec

on
d)

Effect of Access Pattern

MCB
Optimal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

6

8

10

12

14

16

18

Skew Factor

M
ea

n
D

ow
nl

oa
d

T
im

e
(s

ec
on

d)

Effect of Access Pattern

MCB
Lower Bound
Upper Bound

Fig. 1. Effect of global access pattern. Left: Mean Waiting Time; Right: Mean Download Time

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

Number of Channels

M
ea

n
W

ai
tin

g
T

im
e

(s
ec

on
d)

Effect of number of channels

MCB
Optimal

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

Number of Channels

M
ea

n
D

ow
nl

oa
d

T
im

e
(s

ec
on

d)

Effect of number of channels

MCB
Lower Bound
Upper Bound

Fig. 2. Effect of number of channels. Left: Mean Waiting Time; Right: Mean Download Time

500 600 700 800 900 1000 1100 1200 1300 1400 1500
20

30

40

50

60

70

80

90

100

110

Number of Items

M
ea

n
W

ai
tin

g
T

im
e

(s
ec

on
d)

Effect of database size

MCB
Optimal

500 600 700 800 900 1000 1100 1200 1300 1400 1500
4

6

8

10

12

14

16

18

Number of Items

M
ea

n
D

ow
nl

oa
d

T
im

e
(s

ec
on

d)

Effect of number of items

MCB
Lower Bound
Upper Bound

Fig. 3. Effect of database size. Left: Mean Waiting Time; Right: Mean Download Time

2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

Cache Size (MB)

M
ea

n
A

ct
iv

e
T

im
e

(s
ec

on
d)

Effect of Caching Space

MCB/proposed caching

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

30

40

50

60

70

80

90

Skew Factor

M
ea

n
A

ct
iv

e
T

im
e

(s
ec

on
d)

Effect of Access Pattern

Noncache MCB
5MBcache MCB
10MBcache MCB
20MBcache MCB

Fig. 4. Mean Active Time of MCB with caching; Left: Effect of Cache Size; Right: Effect of local access pattern

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

20

40

60

80

100

120

Number of Items

M
ea

n
A

ct
iv

e
T

im
e

(s
ec

on
d)

Effect of database size

Noncache MCB
5MBcache MCB
10MBcache MCB
20MBcache MCB

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Number of Channels

M
ea

n
A

ct
iv

e
T

im
e

(s
ec

on
d)

Effect of number of channels

Noncache MCB
5MBcache MCB
10MBcache MCB
20MBcache MCB

Fig. 5. Mean Active Time of MCB with caching; Left: Effect of database size; Right: Effect of number of channels

[12] S. Jiang and N. H. Vaidya, “Scheduling data broadcast to impatient users,”
in Proc. of ACM MobiDE, Seattle, USA, 1999, pp. 52–59.

[13] H. V. Leong and A. Si, “Data broadcasting strategies over multiple unre-
liable wireless channels,” in ACM CIKM ’95, Baltimore,MD, 1995.

[14] S.-C.Lo and A. L. P. Chen, “Optimal index and data allocation in multiple
broadcast channels,” in IEEE Conference on Data Engineering, 2000, pp.
293–302.

[15] N. Shivakumar and S. Venkatasubramanian, “Efficient indexing for
broadcast based wireless systems,” ACM/Baltzer Mobile Network and
Applications, pp. 433–446, 1996.

[16] K. Prabhakara, K. A. Hua, and J. H. Oh, “Multi-level multi-channel air
cache designs for broadcasting in a mobile environment,” in Proc. of
IEEE DATA ENGINEERING, USA, 2000.

[17] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Energy efficient in-
dexing on air,” in Proc. of ACM SIGMOD, Minneapolis,MN, May 1994,
pp. 25–36.

[18] G. Rawlins, Compared to What: An introduction to the analysis of algo-
rithms, Computer Science Press, New York, 1991.

[19] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing algo-
rithm,” in Proc. of ACM SIGCOMM, 1996.

[20] Stathes Hadjiefthymiades and Lazaros Merakos, “Using proxy cache re-
location to accelerate web browsing in wireless/mobile communications,”
in Proc. of 10th WWW International Conference, Hong Kong, May 2001.

[21] G. K. Zipf, Human Behavior and the Principle of Least Effort: An Intro-
duction to Human Ecology, Addison-Wesley, Reading, Mass., 1949.

