
Boosting Indicator-based Selection Operators for
Evolutionary Multiobjective Optimization Algorithms

Dung H. Phan
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125

phdung@cs.umb.edu

Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125

jxs@cs.umb.edu

Abstract—Various evolutionary multiobjective optimization
algorithms (EMOAs) have adopted indicator-based selection
operators that augment or replace dominance ranking with
quality indicators. A quality indicator measures the goodness
of each solution candidate. Many quality indicators have been
proposed with the intention to capture different preferences
in optimization. Therefore, indicator-based selection operators
tend to have biased selection pressures that evolve solution
candidates toward particular regions in the objective space.
An open question is whether a set of existing indicator-based
selection operators can create a single operator that outper-
forms those existing ones. In order to address this question,
this paper proposes and evaluates a method to aggregate (or
boost) existing indicator-based selection operators. Experimen-
tal results show that a boosted selection operator outperforms
exiting ones in optimality, diversity and convergence velocity.
It also exhibits robustness against different characteristics in
different optimization problems and yields stable performance
to solve them.

Keywords-Evolutionary multiobjective optimization algo-
rithms, Quality indicators, Boosting

I. INTRODUCTION

This paper studies a new selection operator for evolution-
ary algorithms to solve multiobjective optimization problems
(MOPs). In general, an MOP is described as follows.

minimize F (~x) = [f1(~x), f2(~x), · · · , fn(~x)]T ∈ O
subject to ~x = [x1, x2, · · · , xm]T ∈ S

}
(1)

S denotes the decision variable space. ~x ∈ S denotes a
solution candidate that consists of m decision variables. It
is called an individual in evolutionary multiobjective opti-
mization algorithms (EMOAs). F consists of n real-value
objective functions, which produce the objective values of ~x
in the objective space O. The goal of an EMOA is to find
an individual(s) that minimize(s) objective values.

In MOPs, there rarely exists a single solution that is op-
timum with respect to all objectives because objective func-
tions conflict with each other. Thus, EMOAs seek the opti-
mal trade-off individuals, or Pareto-optimal individuals, by
considering the trade-offs among conflicting objectives. The

notion of dominance plays an important role to seek Pareto
optimality [1]. An individual ~x ∈ S is said to dominate
another individual ~y ∈ S iif fi(~x) ≤ fi(~y) ∀i = 1, · · · , n
and fi(~x) < fi(~y) ∃i = 1, · · · , n. EMOAs often rank
individuals based on the dominance relationships among
them and exploit their ranks in selection operators [1]. This
process is called dominance ranking.

A research trend in the design space of EMOAs is to
adopt indicator-based selection operators that augment or
replace dominance ranking with quality indicators [2]. A
quality indicator measures the goodness of each individual.
Recent studies (e.g., [3]) show that indicator-based EMOAs
outperform traditional EMOAs that use dominance ranking.

Many quality indicators have been proposed with the in-
tention to capture different preferences in optimization [4]–
[7]. Therefore, indicator-based selection operators tend to
have biased selection pressures that evolve individuals to-
ward particular regions in the objective space. For example,
the hypervolume indicator favors balanced individuals that
equally balance the trade-offs among all objectives, while the
weighted hypervolume indicator favors extreme individuals
that yield superior performance only in a limited number of
objectives [4]. An open question in this context is whether a
set of existing indicator-based selection operators can create
a single operator that outperforms those existing ones.

In order to address this question, this paper proposes
and evaluates a method to aggregate (or boost) existing
indicator-based selection operators1. This boosting process
is carried out with a training problem in which Pareto-
optimal solutions are known. Experimental results show that
a boosted selection operator outperforms exiting ones in
optimality, diversity and convergence velocity. The proposed
boosting process can work with a simple training problem,
and the boosted operator can effectively solve harder prob-
lems. The boosted operator also exhibits robustness against
different characteristics in different problems and yields
stable performance to solve them.

1In this paper, a selection operator means a parent selection operator,
which chooses individuals from the population to reproduce offspring.

II. RELATED WORK

To the best of the authors’ knowledge, this work is the
first attempt to boost selection operators in evolutionary
algorithms (EAs) although boosting has been integrated with
EAs in several other ways.

For example, boosting has been integrated with genetic
algorithms (GAs) to solve classification problems [8]–[10].
The Boosting Genetic Algorithm integrates boosting with
a GA to discover classification rules [8]. A GA is used
as a base classifier in which each individual represents a
classification rule. A boosting algorithm aggregates multiple
base classifiers to build a more accurate classifier than them.

Liu et al. integrate boosting with a GA for feature se-
lection [9]. The aim of feature selection is to identify the
features that strongly contribute to classification accuracy
and eliminate the other features. A GA evolves a set of
individuals, each of which encodes a feature selection candi-
date, and seeks the optimal feature selection that minimizes
classification error. The fitness of an individual is computed
as the mean classification error of boosted classifiers, each
of which is associated with a feature. A set of base classifiers
are assigned to each feature, and a boosting algorithm
constructs a boosted classifier from them.

Yalabik et al. propose a GA to seek the optimal permu-
tation of base classifiers as a boosted classifier [10]. Each
individual in the GA represents a set of base classifiers. The
fitness of an individual is computed as the classification error
of a boosted classifier aggregating the base classifiers that
the individual represents.

GPBoost [11] and its variants (e.g., [12]) integrate boost-
ing with genetic programming (GP) to solve regression
problems. A GP algorithm is used as a base learner (i.e.,
regression solver), and a boosting algorithm aggregates
multiple base learners.

III. QUALITY INDICATORS

This section describes 15 representative quality indicators
that the proposed boosting method uses.

A. Hypervolume Indicator (IH)

IH measures the volume of a hypercube that an individual
dominates in the objective space [13]. The hypercube is
formed with the individual and the reference point rep-
resenting the highest (or worst) possible objective values
~r = (r1, r2, .., rn) where n denotes the number of objectives.
IH of an individual ~x is calculated as follows where fi(~x)
denotes the ith objective function value of ~x.

IH(~x) =

n∏
i=1

|ri − fi(~x)| (2)

IH is intended to favor balanced individuals in objective
space rather than extreme ones [13].

B. Weighted Hypervolume Indicator (IW1 to IW9)

IW is an extension to IH in that IW places different
weights on different regions in the objective space while
IH places the uniform weight on all regions [4]. IW of an
individual ~x = (x1, x2, ..., xn) is computed as follows.

IW (~x) =

∫ (r1,r2,...,rn)

(x1,x2,...,xn)

w(~a)dz (3)

where w(~a) =

∑n
i=1 e

ki(ri−ai)∑n
i=1 e

ki

w(~a) denotes the weight of a point ~a = (a1, a2, ..., an) in
the objective space. It is calculated by applying a weight dis-
tribution ~k = (k1, k2, .., kn). ki is the weight assigned to the
ith objective. Given a greater ki value, IW favors extreme
individuals that are closer to the fi axis in the objective
space. Note that IW is equal to IH when ~k = (0, 0, .., 0).

As shown in Table I, this paper considers nine variants
of IW (IW1 to IW9) based on nine different combinations
of k1 and k2 values. Note that this papers uses a training
problem whose objective space is two dimensional.

Table I: 9 Variants of the Weighted Hypervolume Indicator
IW variants k1 k2 IW variants k1 k2

IW1 10 10 IW6 0 20
IW2 10 0 IW7 30 30
IW3 0 10 IW8 30 0
IW4 20 20 IW9 0 30
IW5 20 0

C. HypE Indicator (IHypE)

IHypE is also an extension to IH . This indicator places
different weights on different portions in the hypervolume
that an individual dominates. The hypervolume is divided
into multiple portions based on how many other individuals
dominate it as well. IHypE of ~x is computed as follows [5].

IHypE(~x) =

µ∑
i=1

1

i
Hi(~x) (4)

µ denotes the population size (i.e., the number of indi-
viduals in the population). Hi(a) denotes the hypervolume
that is dominated by ~x and other (i − 1) individuals in
the population. H1 is the hypervolume that ~x dominates
exclusively. The highest weight of 1 is given to H1. H2

is the hypervolume that ~x and another individual dominate.
The second highest weight of 1

2 is given to H2. The lowest
weight of 1

µ is given to Hµ, which all individuals in the
population dominate.

D. Binary ε+ Indicator (Iε+1 and Iε+2)

Iε takes two individuals (~x and ~y) and measures the dis-
tance between them on a per-objective basis. It is computed
as follows [6].

Iε+(~x, ~y) = maxi∈{1,..,n}(fi(~x)− fi(~y)) (5)

This paper considers two methods to evaluate the quality
of an individual (~x) against the other individuals in the
population P . The first method is to sum up binary indicator
values.

Iε+1(~x) =
∑

~y∈P\{~x}

Iε+(~y, ~x) (6)

The second method amplifies the influence of dominating
individuals over dominated one.

Iε+2(~x) =
∑

~y∈P\{~x}

−e−Iε+(~y,~x)/l (7)

l is a scaling coefficient. l = 0.05 in this paper, which is
a recommended value in [6].

E. Binary Hypervolume Indicator (IHD1 and IHD2)

IHD takes two individuals (~x and ~y) and measures the
hypervolume dominated by ~x but not by ~y [6].

IHD(~x, ~y) =

{
H(~x)−H(~y) if ~x dominates ~y
H(~x)−H(~x) ∩H(~y) otherwise

(8)
H(~x) denotes the hypervolume that ~x dominates.
Similar to Iε+1 and Iε+2, this paper considers two

variants, IHD1 and IHD2, to evaluate the quality of an
individual (~x) against the other individuals in the population.
IHD1(~x) and IHD2(~y) are computed by replacing Iε+(~y, ~x)
with IHD(~x, ~y) in Equations 6 and 7, respectively.

IV. BOOSTING SELECTION OPERATORS

Algorithm 1 shows the proposed boosting process, which
employs the AdaBoost algorithm [14]. It takes M indicator-
based selection operators S and aggregates top T operators
S∗ (T ≤ M). This paper uses 15 tournament selection
operators that use 15 indicators described in Section III
(M = 15). T aggregated operators have their weights:
W ∗ = {α1, α2, ..., αT }.

The proposed boosting process is carried out through
an offline training with a multiobjective optimization prob-
lem in which Pareto-optimal solutions are known. This
training problem is used to generate N training popula-
tions, {p1, p2, .., pN}, each of which contains µ individuals
(Line 2). Of the µ individuals, Np individuals are Pareto-
optimal and µ − Np individuals are randomly generated.
Those Np Pareto-optimal individuals are selected from a
training problem so that they are equally distributed on the
Pareto-optimal front. Each training population has a weight
wi (1 ≤ i ≤ N). Its initial value is 1/N (Line 3).

The proposed boosting process iteratively executes a loop
(Line 4 to 15) T times and selects one operator in each

iteration. (It selects T operators through T iterations.) In
each iteration, each of M operators selects an individual
Np times (i.e., Np individuals in total) on each training
population (Line 5). The operator’s individual selection is
considered successful if it selects Np × θ or more Pareto-
optimal individuals (θ < 1). Given this condition, the
selection error of each operator is calculated as shown in
Line 7. The error is weighted with each training population’s
weight wi (1 ≤ i ≤ N). Then, the proposed boosting process
chooses the operator s∗t that has the lowest selection error
(Lines 8 and 9) and computes the operator’s weight (Lines
10, 11 and 12). A lower selection error contributes to a
higher weight.

Finally, each training population’s weight is adjusted as
shown in Lines 13 and 14. The weight decreases if s∗t ’s
individual selection is successful; otherwise, it increases.
This way, in subsequent loop iterations, the proposed boost-
ing process focuses on the training populations on which
individual selection failed and favors the operators that
perform successful individual selection on those populations.

Algorithm 1 Boosting Selection Operators

Input: S = {s1, s2, .., sM}, a set of M operators
Output: S∗ = {s∗1, s∗2, .., s∗T }, a set of T aggregated opera-

tors
Output: W ∗ = {α1, α2, ..., αT }, Weights of T aggregated

operators
1: S∗ = φ, W ∗ = φ
2: Generate N training populations: {p1, p2, .., pN}
3: Initialize each training population’s weight: wi(1) =

1/N, 1 ≤ i ≤ N
4: for t = 1 to T do
5: Each operator sj performs individual selection Np

times on each training population pi.
6: Calculate the weighted selection error (ej) for sj
7: ej =

∑N
i=1 wiIji where

Iji =

{
0 if sj’s selection is successful on pi
1 otherwise

8: Choose an operator s∗t such that s∗t=argminsj∈S ej
9: Add s∗t to S∗

10: e∗t = the weighted selection error of s∗t
11: Calculate the weight (αt) of s∗t as αt = 1

2 log
(

1−e∗t
e∗t

)
where e∗t denotes the weighted selection error of s∗t

12: Add αt to W ∗

13: Adjust wi as wi(t+ 1) ={
wi(t)e

−αt if st’s selection is successful
wi(t)e

αt otherwise

14: Normalize wi(t+ 1) as wi(t+ 1) = wi(t+1)∑N
q=1 wq(t+1)

15: end for
16: return S∗, W ∗

Algorithm 2 Boosted Selection Operator

Input: S∗ = {s∗1, s∗2, .., s∗T }, T aggregated operators
Input: W ∗ = {α1, α2, ..., αT }, Weights of T aggregated

operators
Input: P , a population of µ individuals
Output: an individual to be used as a parent for crossover

1: Each of T operators selects one individual from the
population P with a v-way tournament. In total, T
individuals are selected: {x1,x2,...,xT }

2: Calculate the weight of each individual xi as
ϕi =

∑T
t=1 αtIti

where Iti =

{
1 if st selects xi
0 otherwise

3: Calculate the selection probability of xi as
δi =

ϕi∑T
i=1 ϕi

4: Select an individual from {x1,x2,...,xT } based on δi.

V. BOOSTED PARENT SELECTION

A boosted selection operator is constructed with T opera-
tors S∗ and their weights W ∗, which Algorithm 1 produces.
Algorithm 2 shows how a boosted operator works. In a
boosted operator, each of T operators first selects one
individual from the population P with a v-way tournament
(Line 1). In a v-way tournament, an operator randomly
draws two individuals from P and chooses a superior one
based on a quality indicator that the operator uses. A weight
ϕi (1 ≤ i ≤ T) is assigned to each of selected T individuals
with a prioritized voting by T operators (Line 2). Priorities
are given to individuals based on the weights of operators
({α1, α2, ..., αT }). Finally, a boosted operator chooses one
of T individuals as a parent by deriving individual selection
probability δi from ϕi (1 ≤ i ≤ T) (Lines 3 and 4).

VI. EXPERIMENTAL EVALUATION

This section evaluates the proposed boosting method
by integrating a boosted selection operator with a well-
known EMOA, called NSGA-II [15]. The proposed boosting
method and NSGA-II are configured as shown in Table II.
Experiments were conducted with jMetal [16]. Every exper-
imental result is obtained with 20 independent experiments.

Table II: Algorithmic Configurations
Parameter Value Parameter Value
M (Algo. 1) 15 v (Algo. 2) 2, 3, 4, 5 or 6

T (Algo. 1 and 2) 6 Max # of generations 200
N (Algo. 1) 5000 Crossover operator SBX

µ (Algo. 1 and 2) 100 Crossover rate 0.9
Np (Algo. 1) 20 Mutation operator Polynomial
θ (Algo. 1) 0.6 Mutation rate 1/ µ

Table III shows the six indicators that the proposed boost-
ing method chosen from 15 indicators in order to construct a
boosted selection opererator. Note that this evaluation study
uses M = 15 and T = 6 in Algorithms 1 and 2.

Table III: Aggregated Indicators
Indicator Weight (α) Indicator Weight (α)
IHD2 0.2435 IW7 0.1163
Iε+1 0.1865 IW1 0.0418
IHypE 0.1420 IW4 0.0250

A. Training and Test Problems

This evaluation study uses ZDT1 as a training problem.
ZDT1 is the simplest problem in the ZDT family prob-
lems [17]. It has a convex Pareto-optimal front in a two
dimensional objective space (Figure 1a).

ZDT2, ZDT3 are ZDT4 are used to evaluate a boosted
selection operator that aggregates the indicators shown in
Table III. Each of the problems has a two dimensional
objective space. ZDT2 is essentially same as ZDT1 in terms
of problem design and complexity; however, it has a concave
Pareto-optimal front (Figure 1b). ZDT3 and ZDT4 are harder
problems than ZDT1. ZDT3 has five discontiguous Pareto-
optimal fronts (Figure 1c). ZDT4 is a multi-modal problem
that has a large number of (209) local optima. Its Pareto-
optimal front is similar to ZDT1’s.

DTLZ1 and DTLZ7 [18] are also used as test prob-
lems. Both are harder problems than ZDT1. They have
three dimensional objective spaces. DTLZ1 has a single
Pareto-optimal front and DTLZ7 has 4 discontiguous Pareto-
optimal fronts (Figures 1d and 1e).

B. Evaluation Metrics

This paper uses two evaluation metrics: hypervolume ratio
(HVR) and inverted generational distance (IGD). HVR is
calculated as the ratio of the hypervolume (HV) of non-
dominated individuals (D) to the hypervolume of Pareto-
optimal solutions (P ∗) [19].

HV R =
HV (D)

HV (P ∗)
(9)

HV measures the union of the volumes that non-
dominated individuals dominate [13]. Thus, HVR quantifies
the optimality and diversity of non-dominated individuals.
A higher HVR indicates that non-dominated individuals are
closer to the Pareto-optimal front and more diverse in the
objective space.

IGD is computed as follows where d(vi, D) is the mini-
mum distance from a Pareto-optimal solution vi to D [20].

IGD =

|P∗|∑
i=1

d(vi, D)

|P ∗|
(10)

IGD measures the optimality and diversity (more specif-
ically, extent) of non-dominated individuals. A lower IGD
indicates that non-dominated individuals are closer to the
Pareto-optimal front and their extent is wider.

For both HVR and IGD, P ∗ are taken uniformly from
the Pareto-optimal front. |P ∗| = 1001, 1001, 269, 1001,
1001, 10,000 and 676 in ZDT1, ZDT2, ZDT3, ZDT4, ZDT6,
DTLZ1 and DTLZ7. This is the default setting in jMetal.

!"#

!"$

!"%

&

!

!"'

!"#

! !"' !"# !"$!"% &

(a) ZDT1

!"#

!"$

!"%

&

!

!"'

!"#

! !"' !"# !"$!"% &

(b) ZDT2

!"#$

"

"#$

"#%

"#&

"#'

(

" "#("#$ "#) "#% "#* "#& "#+ "#' "#,

!(

!"#'

!"#&

!"#%

!"#$

(c) ZDT3

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

(d) DTLZ1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

(e) DTLZ7

Figure 1: The Pareto Front Shapes of ZDT1, ZDT2, ZDT3, DTLZ1 and DTLZ7

C. Optimality and Diversity Analysis

This section evaluates the optimality and diversity of
individuals with HVR and IGD. Table IV shows the average
HVR values that seven algorithms yield at the last generation
in each problem. IB represents an EMOA that integrates
NSGA-II with a boosted selection operator aggregating the
six indicators listed in Table III. Each of the other six
algorithms represents an EMOA that integrates NSGA-II
with a selection operator based on a single indicator. For
example, IHD2 represents an EMOA that integrates NSGA-
II with an IHD2-based selection operator. v indicates the
size of a tournament in parent selection. In each problem,
2-way (i.e., binary) to 6-way tournament selections are
examined. A bold number indicates the best result among
seven algorithms on a per-row basis.

Table IV: Average HVR at the last (the 200th) generation
Problem v IB IHD2 Iε+1 IHypE IW7 IW1 IW4

ZDT1

2 0.987292 0.987013 0.987142 0.987981 0.987211 0.987611 0.987187
3 0.98792 0.983065 0.978066 0.987779 0.888314 0.883464 0.891662
4 0.988359 0.957663 0.964091 0.987074 0.717391 0.711519 0.713685
5 0.988414 0.960003 0.955519 0.986026 0.606751 0.57291 0.600777
6 0.988484 0.958924 0.950242 0.985216 0.51941 0.482579 0.492156

ZDT2

2 0.9767 0.97744 0.974778 0.976514 0.969523 0.95584 0.961119
3 0.977363 0.977393 0.935134 0.977289 0.854956 0.850348 0.854738
4 0.977615 0.977671 0.933695 0.975612 0.70477 0.705306 0.722501
5 0.97847 0.977542 0.936609 0.975074 0.672209 0.664869 0.681658
6 0.976969 0.977422 0.924938 0.97114 0.636568 0.619629 0.635382

ZDT3

2 0.991595 0.987221 0.985653 0.989607 0.990329 0.988545 0.988114
3 0.994079 0.99411 0.9426 0.994947 0.851847 0.842669 0.835347
4 0.994872 0.993858 0.910609 0.98264 0.652831 0.682493 0.692975
5 0.99506 0.989828 0.8672 0.991706 0.512317 0.546651 0.533493
6 0.995535 0.984116 0.832858 0.988276 0.486224 0.476092 0.47217

ZDT4

2 0.923535 0.881758 0.915589 0.84696 0.973355 0.974579 0.976871
3 0.969551 0.86502 0.953591 0.903897 0.873296 0.855642 0.869665
4 0.979587 0.885057 0.950269 0.872678 0.656291 0.767591 0.609153
5 0.979602 0.894803 0.941216 0.917018 0.559693 0.586559 0.60671
6 0.979984 0.893172 0.94369 0.92175 0.572723 0.483191 0.481425

DTLZ1

2 0.963187 0.968643 0.8065 0.973117 0.919929 0.92741 0.891426
3 0.946998 0.963644 0.868354 0.958693 0.340036 0.333922 0.373305
4 0.964603 0.976193 0.777159 0.965573 0.23241 0.357037 0.330733
5 0.976716 0.972869 0.760283 0.967659 0.236244 0.375746 0.350181
6 0.930752 0.974245 0.752827 0.966478 0.239547 0.370695 0.274772

DTLZ7

2 0.972382 0.852836 0.989412 0.904304 0.988395 0.943761 0.97001
3 0.990347 0.921616 0.969646 0.968427 0.680902 0.677735 0.716543
4 0.990547 0.869581 0.932087 0.901701 0.585396 0.593865 0.578626
5 0.973147 0.886484 0.87774 0.968013 0.560746 0.556716 0.558532
6 0.989858 0.919655 0.805475 0.901431 0.555464 0.555143 0.568183

In ZDT1, except in the case of v = 2, the proposed
boosted selection operator (IB) outperforms the other op-
erators. This is not surprising because IB is constructed
with ZDT1 as a training problem. However, a very similar

observation can be made in ZDT3, ZDT4 and DTLZ7, which
are harder problems than ZDT1. Table IV demonstrates
that the proposed boosting process can work with a simple
training problem and the boosted selection operator can
effectively solve harder problems.

In ZDT2 and DTLZ1, IHD2 performs slightly better than
IB . (In fact, IB ties IHD2 in ZDT2 if HVR values are
truncated to two decimal places.) An important observation
is that the performance of IHD2 is inconsistent among
different problems. Although IHD2 works well in ZDT2 and
DTLZ1, it’s performance is marginal in ZDT4 and DTLZ7.
In ZDT4, IHD2 never yields the HVR measure of 9.0 or
higher. Other indicators exhibit similar inconsistencies. For
example, Iε+1 performs well in ZDT1 but poorly in DTLZ1.
(It never yields the HVR measure of 0.87 or higher in
DTLZ1.)

In contrast, IB’s performance is much more consistent
among different problems. Its worst HVR is 0.92 in ZDT4
while IHD2’s worst is 0.85, Iε+1’s is 0.75, IHypE’s is
0.84, IW7’s is 0.23, IW7’s is 0.33, and IW4’s is 0.27. This
shows that IB allows different indicator-based operators to
complement with each other well. In summary, Table IV
demonstrates that the proposed IB performs better than, or
equally to, existing indicator-based selection operators in
HVR (i.e., in optimality and diversity) in all test problems
except DTLZ1 and IB is more robust and stable than
existing operators under different characteristics in different
problems.

Table V shows the average IGD values that seven al-
gorithms yield at the last generation. Similar to the ob-
servations for Table IV, IB outperforms existing indicator-
based selection operators in IGD (i.e., in optimality and
diversity/extent) in all test problems except DTLZ1 and
IB is more robust and stable than existing operators. In
DTLZ1, IHD2 performs better than IB ; however, IHD2’s
performance is inconsistent among problems. For example,
it yields marginal IGD measures in DTLZ4 and DTLZ7.
D. Convergence Velocity Analysis

This section evaluates the convergence velocity of seven
different algorithms with HVR and IGD. Tables VI to XI
illustrate convergence velocity with HVR in test problems.
Each of these tables shows the number of generations that
each algorithm requires to achieve a given HVR value.

Table V: Average IGD at the last (the 200th) generation
Problem v IB IHD2 Iε+1 IHypE IW7 IW1 IW4

ZDT1

2 2.00E-04 3.10E-04 2.15E-04 1.94E-04 2.14E-04 2.08E-04 2.08E-04
3 1.95E-04 6.81E-04 5.63E-04 2.09E-04 0.001911 0.00203 0.001863
4 1.91E-04 0.002553 9.59E-04 2.28E-04 0.004471 0.004839 0.00467
5 1.95E-04 0.002339 0.001163 2.49E-04 0.006489 0.007051 0.006703
6 1.93E-04 0.002267 0.001354 2.75E-04 0.008201 0.009134 0.008946

ZDT2

2 1.95E-04 1.96E-04 2.07E-04 2.01E-04 6.52E-04 9.52E-04 9.13E-04
3 1.95E-04 2.07E-04 7.60E-04 2.08E-04 0.003351 0.003897 0.003302
4 2.01E-04 2.12E-04 7.67E-04 2.22E-04 0.006817 0.006879 0.006479
5 1.97E-04 2.12E-04 7.21E-04 2.34E-04 0.007963 0.008258 0.008299
6 2.13E-04 2.18E-04 8.35E-04 2.78E-04 0.009151 0.009998 0.009383

ZDT3

2 0.001471 0.002558 8.68E-04 7.41E-04 6.73E-04 6.56E-04 6.73E-04
3 2.71E-04 0.001465 0.00303 7.42E-04 0.007659 0.00798 0.008523
4 2.52E-04 0.001948 0.004287 9.23E-04 0.013686 0.013529 0.013208
5 4.99E-04 0.002412 0.005524 7.21E-04 0.020962 0.018295 0.019788
6 2.70E-04 0.003155 0.005795 7.06E-04 0.02299 0.023307 0.023221

ZDT4

2 0.003657 0.006448 0.004214 0.007809 3.71E-04 4.32E-04 3.19E-04
3 0.001266 0.007305 0.002271 0.00443 0.001969 0.002261 0.002179
4 4.33E-04 0.00622 0.002602 0.005658 0.00551 0.003659 0.006483
5 2.76E-04 0.006165 0.002784 0.003276 0.007168 0.006785 0.006833
6 2.77E-04 0.006066 0.00255 0.003292 0.007127 0.009118 0.00909

DTLZ1

2 9.63E-04 8.13E-04 0.007901 6.98E-04 0.002678 0.002587 0.004219
3 0.001389 9.82E-04 0.005007 0.001125 0.040721 0.042157 0.038842
4 0.001023 6.01E-04 0.009158 9.42E-04 0.047636 0.041035 0.041912
5 5.90E-04 6.77E-04 0.008897 8.68E-04 0.049915 0.040208 0.040462
6 0.002744 6.48E-04 0.008947 9.04E-04 0.051819 0.039794 0.048099

DTLZ7

2 0.001423 0.009841 2.25E-04 0.00625 2.60E-04 0.001198 5.60E-04
3 2.23E-04 0.005041 0.001589 0.001739 0.006721 0.007264 0.006671
4 2.29E-04 0.00866 0.004179 0.006392 0.014085 0.012053 0.012909
5 0.001446 0.007512 0.007841 0.001743 0.017194 0.017268 0.016872
6 2.57E-04 0.005104 0.012635 0.006398 0.017714 0.018067 0.017263

In each problem, 2-way (i.e., binary) to 6-way tournament
selections are examined. A bold number indicates the best
result among seven algorithms on a per-row basis. For exam-
ple, IB requires 114 generations to achieve the HVR value
of 0.9 with a three-way tournament in ZDT2 (Table VII). Its
convergence velocity is the fastest among seven algorithms.
A number in parentheses indicates the ratio of convergence
velocity between IB and another algorithm (i.e., how faster
or slower an algorithm’s convergence is against IB). In
Table VII, IHD2’s convergence is 17% slower than IB in
the case of three-way tournament selection. The character
“x” indicates that an algorithm cannot achieve a given HVR
value by the last generation.

Tables VI to XI show that IB’s convergence velocity
is faster than the others’ in ZDT2, ZDT3, ZDT4 and
DTLZ7. It is not the best but fairly acceptable in ZDT1
and DTLZ1. The weighted hypervolume indicators (IW7,
IW1 and IW4) possess greater convergence velocity in many
problems to achieve the HVR value of 0.5. However, they
often encounter premature convergence and fail to achieve
higher HVR values when v ≥ 3. IHypE and IHD2 yield
the greatest convergence velocity in ZDT1 and DTLZ1,
respectively. However, their convergence velocities are not
consistent among different problems. IHypE’s convergence
velocity is marginal in other problems than ZDT1. IHD2’s
is marginal in other problems than DTLZ1.

In contrast, IB never encounters premature convergence.
(It never fails to achieve the HVR value of 0.9.) Its conver-
gence velocity is more consistent among different problems.

It is more robust and stable than exiting operators under
different characteristics in different problems by allowing
them to complement with each other.

Tables XII to XVII show convergence velocity with IGD
in ZDT1, ZDT2, ZDT3, ZDT4, DTLZ1 and DTLZ7. Similar
to the observations in Tables VI to XI, IB avoids premature
convergence and its convergence velocity is greater than, or
equal to, the others’ in many problems (all problems except
DTLZ1). IB’s convergence velocity is more consistent than
the others’ among different problems; it is more robust and
stable than the others.

Table VI: HVR in ZDT1
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 37 37(1.0) 40(1.08) 36(0.97) 37(1.0) 36(0.97) 37(1.0)
0.75 55 56(1.02) 58(1.05) 52(0.95) 55(1.0) 54(0.98) 55(1.0)
0.9 75 79(1.05) 81(1.08) 73(0.97) 77(1.03) 76(1.01) 77(1.03)

3
0.5 34 36(1.06) 40(1.18) 33(0.97) 38(1.12) 36(1.06) 37(1.09)
0.75 51 53(1.04) 58(1.14) 48(0.94) 62(1.22) 61(1.2) 61(1.2)
0.9 70 74(1.06) 87(1.24) 67(0.96) x x x

4

0.5 33 33(1.0) 46(1.39) 34(1.03) 41(1.24) 41(1.24) 42(1.27)
0.75 49 50(1.02) 64(1.31) 49(1.0) x x x
0.9 67 79(1.18) 93(1.39) 69(1.03) x x x

5
0.5 32 35(1.09) 46(1.44) 32(1.0) 47(1.47) 55(1.72) 48(1.5)
0.75 48 51(1.06) 64(1.33) 47(0.98) x x x
0.9 67 77(1.15) 96(1.43) 64(0.96) x x x

6
0.5 34 33(0.97) 45(1.32) 31(0.91) 78(2.29) x x
0.75 49 49(1.0) 66(1.35) 46(0.94) x x x
0.9 68 78(1.15) 93(1.37) 63(0.93) x x x

Table VII: HVR in ZDT2
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 103 116(1.13) 88(0.85) 110(1.07) 62(0.6) 61(0.59) 64(0.62)

0.75 123 135(1.1) 114(0.93) 126(1.02) 79(0.64) 82(0.67) 85(0.69)
0.9 144 158(1.1) 134(0.93) 144(1.0) 110(0.76) 120(0.83) 119(0.83)

3
0.5 83 99(1.19) 91(1.1) 92(1.11) 55(0.66) 57(0.69) 57(0.69)

0.75 99 117(1.18) 111(1.12) 106(1.07) 82(0.83) 84(0.85) 84(0.85)
0.9 114 133(1.17) 134(1.18) 119(1.04) x x x

4
0.5 76 97(1.28) 100(1.32) 96(1.26) 59(0.78) 59(0.78) 56(0.74)

0.75 90 109(1.21) 125(1.39) 105(1.17) x x x
0.9 108 119(1.1) 143(1.32) 122(1.13) x x x

5
0.5 80 94(1.18) 98(1.23) 94(1.18) 59(0.74) 60(0.75) 59(0.74)

0.75 95 106(1.12) 128(1.35) 109(1.15) x x x
0.9 109 121(1.11) 163(1.5) 128(1.17) x x x

6
0.5 73 91(1.25) 118(1.62) 91(1.25) 61(0.84) 65(0.89) 66(0.9)

0.75 87 105(1.21) 133(1.53) 110(1.26) x x x
0.9 102 116(1.14) 151(1.48) 148(1.45) x x x

Table VIII: HVR in ZDT3
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 103 116(1.13) 88(0.85) 110(1.07) 62(0.6) 61(0.59) 64(0.62)

0.75 123 135(1.1) 114(0.93) 126(1.02) 79(0.64) 82(0.67) 85(0.69)
0.9 144 158(1.1) 134(0.93) 144(1.0) 110(0.76) 120(0.83) 119(0.83)

3
0.5 83 99(1.19) 91(1.1) 92(1.11) 55(0.66) 57(0.69) 57(0.69)

0.75 99 117(1.18) 111(1.12) 106(1.07) 82(0.83) 84(0.85) 84(0.85)
0.9 114 133(1.17) 134(1.18) 119(1.04) x x x

4
0.5 76 97(1.28) 100(1.32) 96(1.26) 59(0.78) 59(0.78) 56(0.74)

0.75 90 109(1.21) 125(1.39) 105(1.17) x x x
0.9 108 119(1.1) 143(1.32) 122(1.13) x x x

5
0.5 80 94(1.18) 98(1.23) 94(1.18) 59(0.74) 60(0.75) 59(0.74)

0.75 95 106(1.12) 128(1.35) 109(1.15) x x x
0.9 109 121(1.11) 163(1.5) 128(1.17) x x x

6
0.5 73 91(1.25) 118(1.62) 91(1.25) 61(0.84) 65(0.89) 66(0.9)

0.75 87 105(1.21) 133(1.53) 110(1.26) x x x
0.9 102 116(1.14) 151(1.48) 148(1.45) x x x

Table IX: HVR in ZDT4
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 121 129(1.07) 132(1.09) 136(1.12) 98(0.81) 95(0.79) 95(0.79)

0.75 148 152(1.03) 158(1.07) 177(1.2) 119(0.8) 113(0.76) 114(0.77)
0.9 191 210(1.1) 193(1.01) 222(1.16) 144(0.75) 137(0.72) 135(0.71)

3
0.5 106 114(1.08) 111(1.05) 118(1.11) 83(0.78) 81(0.76) 80(0.75)

0.75 129 142(1.1) 146(1.13) 148(1.15) 107(0.83) 104(0.81) 109(0.84)
0.9 158 238(1.51) 178(1.13) 198(1.25) x x x

4
0.5 94 99(1.05) 108(1.15) 107(1.14) 84(0.89) 71(0.76) 94(1.0)

0.75 115 136(1.18) 138(1.2) 153(1.33) x 141(1.23) x
0.9 141 235(1.67) 175(1.24) 225(1.6) x x x

5
0.5 87 96(1.1) 108(1.24) 103(1.18) 92(1.06) 79(0.91) 75(0.86)

0.75 108 131(1.21) 141(1.31) 130(1.2) x x x
0.9 135 217(1.61) 177(1.31) 170(1.26) x x x

6
0.5 84 101(1.2) 100(1.19) 99(1.18) 77(0.92) x x

0.75 99 131(1.32) 137(1.38) 136(1.37) x x x
0.9 129 211(1.64) 184(1.43) 190(1.47) x x x

Table X: HVR in DTLZ1
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 129 126(0.98) 132(1.02) 110(0.85) 157(1.22) 142(1.1) 155(1.2)
0.75 153 150(0.98) 169(1.1) 128(0.84) 175(1.14) 163(1.07) 178(1.16)
0.9 175 176(1.01) 224(1.28) 157(0.9) 194(1.11) 187(1.07) 204(1.17)

3
0.5 122 117(0.96) 127(1.04) 111(0.91) x x 245(2.01)
0.75 139 138(0.99) 178(1.28) 140(1.01) x x x
0.9 165 180(1.09) 218(1.32) 172(1.04) x x x

4
0.5 115 105(0.91) 141(1.23) 113(0.98) x x x
0.75 142 133(0.94) 183(1.29) 135(0.95) x x x
0.9 184 154(0.84) x 162(0.88) x x x

5
0.5 114 100(0.88) 148(1.3) 104(0.91) x x x
0.75 144 121(0.84) 195(1.35) 129(0.9) x x x
0.9 158 132(0.84) x 159(1.01) x x x

6
0.5 119 96(0.81) 124(1.04) 103(0.87) x x x
0.75 138 118(0.86) 197(1.43) 126(0.91) x x x
0.9 164 142(0.87) x 136(0.83) x x x

VII. CONCLUSIONS

This paper proposes and evaluates a novel method that
leverages a boosting algorithm to obtain an aggregated selec-
tion operator from various existing indicator-based selection
operators. Experimental results show that a boosted selection
operator outperforms exiting ones in optimality, diversity
and convergence velocity. The proposed boosting process
can work with a simple training problem, and the boosted
operator can effectively solve harder problems. The boosted
operator also exhibits robustness against different character-

Table XI: HVR in DTLZ7
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 49 52(1.06) 52(1.06) 49(1.0) 48(0.98) 52(1.06) 49(1.0)

0.75 61 71(1.16) 64(1.05) 64(1.05) 66(1.08) 71(1.16) 66(1.08)
0.9 83 x 84(1.01) 152(1.83) 96(1.16) 130(1.57) 104(1.25)

3
0.5 44 43(0.98) 50(1.14) 42(0.95) 57(1.3) 53(1.2) 52(1.18)

0.75 55 55(1.0) 66(1.2) 54(0.98) x x x
0.9 71 91(1.28) 93(1.31) 75(1.06) x x x

4
0.5 42 43(1.02) 50(1.19) 40(0.95) 60(1.43) 59(1.4) 64(1.52)

0.75 52 57(1.1) 69(1.33) 54(1.04) x x x
0.9 68 x 118(1.74) 179(2.63) x x x

5
0.5 40 38(0.95) 51(1.27) 38(0.95) 70(1.75) 73(1.83) 67(1.68)

0.75 51 52(1.02) 76(1.49) 48(0.94) x x x
0.9 68 x x 69(1.01) x x x

6
0.5 39 38(0.97) 52(1.33) 39(1.0) 74(1.9) 73(1.87) 66(1.69)

0.75 49 51(1.04) 91(1.86) 54(1.1) x x x
0.9 64 82(1.28) x 174(2.72) x x x

Table XII: IGD in ZDT1
v IGD IB IHD2 Iε+1 IHypE IW7 IW1 IW4

1
0.01 31 36(1.16) 32(1.03) 31(1.0) 30(0.97) 30(0.97) 31(1.0)
0.005 48 59(1.23) 49(1.02) 46(0.96) 47(0.98) 46(0.96) 47(0.98)
0.001 84 126(1.5) 96(1.14) 82(0.98) 85(1.01) 82(0.98) 84(1.0)

3
0.01 29 35(1.21) 31(1.07) 29(1.0) 30(1.03) 29(1.0) 29(1.0)
0.005 44 59(1.34) 49(1.11) 44(1.0) 49(1.11) 46(1.05) 47(1.07)
0.001 78 138(1.77) 138(1.77) 78(1.0) x x x

4
0.01 28 33(1.18) 36(1.29) 31(1.11) 30(1.07) 30(1.07) 31(1.11)
0.005 43 67(1.56) 56(1.3) 47(1.09) 65(1.51) 66(1.53) 70(1.63)
0.001 74 x 186(2.51) 87(1.18) x x x

5
0.01 27 37(1.37) 35(1.3) 28(1.04) 32(1.19) 36(1.33) 32(1.19)
0.005 41 68(1.66) 56(1.37) 43(1.05) x x x
0.001 74 x x 76(1.03) x x x

6
0.01 28 33(1.18) 35(1.25) 28(1.0) 36(1.29) 40(1.43) 44(1.57)
0.005 43 62(1.44) 57(1.33) 43(1.0) x x x
0.001 76 x x 78(1.03) x x x

Table XIII: IGD in ZDT2
v IGD IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.01 103 117(1.14) 82(0.8) 110(1.07) 49(0.48) 48(0.47) 51(0.5)

0.005 124 137(1.1) 108(0.87) 127(1.02) 65(0.52) 65(0.52) 69(0.56)
0.001 158 168(1.06) 143(0.91) 157(0.99) 130(0.82) 196(1.24) 174(1.1)

3
0.01 80 98(1.23) 86(1.08) 91(1.14) 43(0.54) 44(0.55) 45(0.56)

0.005 96 117(1.22) 107(1.11) 106(1.1) 63(0.66) 70(0.73) 65(0.68)
0.001 123 141(1.15) 139(1.13) 128(1.04) x x x

4
0.01 71 97(1.37) 96(1.35) 96(1.35) 46(0.65) 47(0.66) 44(0.62)

0.005 87 109(1.25) 124(1.43) 105(1.21) x x x
0.001 112 125(1.12) 147(1.31) 130(1.16) x x x

5
0.01 78 94(1.21) 95(1.22) 94(1.21) 50(0.64) 48(0.62) 47(0.6)

0.005 92 106(1.15) 124(1.35) 109(1.18) x x x
0.001 114 127(1.11) 178(1.56) 135(1.18) x x x

6
0.01 70 92(1.31) 116(1.66) 90(1.29) 51(0.73) 57(0.81) 54(0.77)

0.005 84 105(1.25) 132(1.57) 109(1.3) x x x
0.001 106 123(1.16) 157(1.48) 161(1.52) x x x

istics in different problems and yields stable performance to
solve them.

Several future extensions are planned for the proposed
boosting method. First, the notion of boosted indicator-based
selection will be studied in environmental selection as well
as parent selection. (Environmental selection chooses a set of
individuals used in the next generation from the union of the
current population and its offspring.) Second, the notion of
boosted indicator-based selection will be evaluated in other
problems than ZDT and DTLZ problems.

REFERENCES

[1] N. Srinivas and K. Deb, “Multiobjective function optimiza-
tion using nondominated sorting genetic algorithms,” Evol.
Computat., vol. 2, no. 3, 1995.

[2] C. C. Coello, “Evolutionary multi-objective optimization:
Some current research trends and topics that remain to be
explored,” Front. Computat. Sci. China, vol. 3, no. 1, 2009.

[3] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-,
and indicator-based methods in many-objective optimization,”
in Proc. Int’l Conf. Evol. Multi-criterion Optimization, 2007.

[4] E. Zitzler, D. Brockho, and L. Thiele, “The Hypervolume
Indicator Revisited: On the Design of Pareto-compliant Indi-
cators Via Weighted Integration,” in Proc. of Int’l Conference
on Evolutionary Multi-Criterion Optimization, 2007.

Table XIV: IGD in ZDT3
v IGD IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.01 40 41(1.02) 45(1.13) 37(0.93) 42(1.05) 42(1.05) 41(1.02)
0.005 60 65(1.08) 69(1.15) 56(0.93) 63(1.05) 63(1.05) 63(1.05)
0.001 x x 185 115 161 156 169

3
0.01 38 35(0.92) 55(1.45) 36(0.95) 57(1.5) 60(1.58) 63(1.66)
0.005 56 56(1.0) 121(2.16) 57(1.02) x x x
0.001 105 x x 179(1.7) x x x

4
0.01 35 33(0.94) 66(1.89) 33(0.94) x x x
0.005 52 52(1.0) 163(3.13) 53(1.02) x x x
0.001 101 x x 198(1.96) x x x

5
0.01 35 35(1.0) 82(2.34) 34(0.97) x x x
0.005 52 58(1.12) 235(4.52) 50(0.96) x x x
0.001 125 x x 159(1.27) x x x

6
0.01 35 35(1.0) 76(2.17) 33(0.94) x x x
0.005 51 69(1.35) x 52(1.02) x x x
0.001 99 x x 150(1.52) x x x

Table XV: IGD in ZDT4
v IGD IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.01 148 162(1.09) 162(1.09) 184(1.24) 104(0.7) 98(0.66) 96(0.65)
0.005 187 231(1.24) 193(1.03) 225(1.2) 120(0.64) 119(0.64) 114(0.61)
0.001 243 x 241(0.99) x 165(0.68) 171(0.7) 155(0.64)

3
0.01 129 151(1.17) 148(1.15) 153(1.19) 83(0.64) 79(0.61) 76(0.59)
0.005 158 x 176(1.11) 196(1.24) 100(0.63) 95(0.6) 97(0.61)
0.001 203 x 221(1.09) x x x x

4
0.01 111 144(1.3) 137(1.23) 155(1.4) 71(0.64) 68(0.61) 76(0.68)
0.005 135 x 172(1.27) 213(1.58) x 90(0.67) x
0.001 173 x 221(1.28) x x x x

5
0.01 104 134(1.29) 146(1.4) 134(1.29) 68(0.65) 65(0.63) 65(0.63)
0.005 124 x 175(1.41) 160(1.29) x x x
0.001 161 x 224(1.39) x x x x

6
0.01 95 136(1.43) 143(1.51) 138(1.45) 66(0.69) 73(0.77) 76(0.8)
0.005 114 x 182(1.6) 181(1.59) x x x
0.001 159 x 229(1.44) x x x x

[5] J. Bader and E. Zitzler, “HypE: An algorithm for
fast hypervolume-based many-objective optimization,” Evol.
Computat., vol. 19, no. 1, 2011.

[6] E. Zitzler and S. Kuenzli., “Indicator-based selection in mul-
tiobjective search,” in Proc. of Int’l Conference on Parallel
Problem Solving from Nature, 2004.

[7] P. Boonma and J. Suzuki, “Prospect indicator based evolu-
tionary multiobjective optimization algorithm,” in Proc. IEEE
Congress on Evolutionary Computation, 2011.

[8] B. Liu, M. B., and A. H.A., “Improving genetic classifiers
with a boosting algorithm,” in Proc. IEEE Congress on
Evolutionary Computation, 2003.

[9] B. Liu, B. McKay, and H. A. Abbass, “Feature selection
combining genetic algorithm and adaboost classifiers,” in
Proc. Int’l Conference on Pattern Recognition, 2008.

[10] I. Yalabik and T.-V. Fatos, “A pattern classification approach
for boosting with genetic algorithms,” in Proc. Int’l Sympo-
sium on Computer and Information Sciences, 2007.

[11] G. Paris, D. Robilliard, and C. Fonlupt, “Applying boosting
techniques to genetic programming,” in Proc. European Con-
ference on Artificial Evolution, 2002.

[12] L. V. Souza, A. R. T. Pozo, J. C. M. Da Rosa, and C. Neto,
“Technique using correlation coefficient to improve time
series forecasting accuracy,” in Proc. IEEE Congress on
Evolutionary Computation, 2007.

Table XVI: IGD in DTLZ1
v IGD IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.01 152 146(0.96) 193(1.27) 123(0.81) 174(1.14) 162(1.07) 177(1.16)
0.005 170 175(1.03) 221(1.3) 144(0.85) 185(1.09) 178(1.05) 200(1.18)
0.001 196 194(0.99) x 188(0.96) x x x

3
0.01 142 153(1.08) 178(1.25) 152(1.07) x x x
0.005 155 178(1.15) 202(1.3) 163(1.05) x x x
0.001 205 200(0.98) x 206(1.0) x x x

4
0.01 142 133(0.94) 177(1.25) 134(0.94) x x x
0.005 182 145(0.8) x 146(0.8) x x x
0.001 201 175(0.87) x 198(0.99) x x x

5
0.01 144 119(0.83) 184(1.28) 134(0.93) x x x
0.005 151 126(0.83) x 154(1.02) x x x
0.001 177 163(0.92) x 198(1.12) x x x

6
0.01 154 117(0.76) 176(1.14) 125(0.81) x x x
0.005 167 126(0.75) x 131(0.78) x x x
0.001 207 158(0.76) x 190(0.92) x x x

Table XVII: IGD in DTLZ7
v IGD IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.01 42 103(2.45) 41(0.98) 49(1.17) 40(0.95) 43(1.02) 40(0.95)

0.005 54 x 51(0.94) x 52(0.96) 59(1.09) 53(0.98)
0.001 x x 81 x 108 248 124

3
0.01 36 40(1.11) 40(1.11) 34(0.94) 53(1.47) 50(1.39) 52(1.44)

0.005 44 x 52(1.18) 45(1.02) x x x
0.001 69 x x x x x x

4
0.01 34 55(1.62) 44(1.29) 40(1.18) x x x

0.005 43 x 89(2.07) x x x x
0.001 67 x x x x x x

5
0.01 34 42(1.24) 55(1.62) 31(0.91) x x x

0.005 45 x x 43(0.96) x x x
0.001 x x x x x x x

6
0.01 33 37(1.12) x 40(1.21) x x x

0.005 40 x x x x x x
0.001 64 x x x x x x

[13] E. Zitzler and L. Thiele, “Multiobjective optimization using
evolutionary algorithms: A comparative study,” in Proc. Int’l
Conference on Parallel Problem Solving from Nature, 1998.

[14] Y. Freund and R. E. Schapire, “A decision-theoretic gener-
alization of on-line learning and an application to boosting,”
Journal of Computer and System Sciences, vol. 55, 1997.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Trans Evol. Computat., vol. 6, no. 2, 2002.

[16] J. Durillo, A. Nebro, and E. Alba, “The jMetal framework
for multi-objective optimization: Design and architecture,” in
Proc. of IEEE Congress on Evolutionary Computation, 2010.

[17] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multi-
objective evolutionary algorithms: Empirical results,” Evol.
Computat., vol. 8, no. 2, 2000.

[18] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable
test problems for evolutionary multiobjective optimization,”
in Evolutionary Multiobjective Optimization, A. Abraham,
R. Jain, and R. Goldberg, Eds. Springer, 2005.

[19] D. A. V. Veldhuizen and G. B. Lamont, “Multiobjective
evolutionary algorithm test suites,” in Proc. ACM Symposium
on Applied Computing, 1999.

[20] ——, “Multiobjective evolutionary algorithm research: A
history and analysis,” in Technical Report TR-98-03, Air Force
Institute of Technology, 1998.

