Modeling Non-Functional Aspects in Service Oriented Architecture

Hiroshi Wada and Junichi Suzuki
Department of Computer Science
University of Massachusetts, Boston

Boston, MA 02125-3393
{shu, jxs} @cs.umb.edu

Abstract

Service Oriented Architecture (SOA) is an architectural
style to reuse and integrate subsystems in existing systems
for designing new applications. Each application is de-
signed in an implementation independent manner using ab-
stract concepts: network services and connections between
network services. In SOA, the non-functional aspects of ser-
vices and connections should be described separately from
their functional aspects because different applications use
services and connections in different non-functional con-
texts. This paper proposes a UML profile to graphically
design the non-functional aspects in SOA and maintain
them in an implementation independent manner. This pa-
per presents the design of the proposed UML profile and
describes how it is used in service-oriented application de-
velopment.

1. Introduction

One of the current key issues in large-scale distributed
systems is to reuse (or repurpose) and integrate existing
systems to build new applications in a cost effective man-
ner [1, 2]. Service Oriented Architecture (SOA) addresses
this issue by improving the reusability and maintainability
of distributed systems [3, 4]. It is an architectural style to
design applications in an implementation independent man-
ner using two major concepts: network services and con-
nections between network services. Each service encap-
sulates the functions of a subsystem in an existing system
and hides the subsystem’s implementation details (e.g., pro-
gramming languages and remoting middleware) from de-
velopers. Each connection defines how services are con-
nected with each other and how messages are exchanged
through the connection, and hides implementation details of
the message exchanges (e.g., messaging protocols and mes-
sage routing) from developers. Developers can reuse and
combine services to build their applications without know-
ing the implementation details of services and connections.

In SOA, the non-functional aspects of services and con-
nections should be defined separately from their functional

Katsuya Oba
OGIS International, Inc.
Palo Alto, CA 94301
oba@ogis-international.com

aspects (i.e., business logic) because different applications
use the services and connections in different non-functional
contexts. For example, an application may unicast mes-
sages to a service, and another may anycast messages to
replicas of the service in order to distribute workload. Also,
an application may use a service via reliable connection
that guarantees message delivery when the service is hosted
in an unreliable network (e.g., the Internet), and another
application may use the service via connection that does
not guarantee message delivery when the service is hosted
in a reliable network (e.g., intranet). The separation be-
tween functional and non-functional aspects improves the
reusability of services and connections. It also enables the
two different aspects to evolve independently, and improves
the ease of understanding application architectures. This
contributes to increase the maintainability of applications.

This paper proposes a Unified Modeling Language
(UML) profile to graphically model non-functional aspects
in SOA. A UML profile extends (or specializes) the stan-
dard UML elements (e.g., class and association) in order
to precisely describe domain specific or application specific
concepts [5, 6]. The proposed UML profile allows develop-
ers to describe and maintain non-functional aspects in SOA
as UML models (composite structure diagrams and class di-
agrams) in a visual and intuitive manner. Non-functional as-
pects can be modeled without depending on any particular
implementation technologies. Supporting tools accept the
UML models defined with the proposed profile and trans-
form them into application code using certain implementa-
tion technologies such as Enterprise Service Buses (ESBs)
[7]. This paper focuses on the design details of the pro-
posed UML profile, and describes how it is used in service-
oriented application development.

2. Background and Motivation

UML is a modeling language to specify application de-
signs as graphical diagrams. It defines the syntax (or nota-
tion) and semantics of every model element that appears in
diagrams (e.g., class, interface and association). The syntax

and semantics are defined in the UML metamodel [6].

In addition to standard model elements, UML provides
extension mechanisms (e.g., stereotypes and tagged-values)
to specialize the standard model elements to precisely de-
scribe domain or application specific concepts [5]. A stereo-
type is applied to a standard model element, and specializes
the semantics of the standard model element to a particu-
lar domain or application. Each stereotyped model element
can have data fields specific to the stereotype, called tagged-
values. Similar to data fields in a class, each tagged-value
consists of a name and value. A particular set of stereotypes
and tagged-values is called a UML profile. Each UML pro-
file is defined for a specific domain or application.

For example, a UML profile for Enterprise Java Beans
(EJB) [8] defines the stereotype <EJBEntityBean>>,
which extends Class in the UML metamodel. This
means the stereotype can be applied to Class. Thus, a
UML class stereotyped with <EJBEntityBean>> indi-
cates that the class is designed as an EJB entity bean. The
stereotype < EJBEntityBean>> has a tagged-value, called
EJBPersisitenceType, to specify who provides persis-
tency to an entity bean. The tagged-value can have a value
Bean or Container. Bean indicates an individual entity
bean is responsible for its own persistency, and Container
indicates an EJB container takes care of persistency.

| (Message) | | (Message) |
OrderMs InvoiceMsg
request ‘reply
source sink
| {Service) {MessageExchange) {Service)
Buyer 1« Order « 1|__Supplier
T
O {Connector)
OrderConn

{Logger)
. Logging -

timeout = 00:05:00.00 ‘

synchrony = Sync
deliveryAssurance = ExactlyOnce

Figure 1. A Motivating Example

Figure 1 shows an example model defined with the
proposed UML profile. It illustrates an order process-
ing application in which a buyer places an order and
a supplier receives it. In this example, two services
(Buyer and supplier) exchange messages. Each service
is represented by a class stereotyped with < Service>>.
These services exchange two types of messages (OrderMsg
and InvoiceMsg), each of which is stereotyped with
<Message>>. Each pair of a request and reply messages is
represented by <MessageExchange>>. <Connector>>
represents a connection that transmits messages between
services. In this example, messages are delivered through
a connector called OrderConn. Every message exchange is
bound with a connector in order to specify which connec-
tor is used to deliver messages. Each connector can have
multiple filters inside. They are used to customize message

transmission/processing semantics in a connector. This ex-
ample uses Logger in the OrderConn connector. Logger
logs message transmissions (OrderMsg and InvoiceMsg
in this example). Also, each connector can have multi-
ple tagged-values to specify additional message transmis-
sion/processing semantics. In this example, OrderConn
specifies the timeout of message transmissions (five min-
utes), synchrony of message transmissions (synchronous)
and assurance level of message delivery (exactly once). As
demonstrated in Figure 1, the proposed UML profile pro-
vides an easy-to-understand abstraction to visually spec-
ify the architectures and non-functional aspects of service-
oriented applications.

3. Design of the Proposed UML Profile

The proposed UML profile provides key model elements
to specify service-oriented applications: service, message
exchange, message, connector and filter (Table 1). Each of
them is defined as stereotypes.

Table 1. Key Model Elements (Stereotypes) in
the Proposed UML Profile

Stereotype | Description \

Service
MessageExchange

Represents a network service.
Represents a pair of a request and reply
messages. Specifies which services send

and receive the messages.

Message Represents a (request or reply) message.

Connector Represents a connection between ser-
vices (i.e., message source and destina-
tion). Defines the semantics of message
transmission and processing. Specifies
which messages (message exchange) to

transmit.

Filter Customizes the semantics of message
transmission and message processing in
a connector.

Figure 2 shows how the proposed UML profile de-
fines its stereotypes by extending the UML metamodel.
Each stereotype is defined as a metaclass stereotyped with
< stereotype>. Except Connector, four stereotypes
inherit the C1ass metaclass in the Kernel package of the
UML metamodel. Thus, they are applied to classes in user-
defined models (see Figure 1). A Service can be a source
or sink of each request/reply message. The source and sink
are identified with source and sink, roles on two associa-
tions between a MessageExchange and Services (Fig-
ure 1). Each MessageExchange may have multiple re-
ply messages per request message (Figure 2). Using multi-
plicity on two associations between a MessageExchange
and Services, MessageExchange can indicate one-to-
one (unicast) and one-to-many (multicast or manycast) mes-
sage exchanges. For example, Figure 1 shows a one-to-one

message exchange between a Buyer and a Supplier.
Connector is a stereotype extending the Class meta-
class in the InternalStructures package of the UML
metamodel (Figure 2). This metaclass defines a compos-
ite class, a special type of class, which can contain other
model elements (e.g., inner classes)' and have Ports to
specify how internal model elements interact with external
elements. In the proposed UML profile, a Connector can
contain Filters to specify the semantics of message trans-
mission and message processing. The Ports connected
with a Connector identify the Messages it receives and
sends out, using association roles input and output.

UML 2.0 metamodel

Kernel::Class

IntemalStructures::
Property

InternalStructues::
StructuredClassifier
ZAN

Ports::
EncapsulatedCiassifier
ZAN

IntemalStructures::
|

source

| (stereotype) I:'
Service

(stereotype)

MessaneExchange L* L

slnk

0.* | (stereotype)

request 1 0..* reply

(stereotype)
Message

(stereotype) | 5«
Connector
0 1

Filter
1

0.*

Proposed UML profile

Figure 2. Metamodel Definition of Stereo-
types in the Proposed UML Profile

3.1. Connector

a message source and destination. Synchronous, asyn-
chronous and oneway non-blocking semantics are defined
as an enumeration in Synchrony (Figure 3), and each con-
nector chooses one of them. In Figure 1, a Buyer transmits
OrderMsg messages to a Supplier synchronously.

inOrder is a mandatory tagged-value to specify
whether the order of messages that a service (message des-
tination) receives is same as the order of messages that the
other service (message source) sends out. The default value
of inOrder is false.

deliveryAssurance is an optional tagged-value to
specify the assurance level of message delivery. Three
different semantics are defined as an enumeration in
DeliveryAssurance (Figure 3), and each Connector
chooses one of them at a time (see Figure 1). At LeastOnce
means that a connector retries delivering a message until its
destination receives the message. (A message retransmis-
sion is triggered with the t imeout tagged-value.) However,
the message may be delivered to its destination more than
once. AtMostOnce means that a connector discards a mes-
sage if the message has already been delivered to its desti-
nation; however, there is no guarantee of message delivery.
ExactlyOnce satisfies the requirements of the above both
semantics. It guarantees that a connector delivers a mes-
sage to its destination without duplications. When inorder
is true, ExactlyOnce is implicitly (automatically) set to
deliveryAssurance because duplicated or missing mes-
sages violate the inOrder semantics.

Connector has five tagged-values (Figure 3 and Table
2). timeout is a mandatory tagged-value to specify the
timeout period (in millisecond) in which a connector needs
to deliver each message (see also Figure 1). If a message is
not delivered to its destination (sink) within the time period,

(Service) |1

timeout = 00:05:00

a connector discards the message.
{stereotype) synchrony [~ (enumeration)
Connector 1 Synchrony
timeout : Time Sync
inOrder : boolean Async
\ Oneway
1
deliveryAssurance {enumeration)
0..1 | DeliveryAssurance
queueParameters AtMostOnce
0..1 AtLeastOnce
QueueParameters ExactiyOnce
ize : i discardPolicy | {enumeration)
Size : int SelectingPoilcy
persistent : boolean 0.1
flushTime [0..*] : Time FIFO
flushInterval [0..1] : Time orderingPolicy | LIFO
flushWhenFull: boolean PriorityBased
0..1" | DeadlineFirst

Figure 3. Tagged-Values of Connector

sink [{Service)
1| Supplier

synchrony = Sync
source source deliveryAssurance
= ExactlyOnce
A
((Mellssage)) Q
CancellationMsg Message
orderID: int |((Connector>> BuyerOrder o,.der,v?sg
request / ank @ sink request
A]] A
{MessageExchange) {Service) {MessageExchange)
OrderCancellation Retailer Order
NS 1 1 N
source @ source reply
{Message)
| {Connector) RetailerOrder ConfirmationMsg
ﬁ orderID: int
sink timeout = 00:05:00

synchrony = Sync
inOrder = true

Figure 4. An Example of inOrder and deliv-

eryAssurance

Figure 4 shows an example model using inOrder and
This example illustrates an ex-

deliveryAssurance.

synchrony is a mandatory tagged-value to specify the
synchrony semantics of message transmissions between

IPrecisely, a composite class can contain any classifiers, defined in the
UML metamodel.

tension to an order processing application in Figure 1.
In this example, a Buyer transmits an OrderMsg to a
Supplier via Retailer. After a Retailer forwards an
OrderMsg from a Buyer to a Supplier, the Buyer can
cancel the order by transmitting a CancellationMsg to

Table 2. Tagged-Values of Connector, Service and Message

| Tagged-Values | Description | Type
< Connector>>
timeout (mandatory) Timeout of message transmissions in a connector Time
synchrony (mandatory) Synchrony of message transmissions between services | Synchrony (Enum)
inOrder (mandatory) Automatic ordering of messages between services Boolean
deliveryAssurance (optional) | Assurance level of message delivery DeliveryAssurance (Enum)
queueParameters (optional) Queuing semantics of message transmissions QueueParameters
< Service>>
priority (optional) Priority of messages that a service issues int
timeout (optional) Timeout period of messages that a service issues Time
redundancy (optional) The number of runtime instances of a service int
<K Message>>
priority (optional) Priority of a message int
timeout (optional) Timeout period of a message Time
schemaURI (mandatory) URI representing the schema of a message String

the Retailer, and in turn, to the Supplier. In this ex-
ample, the order of message transmissions is important be-
tween Retailer and Supplier because an order must be
delivered to supplier before a corresponding order can-
cellation. Therefore, the inOrder semantics is assigned
to the RetailerOrder connector. This semantics implic-
itly assigns ExactlyOnce to the deliveryAssuarance
semantics in the RetailerOrder connector.

queueParameters is an optional tagged-value to de-
ploy a message queue between services (i.e., message
source and destination) and specify the semantics of mes-
sage queuing between them. size specifies the maxi-
mum number of queued messages. £lushithenFull spec-
ifies whether queued messages are flushed from a queue
to their destinations when the queue overflows. When
flushWhenFull is false, the overflowing queue discards
a message according to discardpolicy (Figure 3); dis-
carding the oldest message (First-In-First-Out), the newest
message (Last-In-First-Out), the lowest priority message
or the closest deadline message. These four policies are
defined as an enumeration in SelectionPolicy (Fig-
ure 3). flushTime and flushInterval specify when
and how often a queue flushes messages, respectively.
orderingPolicy specifies how to order messages in
a queue: FIFO, LIFO, highest-priority-first or earliest-
deadline-first. perisistent specifies whether a queue
stores messages in a storage (e.g., a file or database) so that
the queue can recover them when it crashes unexpectedly.

Figure 5 shows an example using queueParameters.
It illustrates an inventory management system for retail
stores, warehouses and suppliers. Each RetailStore
transmits an OrderMsg to an InventoryManager when it
has no or few products in stock. The InventoryManager
receives OrderMsgs from multiple RetailStores every

two hours in a batch manner. The OrderConn connec-
tor implements a synchronous queue that stores and for-
wards OrderMsgs. The InventoryManager schedules
which warehouses deliver which products to which re-
tail stores (every two hours), and based on the shipping
schedule, sends ShippingMsgs to Warehouses. If a
warehouse has a small inventory of a particular product,
the InventoryManager orders the product by sending a
PurchacingMsg to a Supplier.

synchrony = Sync

timeout = 00:10:00 {Message)
queueParameters::size = 10000 OrderConfirmation
queueParametersEEpersisitent = true . orderID: int
queueParameters::flushInterval = 02:00:00.00 estimatedTime : Date
queueParameters: :flushWhenFull = true reply
- (Message)
(Service) OrderMsg
RetailStore itemID: int
A amount : int
Q * ‘ request
| {Connector) OrderConn I% «Messa%erzgghang@)

timeout = 00:05:00
synchrony = Sync
deliveryAssurance = ExactlyOnce]

*

A

sink

1

| (Service) |:
| InventoryManager Message
PurchasingMsg '\ source @ source !

request
* request

{MessageExchange) {Connector)
Purchasing | invontescom | (MessaoeExchange)

Shipping
sink |1 Q Q 1] sink
{Service) {Service)
Supplier Warehouse

Figure 5. An Example of Queue
3.2. Filter
The proposed UML profile defines seven filters as stereo-
types (Figure 6). They derive from the Filter stereotype.

Any new filters can be defined as a subclass of Filter. Fil-
ters are used to customize the semantics of message trans-

mission and processing in each connector.
shows five filters to specify message transmission semantics

This section

and two filters to specify message processing semantics.

{stereotype) (stereotype) {enum)
Filter Multicast Standby
(stereotype) Hot
] (stereotype) Manycast Larm
Logger groupSize : int
priority : int standby : Standby {enum)
backtracking: Backtracking Backtracking
— {stereotype) quorum : int =
Router timeout : Time Voting
el e e Sl T
Tt 9 > selection : Selection Randgriledlon
— stereotype retry :int
Va”datt)(’)p; timrgout : Time gggrr}g/Robin

Figure 6. Tagged-Values of Filters

The stereotypes Multicast, Manycast, Anycast,
Logger and Router are used to define the message trans-
mission semantics in a connector (Figure 6). Multicast
receives a request message from its source and transmits it
to multiple destinations simultaneously (one-to-many mes-
sage exchange). When the Multicast filter receives reply
messages from the destinations, it sends them back to the
source of the request message. Multicast is used to im-
prove the efficiency of message transmissions.

Figure 7 shows an example that models stock quote
notification using Multicast. A StockInfoClient
subscribes for the price changes of a particular stock
ticker, and a StockInfoServer notifies (or publishes)
any price changes to the StockInfoClient. A
StockInfoClient transmits a Subscription message
to a StockInfoServer in a synchronous and exactly-once
manner. A StockInfoServer multicasts a StockQuote
message to multiple StockInfoClients in asynchronous
and at-least-once semantics.
timeout = 00:02:00.00 ‘

synchrony = Async

{Message) deliveryAssurance = AtLeastOnce
StockQuote L
ticker: String {Connector) NotifConn
request {Multicast)
O L] Multicaster [Di
sink .| {MessageExchange) | . 50‘-"519
(Service) StockInfoExchange (Service)

StockInfoClient StockInfoServer

(MessageExchange) [

TradingOrderExchange

4@Q—q] {Connector) SubConn [:]—@
[

timeout = 00:02:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce

request

{Message)
Subscription
ticker: String
trice: float

Figure 7. An Example of Multicast

Manycast is used to improve fault tolerance by for-
warding a request message to a group of replicated destina-

tions (i.e., to the same type of services). The tagged-value
groupSize specifies how many services are deployed as a
group. standby specifies the operation of replicated ser-
vices: hot standby, warm standby or cold standby. In hot
standby, all services in a group remain active to receive
request messages. A Manycast filter sends a message to
all services in a group. Manycast returns only one reply
message to the source of a request message, out of multiple
replies from services. backtracking defines two policies
to decide which reply message to be returned. When FCFB
(first-come-first-backtracked) is selected, a Manycast filter
returns the first reply that it receives from destination ser-
vices. When voting is selected, the Manycast filter per-
forms a voting process. It counts the number of reply mes-
sages and inspects their contents. If the number of replies
that have the same content reaches quorum, the Manycast
filter returns one of the replies. If the number does not reach
quorum within timeout, the Manycast filter returns the
reply that generates the highest voting count.

In warm standby, all services in a group remain active
to receive request messages. A Manycast filter sends a
message to all services in a group, but only one service re-
turns a reply. In this case, backtracking is not used. In
cold standby, only one service in a group is active, and a
Manycast filter sends a message to the service. If the ser-
vice does not respond within t imeout, the filter activates
another service in the group and sends a message to the ser-
vice. In cold standby, backtracking is not used.

Anycast is a variation of the hot standby policy in
Manycast. It forwards a request message to only one des-
tination in a group of replicated services. This filter is used
to balance workload placed on services. selection de-
fines how to choose a destination from multiple services;
randomly, on round robin or on destination’s priority basis.
(the service with the highest priority in a group is selected.)
If an Anycast filter fails to deliver a request message within
timeout, it retries to forward the request message. retry
specifies the maximum number of retries. If the Anycast
filter fails the maximum number of retries, it returns an error
message to the source of the request message.

Logger records transmission of each message whose
priority value is higher than priority (Figure 6). Router
routes an incoming message to one or more destinations
with certain criteria. Since UML does not provide a means
to define rules, the proposed profile has no facility to spec-
ify routing rules at design time. Supporting tools trans-
form a Router to a skeleton source code (e.g., in Java) or
a rule description (e.g., in XPath) that performs message
routing. Developers are expected to complete the skeleton
code/description.

In addition to the stereotypes for message transmis-
sion semantics, the proposed UML profile provides two
other stereotypes to define the message processing seman-

tics in each connector: Validator and MessageFilter.
Validator validates an incoming message against the
message schema specified in its tagged-value schema, and
forwards only valid messages. MessageFilter filters out
incoming messages with a given criteria. Since UML does
not provide a means to define rules, the proposed profile has
no facility to specify message filtering rules at design time.
Supporting tools transform a MessageFilter to a skele-
ton source code (e.g., in Java) or a rule description (e.g.,
in XPath) that performs message filtering. Developers are
expected to complete the skeleton code/description.
3.3. Service

Service has three optional tagged-values: priority,
timeout and redundancy (Figure 8). priority indi-
cates the priority of each message that a service issues.
The range of priority is from O to 255. (0 is the low-
est and 255 is the highest.) Each Anycast filter uses
priority to select the destination of each message, as
described in Section 3.2. Each Connector also uses
priority to order messages in a message queue when it
has queueParameters (Section 3.1).

timeout specifies the timeout period (in millisecond) of
each message that a service issues. If a message is not de-
livered to its destination within the time period, a connector
discards the message.

redundancy specifies the number of runtime instances
of a service. This tagged-value must be specified when
Manycast or Anycast filters accesses a service.

(stereotype)
Service
priority[0..1] : int
timeout[0..1] : Time
redundancy[0..1] : int

\ % \

{stereotype) {stereotype) {stereotype)
MessageConverter ||MessageAggregator|| MessageSplitter

Figure 8. Tagged-values of Service

There are three special types of
MessageConverter, MessageSplitter and
MessageAggregator, to define the message processing
semantics (Figure 8).

MessageConverter converts an incoming message
with a given rule. Similar to Router, supporting tools
transform a MessageConverter to a skeleton source code
or rule description (e.g., in XSLT) that performs mes-
sage conversions, and developers complete the skeleton
code/description.

MessageSplitter divides an incoming message
into multiple fragments with a certain rule. Simi-
lar to MessageConverter, supporting tools transform
a MessageSplitter to a skeleton code or rule de-
scription that split messages, and developers complete

service,

the skeleton. In an example model shown in Fig-
ure 9, a MessageSplitter divides a request message
(ReservationMsg) into two fragments, and sends them to
different destinations (Hotel and AirCarrier). The des-
tinations directly returns reply messages to Customer.

(Message) (Message) timeout = 00:05:00
HotelConfirmation HotelRequest synchrony= Async
reply reply request
(Message) (MessageExchange)

eservation

HotelR

sink 1| source

(Service) |1 *|{MessageExchange)|* 1 ((Messag_eSpIitter)) D
Customer Reservation Splitter z

1 | source

{Connector)
ReservServiceConn

{Connector)

{MessageExchange)
AirReservation

ReservConn
reply reply request
{Message)

timeout = 00:05:00
synchrony= Sync
- (Message)
AirConfirmation AirRequest

Figure 9. An Example of MessageSplitter

MessageAggregator combines multiple incoming
messages to a single message. Figure 10 shows an example
extending the model in Figure 1. In addition to OrderMsg,
Buyer sends a message AuthRegMsg to ask the service
Supervisors to authorize the order. Aggregator syn-
chronizes and combines OrderMsg and AuthMsg (an au-
thorization message from Supervisors), and it sends a
combined message AuthedOrderMsg to Supplier.

<<Messa9&)> timeout = 00:05:00.00

synchrony = Sync
deliveryAssurance = ExaclyOnce.

request

{MessageExchange)
Order

source sink

)
(Service) |_@ﬂ] (Connector) O |((Me$ageAggregator)>
| Buyer OrderConn [Aggregator
1 | source sink | 1 1
O O O source

WessageExchange§ (Serwce)) (MessageExchange)>
AuthReg Supervisor Auth

sink source

request

AuthMsg

request

AuthRegMsg

{Connector)

AuthedOrderConn
(Service) {Logger)
Supplier . Logging .

sink | 1

« | {MessageExchange) | «
| AuthedOrder

timeout = 00:05:00.00 request
AuthedOrderMsg

Figure 10. An Example of MessageAggregator

synchrony = Sync
deliveryAssurance = ExactlyOn

3.4. Message

Message has a mandatory tagged-value, schemaURT,
and two optional tagged-values, priority and timeout
(Figure 11). schemaURI identifies the schema of a mes-
sage. The default value of schemaURI is message’s quali-

fied name (a combination of a package name and message’s
name).

priority and timeout specify the priority and time-
out period of a messages. Connector and Service also
have priority and timeout. The precedence is that
Message’s tagged-values override Service’s ones, and
Service’s tagged-values override Connector’s ones.

(stereotype)
Message
priority[0..1] : int
timeout[0..1] : Time
schemaURI : String

Figure 11. Tagged-values of Message
4. Application Development with the Proposed
UML Profile

This section describes a model-driven development
(MDD) tool, called Ark, which accepts a UML model de-
signed with the proposed profile and transforms the model
into a skeleton of application code (source code and de-
ployment descriptor). Currently, Ark implements a trans-
formation mapping between the proposed UML profile and
MuleESB?. Ark takes a UML model in the XML Metadata
Interchange (XMI) format. It has been tested with Magic-
Draw?, a visual UML modeling tool that can serialize UML
models to XMI. An input UML model (XMI file) is vali-
dated against the UML metamodel and the proposed profile
(Figure 2), and transformed to Java programs and deploy-
ment descriptors for MuleESB.

A mapping rule between the proposed profile and
MuleESB is implemented as a set of Velocity* transforma-
tion templates, which define how to transform UML model
elements to application code elements. Table 3 summaries
the mapping rule. Following this mapping rule, Ark trans-
forms a stock quote example model (Figure 7) to application
code shown in Figure 12.

Interceptor
AN
| SenderSide ReceiverSide |

StockInfoClient[— StockQuote |7 StockInfoServer

sendStockQuote(L. onMessage(
Subscription) Subscription Subsctiption)

sendStockQuote(

<outbound-router> | StockQuote)

<router className="..MulticastingRouter”>|’

// destinations’ URIs

</router> StockInfoServer's
</outbound-router> deployment descriptor

Figure 12. Generated Application Code
5. Related Work

There are several UML profiles proposed for SOA. [9]
and [10] propose UML profiles to specify functional as-

2 A major open-source ESB implementation. http://mule.codehaus.org/
3http://www.magicdraw.com/
4A template-based code generation engine. jakarta.apache.org/velocity

Table 3. Mapping Rule between the Proposed
UML Profile and MuleESB

The proposed | Mule ESB
UML profile
< Service™> Java class with the same name

sink (Service’s role) Service’s operations sending mes-

sages

source (Service’s role) | Service’s operations receiving mes-
sages
< Message™> Java class

Serialiable interface

implementing

synchrony Different types of Mule ESB’s oper-
ation used to send a message

timeout An operation’s parameter to specify
message’s timeout period

deliveryAssurance A pair of interceptors to manage
messages’ IDs and timestamps

< Multicast>> Multicast filter provided by

Mule ESB

pects in SOA. Both profiles are defined based on the XML
schema of Web Service Description Language (WSDL).
Each of the profiles provides a set of stereotypes and tagged-
values that correspond to elements in WSDL, such as
Service, Port, Messages and Binding’. Since WSDL
is designed to define only functional aspects of web ser-
vices, non-functional aspects are beyond of the scope of [9]
and [10]. The proposed profile focuses on specifying non-
functional aspects in SOA.

[11] proposes a UML profile to describe both func-
tional and non-functional aspects in SOA. The stereo-
types in this profile are generic enough to specify a wide
range of applications. However, their semantics tend to
be ambiguous. For example, the stereotypes for non-
functional aspects include <policy>>», <permission>>
and <obligation>>, and <obligation>> is intended to
specify the responsibility of a service. [11] does not pre-
cisely define what developers have to (or can) specify with
this stereotype and how to represent service responsibility
(e.g., using natural languages or parameter values). In con-
trast, the proposed profile carefully defines its stereotypes
and tagged-values in an unambiguous manner so that sup-
porting tools can interpret and transform models to code.

[12] describes a UML profile for data integration in
SOA. It provides data structures to specify messages so that
users can build data dictionaries that maintain message data
used in existing systems and new applications. This profile
separates a non-functional aspect in data integration from

5In WSDL, Service defines an interface of a web service. Port
specifies an operation in a Service, and Messages defines parameters
of aPort. Binding specifies communication protocols used by Ports.

functional aspects, and enables data integration in an im-
plementation independent manner. The proposed profile fo-
cuses on non-functional semantics in message transmission,
message processing and service deployment (e.g., service
redundancy), rather than data integration.

[13] proposes a UML profile to facilitate dynamic
service discovery in SOA. This profile provides a
set of stereotypes (e.g., <uses>, <requires>> and
< satisfies>>) to specify relationships among service
implementations, service interfaces and functional require-
ments. For examples, users can specify relationships in
which a service uses other services, and a service requires
other services that satisfy certain functional requirements.
These relationship specifications are intended to effectively
aid dynamic discovery of services. The proposed profile
and [13] focus on different issues in SOA. Service discov-
ery is beyond of the scope of the proposed profile, and [13]
does not consider non-functional aspects in message trans-
mission, message processing and service deployment.

[14], [15] and [16] define UML profiles to specify ser-
vice orchestration in UML and map it to Business Process
Execution Language (BPEL) [17]. These profiles provide a
limited support of non-functional aspects in message trans-
mission, such as messaging synchrony. The proposed pro-
file does not focus on service orchestration, but a compre-
hensive support of non-functional aspects in message trans-
mission, message processing and service deployment.

There are several specifications and research efforts to
investigate implementation techniques for non-functional
aspects in SOA [17, 18, 19, 20, 21, 22]. Each specifica-
tion and technique provides a means to implement non-
functional requirements in, for example, performance, re-
liability and security and to enforce services to follow the
requirements. Rather than providing specific implementa-
tions of non-functional aspects in SOA, the proposed UML
profile is intended to provide a means for users to model
and maintain non-functional aspects in an implementation
independent manner so that they can be mapped on differ-
ent specifications or implementation technologies.

6. Conclusion

This paper proposes a UML profile to graphically spec-
ify and maintain non-functional aspects in SOA in an imple-
mentation independent manner. This paper presents design
details of the proposed profile, and describes how MDD
tools can use it in service-oriented application development.
As an example of MDD tools, this paper demonstrates a
tool, called Ark, which accepts a UML model defined with
the proposed profile and transforms the model into applica-
tion code for MuleESB.

7. Acknowledgement

This work is supported in part by OGIS International,
Inc. and Electric Power Development Co., Ltd.

References

(1]
(2]

(3]

(4]

(53]

(6]
(7]
(8]
(9]
(10]
[11]

[12]

(13]

[14]

[15]
[16]
(17]
(18]

[19]
(20]

(21]

(22]

S. Vinoski. Integration with Web Services. IEEE Internet
Computing, November/December 2003.

Z.Zhang and H. Yang. Incubating Services in Legacy Sys-
tems for Architectural Migration. Asia-Pacific Software En-
gineering Conference, December 2004.

M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krog-
dahl, M. Luo, and T. Newling. Patterns: Service-Oriented
Architecture and Web Services. IBM Red Books, 2004.

G. Lewis, E. Morris, L. Brien, D. Smith, and L. Wrage.
SMART: The Service-Oriented Migration and Reuse Tech-
nique. Technical report, Software Engineering Institute,
Carnegie Mellon University, September 2005.

L. Fuentes and A. Vallecillo. An Introduction to UML Pro-
files. The European journal for the Informatics Professional,
April 2004.

Object Management Group. UML2.0 Super Structure Spec-
ification, October 2004.

D. Chappell. Enterprise Service Bus. O’Reilly, June 2004.
Java Community Process. UML Profile for EJB, May 2001.
E. Marcos, V. de Castro, and B. Vela. Representing Web
services with UML: A Case Study. the Int’l Conference on
Service Oriented Computing, December 2003.

IBM. UML 2.0 Profile for Software Services. developer-
Works, April 2005.

R. Amir and A. Zeid. A UML Profile for Service Oriented
Architectures. ACM OOPSLA Poster session, 2004.

M. Vokic. Using a Domain-Specific Language and Custom
Tools to Model a Multi-tier Service-Oriented Application—
experiences and challenges. ACM/IEEE Int’l Conference on
Model Driven Engineering Languages and Systems, October
2005.

R. Heckel, M. Lohmann, and S. Thone. Towards a UML
Profile for Service-Oriented Architectures. Workshop on
Model Driven Architecture: Foundations and Applications,
2003.

T. Gardner. UML Modeling of Automated Business Pro-
cesses with a Mapping to BPEL4AWS. ECOOP Workshop on
00 and Web Services, July 2003.

IBM. UML 1.4 Profile for Software Services with a Mapping
to BPEL 1.0. developerWorks, July 2004.

Object Management Group. Business Process Definition
Metamodel, January 2003.

OASIS. Web Services Business Process Execution Lan-
guage, April 2003.

OASIS. Web Service Reliable Messaging, September 2004.
OASIS. Web Service Reliability 1.1, November 2004.

F. Baligand and V. Monfort. A Concrete Solution for Web
Services Adaptability Using Policies and Aspects. Int’l
Conf. on Service Oriented Computing, December 2004.

G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj. In-
tegrated Quality of Service (QoS) Management in Service-
Oriented Enterprise Architectures. IEEE Enterprise Dis-
tributed Object Computing Conference, 2004.

N. Mukhi, R. Konuru, and F. Curbera. Cooperative Mid-
dleware Specialization for Service Oriented Architectures.
ACM Int’l World Wide Web Conference, 2004.

