
-1-

Concurrency Control Chapter
Handbook of Database Technology

By Patrick O'Neil <poneil@cs.umb.edu>
University of Massachusetts at Boston

Introduction

The need for Concurrency Control, a protocol to avoid interference in data-
base updates by concurrently executing processes, was recognized in the early
1960s. The earliest database applications in which this need became evident were:
(1) The Sabre System for tracking Airline Reservations [GRAY, Sabre], and (2) A
product known as WYCOS 2 that was implemented on the GE Computer Integrated Data
Store (IDS) for an application at Weyerhauser Corporation [BACH]. The first pub-
lished papers to explain concurrency control didn't appear until more than ten
years later, in the mid-1970s. In this Chapter we will provide an overview of
some of the major developments in concurrency control, which continue to see in-
novations integrated in commercial products even to the present day.

In this Chapter we will assume some knowledge of SQL (see Chapter 10 of this
Text), as well as a general grasp of computer processors and disks.

1. Early Lessons in Concurrency Control

Let us start with a few basic ideas to illustrate the need for Concurrency Con-
trol.

1.1. Interference Problems of Concurrent Access

To begin, assume there are two computer processes, P1 and P2, performing banking
application requests by two tellers in a bank. In simplest terms, we can assume
that the work performed will sometimes involve Reads of pieces of accounting
data of the bank, as when a teller reads the balance of a customer account at the
request of the customer, or Writes of pieces of accounting data of the bank, as
when a teller writes a new home address for the holder of a bank account. The
pieces of data we Read or Write are generically referred to as data items, sym-
bolized by the letters A, B, C, D, etc. The notation of a Read operation of the
data item A performed by P1 is R1(A) and the notation for a Write operation on
data item B performed by P2 is denoted by R2(B).

Now the sort of error that can occur in concurrent access is illustrated by the
following example, a sequence of operations that is usually called a History:

H1: R1(A) R2(A) W1(A) W2(A) LOST UPDATE HISTORY EXAMPLE

Note that the history H1 does not actually specify particular rows or the values
read or written by the processes P1 and P2. These details are removed so that a
simple mechanism that merely keeps track of data item identifiers and agents that
Read and Write them can detect the types of concurrency errors dealt with here.

Example 1. An Interpretation of H1. To show how the History H1 can repre-
sent a possible error, known as Lost Update, we provide what we refer to as an
Interpretation of H1. We assume that A represents a bank balance, and that two
co-holders of the account, acting in distinct processes P1 and P2, are concur-
rently depositing amounts of money to the account balance, say $30 and $40 res-

-2-

pectively, where the balance begins with value $100. We use a form of extended
notation to display an interpreted history of H1, named H1', which provides
values of data items Read or Written, to show the problem:

H1': R1(A,100) R2(A,100) W1(A,130) W2(A,140)

As we see in H1', the final value of A is the value 140 ($140). But if the con-
current access had not taken place, that is if P1 had gone first and performed
all its operations, and after P1 was done, P2 had performed its operations, the
final value would have been $170. This is known as a Serial History, S1(H1'):

S1(H1'): R1(A,100) W1(A,130) R2(A,130) W2(A,170)

Similarly, if P2 executed all its operations first and then P1, we would have:

S2(H1'): R2(A,100) W2(A,140) R1(A,140) W1(A,170)

Thus S1(H1') is a serial history where P1 goes first, and S2(H1') a serial his-
tory where P2 goes first, and both of them give a correct result. It seems clear
that an error occurred in the concurrent execution of H1', and that this error
was caused by Interference in concurrent access to the data: It occurs because
P2 remembers the value of A as 100, even after P1 had already added 30 to make it
130, P2 then performs an update that wipes out P1's effect.

There is no way an unaided programmer can prevent the concurrency error of H1'.
For example, one cannot avoid the problem by insisting P2 Read the data item A
again immediately before Writing. In fact, this is already happening, since the
last operation by P1 prior to W2(A,140) is R2(A,100). The problem is that process
switching has taken place immediately after R2(A,100), allowing the interposed
write by P1 to follow. Processes in a time-sharing system will commonly need to
WAIT when they perform a Read requiring an I/O, so it's not possible for the
application by itself to avoid an interposed Write W1(A,130). The only way to
avoid this error by supplying a Concurrency Control method supported by the
Database System itself.

The first concurrency control method implemented in practice was known as Two-
Phase Locking. Typically, locks were taken on data items on behalf of the agent
reading or writing them, giving the agent a form of privileged access to the
data, and the locks were released when the agent had completed all its actions.
The application performing the balance knows when it is done and can signal this
by a Commit action, or in some cases, say if a withdrawal would bring an account
balance below zero, an Abort action, which signals that all updates are to be
reversed. It turns out to be inappropriate to think of a Process as the agent
that does this, since the same process might be used multiple times to perform a
deposit (or withdrawal) from different bank balances. Instead, early developers
invented something called a Transaction (executing in a process, or in more
modern systems in a more lightweight thread) to collect locks of various kinds
until the application ends the Transaction's life with a Commit or Abort. The
Process lives a long time and is likely to support a long sequence of different
Transactions before the process ends.

With a new Commit operation for a transaction Ti with notation Ci and an Abort
operation with notation Ai, the original H1 history would now be written as:

H1: R1(A) R2(A) W1(A) W2(A) C1 C2 Lost Update Anomaly

Of course we have already shown H1 has a concurrent execution error, and in what
follows we will refer to concurrency errors of this kind as Anomalies.

-3-

1.2 Serializability

Early researchers saw that a criterion was needed to determine when a history of
operations could give rise to an Anomaly, and when it could be guaranteed not to
do so. We have already encountered the touchstone that was used to determine a
"correct" transactional history, namely a "Serial History". The criterion for a
correct transactional history turned out to require the following steps.

1. Define conditions under which a history is serial;
2. Define conditions under which two histories are (meaningfully) equivalent;
3. Define a history to be serializable (correct) exactly when it is equivalent

to a serial one.

A (Committed) Transaction Ti is defined as a sequence of operations, consisting
of elements from the set {Ri(X), Wi(X), Ci}, with a temporal order <i and a Commit
operation Ci in the terminal position. The idea is that an application program
requests the transaction's operations in a given order, ending with a Commit, and
this order cannot ever be modified in transforming a history consisting of multi-
ple transactions. Of course there can also be an Aborted transaction Ti ending
with an Ai.

A Complete History H (in a centralized database -- no parallelism) is defined
to contain all the operations from a set of Committed Transactions {Ti, i = 1,n)
and an ordering of those operations <H such that for i = 1,n, <i ⊆ <H, i.e., the
order of operations in original transactions Ti are maintained in the history H.

The reason we deal with a complete history of committed transactions, with no
partial transactions allowed, is this. The definition is intended to measure the
success of a transactional scheduler imposing a concurrency control to maintain a
"Serializable" history as operations are submitted to the scheduler in order as
the concurrently executing transactions submit them. The scheduler can delay cer-
tain transactional operations, or as sometimes becomes necessary, Abort a trans-
action, to maintain correctness. At any time the history might contain certain
transactions that hasn't yet committed and in fact cannot Commit if the history
is to remain serializable. The solution used by the scheduler will be to Abort
such transactions. Thus we do not want to consider uncommitted transactions as
counting against the scheduler's effectiveness, and this is why we only deal with
Complete Histories in defining a serializable history.

We have already seen examples of serial histories S1(H1') and S2(H1') in Example
1 of Section 1.1. Here is a more precise definition.

A complete history H is a Serial History if and only if, for every two trans-
actions Ti and Tj in H, either all operations of Ti appear before all operations
of Tj or vice-versa, all operations of Tj appear before all operations of Ti.

Of course this definition of a Serial History H implies that any transaction in H
will have all its operations occurring in one contiguous block of time, with no
interleaved operations of other transactions. Thus a Serial History always avoids
any concurrent interference between transactions.

Now we want to say that any history H that is in some sense equivalent to a
Serial History S(H), is Serializable as a result, and this is the only way in
which H will be correct and free from concurrent execution Anomalies. A number
of definitions of equivalence have been defined, but the one that the early
researchers settled on is called Conflict Equivalence.

-4-

An operation (Read or Write) by transaction Ti and a second operation by Tj in a
history H are said to Conflict or to be Conflicting Operations exactly when
they act on the same data item and at least one of them is a Write operation.

Here is justification for the definition of conflicting operations. We claim that
two successive conflicting operations cannot be commuted to occur in the reverse
order without the likelihood of changing their effect within the history. One way
to define Conflict Equivalence between a history H and a serial history S(H) is
the ability to find a series of commutes of adjoining operations in H to generate
S(H). So why do we define Conflicting Operations as we do?

First, we note that we can never commute two operations of a single transaction,
so that explains why conflicting operations must be from different transactions.

Second, the two operations access the same data item because there is clearly no
effect if the pair Ri(A) Wj(B) (say) is reversed to become Wj(B) Ri(A).

Third, two Read operations on the same data item can always commute: Ri(A) Rj(B)
and Rj(B) Ri(A) have the same effect;

Fourth, consider the two adjoining operations Ri(A) Wj(A) and the reverse pair
Wj(A) Ri(A). In these two orders, Ri(A) is likely to read different values (as-
suming that Wj(A) changes the value of A from what it was earlier).

Finally, the adjoining operations Wi(A) Wj(A) and the reverse pair Wj(A) Wi(A)
cause data item A to end up with different values, assuming the two Writes are
not creating identical values.

Now it turns out that a Serializable History can contain pairs of conflicting
operations as long as the history doesn't contain a cyclic sequence of conflict-
ing pairs. We give two examples of such a cyclic sequence of conflicts below.

Let us see why the Lost Update Anomaly, repeated below, is not serializable.

H1: R1(A) R2(A) W1(A) W2(A) C1 C2 Lost Update Anomaly

All operations of T1 and T2 are on the same data item A, and there are three dif-
ferent conflicting pairs of operations in H1, but we will only consider two. The
first conflicting pair is: (1) R1(A) <H1 W2(A) (where <H1 gives the time order from
left to right), and the second conflicting pair is: (2) R2(A) <H1 W1(A). Since
both of these pairs must remain in the same order in any equivalent serial histo-
ry S(H) (conflicting pairs cannot be commuted), then based on S(H) pair (1), all
operations of T1 must come before all operations of T2. But because of pair (2),
all operations of T2 must come before all operations of T1. There is a contradic-
tion, and this shows that any assumption that H1 has an equivalent serial history
must be false. H1 is thus not serializable, which we have already concluded in
the interpretation of H1' in Section 1.1.

Here is another well-known history example that leads to a concurrency Anomaly:

H2: R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2 Inconsistent Analysis Anomaly

H2 contains the conflicting pairs: (1) R1(A) <H2 W2(A) (the first and fifth opera-
tions) and (2) W2(B) <H2 R1(B) (the third and last operations), and as above, this
implies that in any S(H2) all operations in T1 must come before T2 and vice-
versa, a conflict cycle that shows S(H) does not exist. We can show the same fact
using an interpretation H2':

-5-

H2': R1(A,100) R2(B,100) W2(B,50) R2(A,100) W2(A,150) R1(B,50) C1 C2

In H2', T1 is moving $50 from savings balance B to checking balance A, while T2
is adding up the account balances A and B, and finding a total of $150. But in
any serial schedule, if T1 preceded T2 it would sum $100 + $100 to get $200, and
if T1 succeeded T2, T1 would sum $150 + $50 to get $200. T2 only sees a sum $150
in H2' because of concurrent interference; of course such error might be crucial
for an account holder who is having bank balances checked to apply for a loan.

2. Two-Phase Locking (2PL)

The material we have presented so far doesn't provide us an efficient algorithm
by which a database system scheduler can coerce a series of data item Read and
Write requests to produce a serializable history. Perhaps we should first ask
ourselves why the scheduler doesn't simply impose a fully Serial schedule on the
operations submitted.

A scheduler can impose a serial schedule by accepting the first operation submit-
ted by (say) transaction T1 and then allowing only operations submitted by the T1
to execute; operations by other transactions are simply queued up until T1 Com-
mits. Then the scheduler can begin to execute queued operations of the next
transaction, say T2, until that transaction also Commits, and so on. In this way
the scheduler guarantees a serial schedule, which is correct by definition.

The reason this approach is not used in practice is that it is terribly ineffi-
cient. Most transactional applications run very short CPU bursts (fractions of a
millisecond) between I/O requests from disk (which take multiple milliseconds).
While the process running a transaction is in I/O wait, the OS must look for an-
other process to execute in the CPU. If the only processes running in the data-
base system are the ones executing transactions, then if the database scheduler
imposes a serial schedule, there will be no other transaction to run when the
single running transaction goes into an I/O wait. This can mean that only a few
percent of the CPU will be utilized. If we allow concurrent execution instead,
and disperse the data accessed by the transactions over a large number of inde-
pendent disks, then the throughput in transactions per second will be greatly
improved.

The algorithm used in all the early database schedulers to support concurrently
running transactions while guaranteeing a serializable schedule, is known as Two-
Phase Locking (2PL). The concepts of Serializability and Two-Phase Locking were
both introduced in a 1976 paper by four IBM practitioners [EGLT]. All current
textbooks that cover transactional theory cover both these concepts in detail.

In Two-Phase Locking, locks are taken and released on data items by the sched-
uler according to the following rules.

(1) Before a transaction Ti can Read a data item A, Ri(A), the scheduler tries to
Read Lock the item on its behalf, RLi(A); similarly, before a Write of A, Wi(A),
the scheduler tries to Write Lock A, WLi(A).

(2) If a conflicting lock on the data item A already exists, the requesting
Transaction must WAIT (a process Wait), until the required lock can be taken on
its behalf by the scheduler.

(Conflicting locks correspond to conflicting operations, defined in Section 1.2:
two locks on a data item conflict if they are attempted by different transactions
and at least one of them is a WL).

-6-

(3) Two-Phase Rule. There are two phases to locking, the growing phase and the
shrinking phase (when data items are Unlocked: RUi(A)); The scheduler must ensure
that a transaction can't enter the shrinking phase (by releasing a lock) and then
start growing again (by taking a new lock).

The Two-Phase Rule implies that a transaction might release locks before Commit-
ting. But permitting applications to release locks early has always been a risky
proposition, and in SQL all data item locks are released at one time, on Commit.
We'll assume this behavior in what follows:

 All locks of a transaction are released exactly when the transaction Commits.

Of course when all locks are released at the time of Commit, the Two-Phase Rule
is still valid -- the shrinking phase occurs at Commit time, so no new locks are
taken after the shrinking phase starts.

Note too that a transaction will never have conflicts with its own locks! If Ti
has taken a lock RLi(A), then it can later get a lock WLi(A), so long as no other
Transaction Tj holds a lock on A (of course that this would need to be a Read
lock, RLj(A), or it could not be held while Ti held RLi(A)). Note too that if Ti
holds a lock WLi(A), it won't need to later take the lock RLi(A) to perform a
Read, because a Write lock implies a Read lock.

If locking is to guarantee serializability for the resulting history, it must be
able to guarantee that a cycle of conflicts will never occur. We see that the
first transaction T1 to lock a data item A forces any transaction T2 that
attempts to take a conflicting lock on A at a later time to WAIT until after T1
Commits. But what if T2 already holds a lock on data item B before it WAITs, and
T1 later needs to take a conflicting lock on B? This would mean a cycle of con-
flicts; but given the WAIT rule when attempting to take a conflicting lock, this
will mean both transactions will WAIT for the other to release the lock they
need, and since each transaction WAITs, neither transaction can ever leave WAIT
state. This is a Deadlock. The scheduler is designed to recognize when such a
deadlock occurs, and force one of the Transactions involved (a Victim) to Abort.

We give an example of such a deadlock based on the Inconsistent Analysis Anomaly
history covered in Section 1.2.

H2: R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2 Inconsistent Analysis Anomaly

We rewrite history H2 as HL2, with appropriate locking operations, and explain
the behavior the scheduler will take as operations of this history are submitted.

HL2: RL1(A) R1(A) RL2(B) R2(B) WL2(B) W2(B) RL2(A) R2(A) WL2(A) (This lock attempt
fails, since RL2(A) conflicts with WL1(A); T2 must WAIT for T1 to Commit or Abort
and release locks) RL1(B) (This lock attempt fails since it conflicts with WL2(B)
so T1 must WAIT for T2 to complete; but this is a deadlock! We assume the
scheduler will choose T2 as victim) A2 (now RL1(B) will succeed) R1(B) C1 (As is
common, we assume the application running T2 sees the Deadlock Abort error
message, and performs a RETRY of T2, assigned a new Transaction number T3 by the
scheduler) RL3(B) R3(B) WL3(B) W3(B) RL3(A) R3(A) WL3(A) W3(A) C3.

Note that there can be more than two transactions involved in a Deadlock when
there is a cycle such as the following: Ti waits for Tj waits for Tk waits for Ti.

-7-

We define a Waits-For Graph, WFG, as a directed graph maintained by the sched-
uler to test for deadlocks, as follows. The Vertices of the Waits-For Graph cor-
respond to active transactions, currently being executed, Ti, Ti+1, etc.; there is
a Directed Edge of the WFG, Ti -> Tj, exactly when transaction Ti is waiting for a
lock on some data item on which Tj holds a conflicting lock. The scheduler can
test for a deadlock cycle of edges each time a new edge is added to the WFG.

Note that non-serializable histories don't necessarily cause deadlocks. In many
cases, a delay in granting some transactional operation lock (and succeeding
operations of that transaction until the original lock is granted) will result in
a serializable history. Consider, for example, the history H3, a simple reorder-
ing of operations of H2, which is still inconsistent.

H3: R2(A) W2(A) R1(A) R1(B) R2(B) W2(B) C1 C2 Inconsistent Analysis Anomaly 2

A cycle of conflicts exists with the two pairs of operations: W2(A) <H3 R1(A) and
R1(B) <H3 W2(B), so H3 is not serializable. Here is a history H3' with extended
notation providing values of data items Read or Written, that is the basis of
an interpretation showing the same thing:

H3': R2(A,100) W2(A,50) R1(A,50) R1(B,100) R2(B,100) W2(B,150) C1 C2

In H3'. T1 is summing the two bank balances A and B to 150, while T2 is moving
$50 from A to B, and the sum of the balances starts as $100 + $100 and ends as
$50 + $150, a sum of $200 in both cases. We note that the situation here is that
in moving money from one balance to another, T2 must update one data item at a
time, meaning there is an inconsistent state for the two data items at the time
that T1 evaluates the sum in the middle. This sort of inconsistency is forbidden
by a property of transactions known as Atomicity, where all Read and Write op-
erations in a history must succeed or fail as a unit -- Atomically -- and results
must be seen Atomically by all other transactions.

Here is the Locking schedule for H3, HL3.

HL3: RL2(A) R2(A) WL2(A) W2(A) RL1(A) (This lock attempt fails, since RL1(A) con-
flicts with WL2(A); all operations of T1 must WAIT for T2 to Commit (or Abort) and
release locks) RL2(B) R2(B) WL2(B) W2(B) C2 (Now the RL1(A) request is successful,
and T1 can continue) R1(A) RL1(B) R1(B) C1.

We see in HL3 that no deadlock occurred, and T1 saw the sum $50 + $150 because of
being delayed.

Two-Phase Locking Guarantees Serializability

Nearly all textbooks that deal with database transactions give a proof that 2PL
guarantees serializability. The idea of the proof is that a cycle of conflicting
transactions, T1, T2,..., Tn, Tn+1 = T1, cannot exist in a history H produced by a
locking scheduler, because this would imply there is a data item Di unlocked by
each Ti and then locked by its successor transaction Ti+1 (this is the data item
causing the conflict), and thus we must have T1 <H T2 <H T <H ... <H Tn <H Tn+1 = T1.
But this must mean that T1 locks a data item Dn after it unlocks a data item D1,
which disobeys the Two-Phase Rule. Thus H is not produced by a locking scheduler,
a contradiction, which shows that no such cycle of conflicts can exist.

3. Additional Transactional Considerations

-8-

There are a number of transactional issues that we won't be able to consider in
great depth in the current chapter, but nevertheless represent important concepts
that the reader may find of interest to learn more about in other chapters or
database texts. In what follows, we include short sections describing a number of
such issues.

3.1 Transactional Database Performance

Traditionally, transactional performance was a crucial factor in choosing a data-
base product to be used by large organizations. Several Database Benchmarks
exist, standard tests of transactional performance including carefully crafted
database structures and (one or more) transactional "programs" to match a common
type of commercial application [TPC-A,TPC-B,TPC-C]. These benchmarks require com-
plex tuning, and the final one in particular was often run by the database
companies themselves to provide confidence that their products offered good
transactional performance.

This concern with performance is explained by a few factors that defined database
systems for many years, many of which seem less and less important with modern
developments in hardware. Here is a short outline of these defining factors.

Memory Cost and Disk Page Buffering

Data was historically held on Disk, which was much larger than computer memory,
and the memory itself was extremely expensive. In about 1981, IBM responded to
competition from IBM compatible memory producers by reducing IBM memory price to
$10,000 per MByte (220 = 1,048,576, roughly a million bytes); this was considered
a monumental event at the time! What this meant was that anyone with a large
database, containing perhaps a GByte (230 or a billion bytes) of data, would
store the data on disk and bring it into memory in small blocks, usually disk
pages of about 4 KBytes (210 or a thousand bytes), because only in memory could
the data be properly interpreted and updated. The disk pages were brought into
what were known as Memory Buffers, each buffer containing one 4 KByte page of
data. Typically, the entire set of memory buffers took up perhaps 10 MBytes of
memory, only 1/100 of the total GByte of data on disk; this meant that disk data
had to be read into memory buffers in small portions, and unchanged data was
usually (not always) later dropped from buffer when it was no longer needed, to
make space for the next page read from disk. Data pages that had been updated
while in buffer, would first need to be written out to replace the prior version
of the page on disk, and then (usually) dropped from buffer.

It was recognized early on, however, that disk pages that were very popular,
meaning that they were frequently referenced, would more profitably remain in
memory buffer. This was a simple trade-off between memory space to hold the disk
page (expensive) and the use of a disk arm to access the disk page on disk at the
next reference (also expensive, especially for a popular page) [GRAYPUT]. The
algorithm that determined which data pages were dropped from buffer and which re-
mained depended on the frequency of access to the data page, and was known as the
Page Replacement Policy. Several such policies were studied in the early
1960s, and the one that had the best characteristics was called the Least Re-
cently Used (LRU) page replacement policy, which dropped from buffer the page
that had not been accessed for the longest period. Some other page replacement
policies have been developed since that time [LRU-K], but most database system
products still use the LRU algorithm.

One important observation is that improvements in the disk buffering algorithm
are becoming less meaningful as memory becomes cheaper and typical processor
memories pass the 2 GByte barrier. (Up until the 1990's, even the most expensive
processors didn't have the ability to address as much as 2 GBytes, since a few
bits of the 32-bit address word had been used for other purposes.) Large memories

-9-

makes it possible to support what is known as a Memory-Resident Database for
many transactional applications, a concept that was developed theoretically
during the 1980s [DEWITT]. But memory-resident databases are not as popular as
one might expect for a number of reasons. First, transactional databases with
data on disk are a well-solved problem, and today's hardware ensures there is
little cost to using disk-resident data. In fact some major on-line commercial
companies are simply using a large number of parallel processors and storing data
on a file system with each new product added to an order, passing up the better
performance of transactional processing. This is not an approach that a normal
company should attempt, however; on-line orders required so much development
effort when they first emerged that the developers thought they might as well
create a custom approach to saving the data and recovering from machine and disk
crashes, a difficult problem that they had to solve in any event.

What certainly is true for nearly all companies, however, is that the cost of
processing transactions, even in large banks, is dropping down to a small frac-
tion of the cost of providing tellers with terminals to access the system. This
became clear some years ago when certain database benchmarks that wanted to cost
all aspects of transaction processing, had to reduce the number of terminals and
the thinking time between transactions on a single terminal to an unrealistically
small average of ten seconds. With the prior 100-second think time, the cost of
even the cheapest terminals would have greatly exceeded the cost of the transac-
tional system.

Indexing

While speaking of database performance, we must mention that any column by which
a row is commonly accessed (as in SELECT BALANCE FROM ACCOUNTS WHERE ACCTID =
'A273196') must be indexed for quick retrieval. Any transaction that retrieves
rows based on values of a single column that isn't indexed will need to search
the entire table to find the rows selected. An index typically orders the
Keyvalues on which rows are to be looked up (ACCTID Keyvalues for a unique index
on ACCOUNTS or MAKE_OF_CAR Keyvalues for an index on AUTOS in a Registration
table). The most common index is known as a B-tree index (more properly, a B+-
tree index, but the simpler term is more commonly used), and can be thought of as
allied to binary lookup tree on Keyvalues in memory; however B-tree nodes lie on
disk and contain many entries, so the Fanout of the B-tree is quite large com-
pared to a fanout of two for binary indexes. As rows are inserted, updated, or
deleted from a table, all index entry changes associated with these operations
are immediately made. For example, when a new row is inserted in a table, entries
for the row will be inserted in all associated indexes.

It turns out in what follows that index entries need to be locked to guarantee
serializability. We will deal with this in Section 4, when we discuss the Phantom
Anomaly.

3.2 Transactional ACID Properties

The ACID Properties for database transactions were originated by Jim Gray be-
ginning in [GRAY81]. The ACID properties can be thought of as a set of guarantees
offered to application programmers who use transactions in data access rather
than an unprotected form of data access such as calls to an OS File System. There
are four properties given, from which the ACID acronym is derived: Atomicity,
Consistency, Isolation, and Durability.

Atomicity. This is a guarantee that the set of record updates that make up a
transaction are indivisible, that either all occur or none occur, and no agent
can observe an inconsistent result (including other transactions running concur-
rently and users waiting for messages output by the program). If an access fails,

-10-

or any other error occurs, the entire transaction must Abort, and no effect of
the transaction will remain. If the program encounters a conceptual error (such
as some bank balance being too low to make a required payment), it has the abil-
ity to bring about an Abort by itself (the programmer can arrange this with a SQL
statement ROLLBACK WORK). Without the ROLLBACK WORK statement, a program that
found it had to back out its changes would need to reverse complicated updates by
programmatic logic, which would be extremely error-prone.

Consistency. We assume that a database and transactions acting on it must obey
a number of Constraints1 that define a legal state of the database. One such
constraint might be that no bank balance can fall below zero; another might be
that in a transfer between account balances, money is neither created nor de-
stroyed. Many such constraints must be guaranteed by the transaction program act-
ing in isolation rather than by the database system returning an error; the Con-
sistency guarantee requires that concurrent transactions finding a legal (Consis-
tent) database state, will leave it that way on Commit.

Isolation. This property guarantees that executions of concurrent transactions
act as if they are isolated, that is, not interleaved in time. It is another way
of saying that the history of transactions acts in a serializable manner. .

Durability. This property guarantees that once the program has been notified of
the success of a transaction Commit, the transaction is guaranteed that the re-
sulting changes will survive system failure. Thus the user may be notified of
success (e.g., that a bank transfer has been successful, or that a withdrawal
amount can be disbursed by the teller to the customer). This guarantee requires a
Transactional Recovery capability to insure, after system failure, that all
committed transaction results will be corrected on disk, even if updated pages
were not all written out from buffers when transactions committed. We will dis-
cuss Transactional recovery in the next subsection.

Comment: Consistency is actually implied by the Isolation guarantee and the
requirement that the transactions devised by the programmer perform legal changes
of state when run in isolation.

3.3 Transactional Recovery

Transactional Recovery, or simply Recovery, was mentioned in the previous
Section 3.1 as supporting the ACID Guarantee of Durability. The motivation for
Recovery is this. Recall that when pages are read from disk, they are stored in
memory buffers, because it is only there that they can be updated. Unfortunately,
memory is Volatile, meaning that in a system failure, all memory contents will
be lost. Now if a transaction transfers money from one bank account to another,
and these accounts sit on two different disk pages that must be read into buffer
and updated, then after one of the disk pages is written back out to replace its
older version on disk, the system may fail before the second disk page is written
out. If the disk contents of the database remain in this state when the database
is restarted, it would mean an unbalanced transfer had occurred, with one account
out of synch with the other: thus money would be either created or destroyed.

To avoid problems such as this, the database system writes Notes to itself,
called Log Entries (or simply Logs) that describe what updates are applied,
and by which transactions, to rows on disk pages in memory (e.g., Wi(A)). The

1 Many definitions use the term Consistency Constraints here, but Consistency
Constraints in relational databases are constraints that are guaranteed by the
database itself; a transaction breaking such a constraint would receive an error
return, and the correct action would be to abort. No such built-in constraint
guarantees that a transfer does not create or destroy money, for example.

-11-

sequence of Log Entries for transactional operations, as they occur, are placed
together in a large Log Buffer in memory, and the Log Buffer is written out to
the Disk Log from time to time; in fact the Log Buffer is written out to TWO
disks at once, to guarantee stability even if one disk fails. In particular when
transactions request a Commit, a Log entry noting the Commit (Ci) must be placed
in the Log Buffer and written out to the Disk Log before the Commit acknowledg-
ment can be returned to the calling program. Later, if the system fails in the
middle of processing, when System Restart takes place the database system will
read all the relevant Logs from disk and ensure that data updates that might not
have reached disk will replace old versions of the disk data.

Recall that some disk pages are accessed so frequently that they are never
dropped from memory buffer. The same consideration applies to updates of some
disk pages. For example, if a row on the disk page contained a warehouse record
providing quantity on hand for twelve ounce cans of a soft drink at the soft
drink factory, and orders for that item were received every few seconds during
the business day, it would be inefficient to write the row back to disk each time
it was updated. Clearly the Log is made for situations like this, since it en-
sures that data that is not written out to disk will eventually get there if the
system fails at some point during the day.

If we are writing the Disk Log at a high rate and it takes nearly as much time to
recover from the log as it does to write it, we need to ensure that we don't need
to recover through several hours of output because popular rows were never up-
dated to disk during this entire period. To ensure that recovery time doesn't
grow too long, Database systems provide an operation called Checkpointing,
which guarantees that popular pages that otherwise wouldn't be updated to disk
for an extended period, are written out within some reasonable period set by the
database administrator, say five or ten minutes. Then any part of the Disk Log
more than ten minutes old can be garbage-collected, and recovery can start from a
more recent position in the Disk Log.

3.4 Optimistic Concurrency Control

Although we explained at the end of Section 2 that Two-Phase Locking implies
serializability, they are not identical concepts. It is easy to provide a history
that is serializable but does not obey the 2PL protocol. E.g.:

H4: R1(A) W1(A) R2(A) W2(A) R1(B) W1(B) C1 C2

H4 is serializable because it contains only two pairs of conflicting operations,
R1(A) <H4 W2(A) and W1(A) <H4 R2(A), which do not create a conflict cycle; they
both agree in implying that the conflict equivalent serial history will have all
operations of T1 precede all operations of T2. However H4 is clearly not follow-
ing the 2PL protocol, which would delay the operations of T2, R2(A) W2(A), until
after all operations of T1 were complete.

One alternative to the 2PL protocol is to have the scheduler immediately schedule
each operation it receives, but remain aware of the conflicts and check frequent-
ly that no cycle of conflicts has arisen. If such a cycle has occurred, the
scheduler must find a victim transaction to Abort. The process of deciding that a
schedule (history up to this point) has no cycle, so that a transaction Commit
can take place, is called Certification, and such a scheduler is called a Certi-
fier [BHG]. Certifiers are often referred to as Optimistic Schedulers be-
cause they aggressively schedule operations, hoping that no non-serializable
Anomalies will occur; Two-Phase Locking, on the other hand, is pessimistic, de-
laying all operations that conflict with a prior operation of a another transac-
tion that is still active.

-12-

One reason that Optimistic schedulers were popular in research papers is that a
performance study in 1985 [TAYGS] showed that transactions throughput in locking
schedulers was limited by blocking due to conflicts, while Aborts were quite
rare. Blocking can cause loss of performance when so many transactions are
blocked (waiting for data items locked by another transaction) that the scheduler
finds difficulty locating transactions to run during I/O Waits, and the percent-
age of CPU use is reduced. In the worst case, it is possible that, out of N con-
current transactions, only 1 is not waiting for a lock.

One problem with Certifier Schedulers, however, is that when one transaction
optimistically reads the output of another (as in H4,...W1(A) R2(A)...), if the
first transaction Aborts at a later time, the second transaction that read from
it must Abort as well, for it has depended on a value of the data item that no
longer exists. This effect is known as Cascading Aborts, and does not occur in a
2PL scheduler.

No commercial database system has ever used an Optimistic scheduler of the kind
indicated above, and a number of studies have indicated that performance of such
schedulers are inferior to 2PL schedulers in resource-limited environments
[AGRA]. In Section 6, however, we will cover a form of concurrency known as Snap-
shot Isolation that has some of the aspects of Optimistic concurrency, but with-
out many of the drawbacks mentioned above.

3.5 Index Locking

As we previously indicated, database indexing uses a B-tree consisting of disk
page nodes with a large fanout. All searches to the leaf level of the index start
at a unique Root Node of the B-tree, and if a new index value is added for a
newly inserted row, it may turn out that a large number of nodes of the tree will
need to split to provide space for pointers to new nodes that result from node
splits below. These splits can continue right up to the level of the root, and
the 2PL protocol would therefore seem to require that a transaction making an in-
sert to the tree needs to Write Lock the root node and hold the lock until Com-
mit. But this approach would tend to make the index nearly useless for concurrent
transactions that need to look up other rows with searches starting at the root.
This problem has been addressed in numerous papers, however, and all commercial
database systems provide an efficient alternative to two-phase locking in
proceeding down a B-tree.

3.6 Distributed Transactional Processing

Up to now, we have been dealing exclusively with Centralized Transactional
Processing, where all work is performed on a single computer; the computer
might have multiple CPUs with local cache memory, but it has shared memory where
locking and cycle testing can be performed, and for our purposes we can assume
that the number of CPUs on a single computer is immaterial.

An example of Distributed Transactional Processing is a very large bank,
with perhaps a thousand local branches, each branch having its own computer where
banking transactions are performed for local customers. The branch computers can
be thought of as nodes in the network that communicate with one another, but the
distributed database must be transparent in the sense that users should be able
to interact with it as if it were one logical system. Customers from foreign
branches might drop in at any time and draw on their account at their home
branch. Indeed some customers might perform complex transactions that span multi-
ple accounts at different branches. Distributed transactions of this kind provide
a number of challenges that are not faced by centralized database systems.

-13-

For one thing, cycle testing in the Waits-For Graph can become orders of magni-
tude more difficult, since a cycle can extend over multiple independent nodes of
the network. There are a number of theoretical solutions to this problem (known
by names such as "Path Pushing"), but the complexity can become too much for any
normal algorithm under exceptional circumstances. For this reason, database sys-
tems that support multiple node transactions have typically availed themselves of
a Timeout solution. In this approach, requests to Read or Write data items are
made to foreign nodes, and an ACKNOWLEDGE (ACK) message is awaited by the caller.
If the ACK message takes longer than a certain time period (e.g.: 10 seconds),
then it is assumed that a deadlock might have occurred and the transaction is
Aborted and started over. Of course it might also happen that links or nodes of
the network fail, but these problems are recognized by other means.

Another problem that arises in distributed transactions is how to perform a Com-
mit. In a centralized computer, the system performs a Commit and awaits a re-
sponse from the disk that the write of the disk log was successful. In the event
of system failure before the transaction acknowledges and notifies the user, the
result is uncertain, but we can rest assured that the transaction ended up in a
well-defined state: either the Commit Log Entry reached the Disk Log, in which
case the Transaction has succeeded in its Commit and this will be reflected after
Restart, or the Commit Log Entry did NOT reach the Disk Log and the Transaction
failed, so the result on Restart will be an Abort, wiping out all traces of the
Transaction that might have reached disk.

Two-Phase Commit

Things are not so simple when a distributed transaction is being committed, be-
cause there is more than one node that can fail, and the two nodes need to agree
on success or failure to Commit. Let us consider a case where a transfer of money
is being made from one bank branch to another in a Transaction T, that consists
of a transaction fragment T1 on the node that initiated the transfer and another
transaction fragment T2 that performs the corresponding action on the second
node. Typically, the node that started the transaction will become the Coordina-
tor of the distributed transaction T to guarantee the Commit. The worst thing
that can happen is that one of the two fragments of the distributed transaction,
say T1, succeeds, while the other fragment, T2, Aborts. Once a transaction Com-
mits, all details of the transactional updates are typically lost, so there is no
easy way to back out an unbalanced Commit.

To avoid this possibility, the Coordinator will initiate a Prepare request to all
fragments on the distributed transaction. A Prepare action is comparable to a
Commit action, in that it results in a Log Entry on disk that will guarantee a
result should there be a system failure at the node where the Prepare action was
taken. The difference is, that instead of creating a Log that guarantees on
Restart that a Commit will be performed, Restart processing on encountering a
Prepare Log will return the transaction to the state where it started, able to
either Commit or Abort. The Coordinator will start by performing a Prepare on its
own fragment of the transaction, T1, and then it will send Prepare messages to
all other nodes involved in the transaction, in this case the one supporting
transaction T2. If all these transaction fragment nodes ACK the Prepare message
of the Coordinator, we will be said to have completed the First Phase of the Two-
Phase Commit. If one of the transaction fragment nodes fails to ACK however, the
Coordinator will assume that transaction fragment has failed (quite likely the
node's system has failed), and the Coordinator will Abort its fragment and send
messages to all other nodes involved, including the one that failed to ACK, to
Abort their fragment as well. The Coordinator will also log an Abort message for
this Transaction ID in its Durable Message Queue, so that if some node later re-
covers from a failure and brings its fragment transaction back to a Prepared

-14-

state, it will be able to ask the Coordinator node for the message it missed,
learn that it was an Abort, and act accordingly.

If, on the other hand, all the other transaction fragment nodes ACK the Prepare
request, the Coordinator will now send Commit messages to all of them, and log
the Commit message in its Durable Message Queue. In this way, if some node has a
System failure and later recovers its Prepared fragment, it will know enough to
Commit when it requests this message from the Coordinator.

4. The Phantom Anomaly

A Phantom Anomaly can be defined as a history of transactional operations that
leads to obviously non-serializable behavior, despite the fact Data Item Read
Locks and Write Locks obey 2PL to guarantee serializability. Here is an example.

First Phantom Anomaly Example. There has never been a good notation for
Phantom histories developed. Here is an example of a Phantom in an experimental
notation, and an interpretation that clarifies it. Below, we deal with two tables
associated with records of a bank, with associated columns listed:

Table Name Column Column

ACCT (Accounts in bank) BAL (Account balance) BRANCH (Branch of ACCT)
BRACCT (Branch table) BAL (Branch balance) BRANCH (BRACCT Branch)

The ACCT table holds bank accounts in multiple branches of a large bank: ACCT.BAL
is an account holder's balance and ACCT.BRANCH is the branch name. The BRACCT
table holds one row for each branch of the bank, and BRACCT.BAL represents the
total of all ACCT balances for the branch named in BRACCT.BRANCH.

In the notation that follows, P1 and P2 are two predicates: P1 restricts ACCT
rows to ACCT.BRANCH = 'SFBay' (think of the SQL clauses: FROM ACCT WHERE
ACCT.BRANCH = 'SFBay'), and P2 restricts BRACCT.BRANCH to 'SFBay' (SQL: FROM
BRACCT WHERE BRACCT.BRANCH = 'SFBay'). Experimental notation in H5 below: PR is a
predicate read operation, and I is an insert operation.

H5: PR1(P1, SUM(ACCT.BAL)) I2(A IN P1) R2(BRACCT.BAL IN P2) W2(BRACCT.BAL+A.BAL)
C2 R1(BRACCT.BAL IN P2) {ERROR: WRONG TOTAL} C2

INTERPRETATION: T1, having summed the balances of all accounts from the SFBay
branch of a bank ("PR1(P1, SUM(ACCT.BAL))" is equivalent to the SQL statement:
SELECT SUM(ACCT.BAL) FROM ACCT WHERE ACCT.BRANCH = 'SFBay'), needs to WAIT for
I/O in order to read the total branch balance from the same branch. While T1
WAITS, T2 inserts a new account A into the SFBay branch, then adds A.BAL (say
with value = 100) to BRACCT.BAL, updating the row and committing. As a result, T1
will see the wrong BRACCT.BAL value when it performs its access. This could not
have happened in any serial schedule, so the history is non-serializable, but all
data item locks were scrupulously taken and failed to prevent the Anomaly.

The Anomaly occurred because when T1 locked all the rows in ACCT with BRANCH =
'SFBay' while taking the SUM of ACCT.BAL, those locks did not prevent the insert
of a new row of this type by a different transaction T2.

The existence of phantoms was reported in [EGLT76], although the original Phantom
Anomaly considered was somewhat different.

A Second Phantom Anomaly Example. Assume T1 deletes one of the rows in the
ACCT table for BRANCH = 'Berkeley'. The way that DB2 handled row deletes was to

-15-

perform the delete completely (including all index entries for the row), under
the assumption that T1 would most likely Commit, so the system wouldn't have to
come back later to access and correct the disk pages involved unless T1 ended
with an Abort. (For the same reason, DB2 didn't leave a "Deleted Stub" record be-
hind: it simply made the row disappear in the table.) Now if another transaction,
T2 is given the job of summing all the balances in the ACCT table for the same
BRANCH while T1 is still active, T2 must somehow know enough to WAIT when it
tries to look through all the Index entry for BRANCH = 'Berkeley'; T2 cannot
proceed with the assumption that the missing row entry has been deleted, since T1
is still active and may Abort. But how will T2 know enough to WAIT to access the
index, since the row has been deleted and all index entries for the row have been
deleted as well. There seems to be nothing for data item locking to act on. Thus,
this was called a Phantom.

An early method of Phantom prevention was defined called Predicate locking.
The following paraphrase of a definitions from [BBGMOO] mirrors the discussion of
phantoms and predicate locks in [EGLT76] and in Section 7.7 of [GR97].

A Read or Write predicate lock is taken on the potential set of rows re-
trieved under the WHERE predicate of any SQL statement. The predicate lock
covers all rows that might ever satisfy the WHERE predicate, including those
already in the database and any that an Insert, Update, or Delete statement
would cause to satisfy the predicate. Two predicate locks by different
transactions conflict if at least one is an W lock (with a potential set of
rows determined by a WHERE clause of an SQL update statement2), and the two
predicates might be mutually satisfied by a common row, even when that row
does not currently exist in the database.

Two problems caused predicate locking to be abandoned by System R [CHETAL81]:

(1) determining whether two predicates are mutually satisfiable is difficult
and time-consuming; (2) two predicates may appear to conflict when, in fact,
the semantics of the data prevent any conflict, as in "PRODUCT = AIRCRAFT"
and "MANUFACTURER = ACME STATIONARY COMPANY". (The presumption here is that
a stationary company doesn't produce any aircraft.)

Indeed, it seems that predicate locking cannot avoid being pessimistic, seeing
potential conflicts where none exist, because the R and W predicate locks are
both taken in advance, on potential sets of rows, without any data-based knowl-
edge of what conflicts are actually possible. In fact two Predicates that re-
strict different columns on the same Table will always be assumed to conflict.
Thus if a Write Predicate is taken to update the balance of an ACCT row with ACC-
TID = 'A11234791' while an account holder at the bank asks for the sum of bal-
ances of the three accounts in his name, with a Read Predicate is taken on ACCT
where NAME = 'John Smith', the two transactions will be assumed to conflict. A
conflict in this case is unlikely, and when one considers the thousands of trans-
actions per hour in an average bank that will be made to WAIT because of inappro-
priately assumed conflicts, it becomes clear why Predicate locking was abandoned.

The solution to the problem of how to efficiently prevent Phantoms was first
published in papers by an IBM researcher [MOHAN90, MOHAN92], which provided
techniques known as Key-Value Locking (KVL Locking) and Index Management Locking
(IM Locking).

2 This is a generic update statement, which may be an Update or Delete in this
case. The definition is vague as to how an Insert statement with no meaningful
WHERE clause can conflict with a Select statement WHERE predicate, but we should
accept that this is intended.

-16-

The assumption underlying both KVL Locking and IM locking was that the great
proportion of Queries and Updates involve the use of indexes. When no index is
involved in one of these operations, this means that all rows of a table must be
examined by a tablescan in order to determine what rows to update or retrieve. In
that case a lock on the entire Table while the table is being scanned becomes
reasonable. When indexes are being used for lookup, however, KVL or IM locks on
index entries are taken to prevent Phantoms. We will concentrate on KVL locking
in our explanation.

KVL Locking for First Phantom Anomaly. The full protocol is quite complex,
so we will simply explain how to prevent the First Phantom Anomaly Example given
at the beginning of this Section, using a simplified KVL protocol. Here is the
history given in that Example.

H5: PR1(P1, SUM(ACCT.BAL)) I2(A IN P1) R2(BRACCT.BAL IN P2) W2(BRACCT.BAL+A.BAL)
C2 R1(BRACCT.BAL IN P2) {ERROR: WRONG TOTAL} C2

We assume there is an index on BRANCH in the ACCT table, which has multiple row
pointers for each keyvalue (i.e., multiple ACCT rows for BRANCH = 'SFBay').

The first operation in H5, PR1(P1, SUM(ACCT.BAL)), will take a KVL Read lock on
the Keyvalue for BRANCH = 'SFBay' in this index (as well as Read locks on all
rows accessed through this index). The second operation, I2(A IN P1), will at-
tempt in this simplified KVL protocol to take a Write lock on the Keyvalue for
BRANCH = 'SFBay'3, but will be unable to proceed because of a conflict with the
earlier Read lock held by T1. Thus T1 will continue uninterrupted, finding the
matching total balance in BRACCT.BAL for BRANCH = 'SFBay'. Only after this is
finished will the I2(A IN P1) operation be accomplished. In this way, the Anomaly
of the Example will be prevented.

This simple example doesn't do justice to the flexible KVL locking protocol. One
of the advantages of KVL and IM locking is that the pessimistic approach found in
Predicate Locking is avoided. Each row updated with a KVL Write lock is treated
separately in seeking conflicts, so there is no assumption that conflicting oper-
ations on predicates of different columns will necessarily conflict. A conflict
will be found if and only if one of the rows being updated would specifically in-
terfere with one of the rows being scanned by a conflicting read or being scanned
by a conflicting update. Thus there would be no conflict found between an update
to the price of "PRODUCT = AIRCRAFT" and scan of the prices of "MANUFACTURER =
ACME STATIONARY COMPANY".

KVL Locking for Second Phantom Anomaly Example. We assumed T1 deletes a
single row in the ACCT table for BRANCH = 'Berkeley' (making the row disappear in
the table). As we explained in the prior KVL Locking Example, an update such as
this will take a Write lock in the BRANCH index on the Keyvalue for BRANCH =
'Berkeley'. Following this, when another transaction, T2 is given the job of sum-
ming all the balances in the ACCT table for the same BRANCH while T1 is still
active, T2 will find it must WAIT to take a Read lock on the Keyvalue for BRANCH
= 'Berkeley' until T1 completes its work, either by Commit or Abort. Thus the
Phantom problem is solved.

3 In the non-simplified protocol an Insert such as this will take a somewhat
weaker lock, an IW (Intention to Write) lock, on BRANCH = 'SFBay'; this lock
still makes a Read Lock WAIT, but two IW locks can be held at once, so it will be
possible to Insert more than one row in Branch = 'SFBay' concurrently.

-17-

All commercial database system products that currently guard against Phantom
updates to the full extent use a variant of KVL/IM locking, although they might
not call it by that name. To simplify the nomenclature in what follows, we will
refer to this kind of locking as Phantom locking, more specifically the taking
of Phantom Write locks and Phantom Read locks. In this way we avoid using
the Predicate locking terminology for the approach that was so disappointing in
System R.

5. Isolation Levels (ILs)

The idea of Isolation Levels (ILs), first defined in ANSI SQL-92 and carried
forward to ANSI SQL-1999 and -2003 [ANSI] , is that users might want to use a
concurrency control method that will provide more concurrency, even at the
expense of imperfect isolation. The highest (most restrictive) Isolation level,
named SERIALIZABILITY, provides true serializable isolation, but lower levels
(READ COMMITTED AND REPEATABLE READ) permit transaction executions to give
anomalous results under some circumstances. It might seem strange to advocate a
concurrency control approach that permits errors, but there are ways to restrict
database application programs so that these errors do not occur (this fact is
often poorly explained, however). The paper [TAYGS], mentioned earlier in the
Optimistic Concurrency Control Section 3.3, showed there is serious loss of
throughput in locking schedulers because of transactions being blocked and having
to wait. Isolation Levels are one way to address this problem.

The concept of ANSI SQL Isolation Levels was based on a paper by IBM researchers
published in 1976 [GLPT], where the Isolation Levels were called Degrees of Con-
sistency. The idea was to be less strict about locking and thus allow more trans-
actions to run. Degrees of Isolation were defined in terms of Locking behavior,
with definition of phenomena that described the behavior, but ANSI SQL Isolation
Levels were defined in terms of phenomena, and this caused a problem.

ANSI SQL-92/-99/-2003 Phenomena Definitions of Isolation Levels (ILs)

ANSI SQL Isolation Levels [ANSI] are defined in terms of described "Phenomena"
P1, P2, and P3, which are English-language definitions of operation sequences
that it was claimed could lead to anomalous behavior.

P1 (Dirty Read). Transaction T1 modifies a data item. Another transaction T2
then reads that data item before T1 performs a COMMIT or ROLLBACK. If T1 then
performs a ROLLBACK, T2 has read a data item that was never committed and so
never really existed.

P2 (Non-Repeatable Read): Transaction T1 reads a data item. Another transaction
T2 then modifies or deletes that data item and Commits. If T1 then attempts to
reread the data item, it receives a modified value or discovers that the data
item has been deleted.

P3 (Phantom): Transaction T1 reads a set of data items satisfying some <search
condition>. Transaction T2 then creates data items that satisfy T1’s <search
condition> and Commits. If T1 then repeats its read with the same <search condi-
tion>, it gets a set of data items different from the first read.

ANSI Isolation Levels were then defined in terms of whether the various Phenomena
could occur in histories acting under these Levels, as shown in Table 1.

Table 1. ANSI SQL Isolation Levels Defined in terms of the Phenomena

Isolation Level P1 Dirty Read P2 Fuzzy Read P3 Phantom

ANSI READ UNCOMMITTED Possible Possible Possible

-18-

ANSI READ COMMITTED Not Possible Possible Possible

ANSI REPEATABLE READ Not Possible Not Possible Possible

ANSI SERIALIZABLE Not Possible Not Possible Not Possible

ANSI explained that this definition was chosen because a generic statement of
Isolation Levels was desired that didn't apply only to Locking. But in a 1995
paper [BBGMOO], the statements of these English-language Phenomena were shown to
be flawed. In addition, a new Isolation Level known as Snapshot Isolation was
exhibited, which seemed to be ANSI SERIALIZABLE by this definition but could be
shown not to be truly serializable.4

Returning to the definitions of Degrees of Consistency [GLPT], and applying these
definitions to the ANSI SQL Isolation Levels, the [BBGMOO] paper produced a lock-
ing definition of Isolation Levels that was not flawed. The idea behind this def-
inition is to weaken how locks are held in concurrency efforts. Locks aren't al-
ways taken, and even when they are, many locks are released before EOT and new
locks are taken after these locks are released. Therefore the Lower Isolation
Levels do not provide Two-Phase Locking!

We define a short-term lock to be a lock that is taken prior to the Read or
Write operation (R or W) and released immediately afterward. This is the only
alternative to long-term locks, which are held until EOT.

Then ANSI SQL-92 Isolation levels are defined as follows:

Note: Locks not
taken Long Term
are Short Term

Write locks on rows
and Predicate Write
locks are long term

Read Locks on rows,
not Predicate Read
locks are long term

Read locks on rows
and Predicate Read
locks long term

Read Uncommitted
 (Dirty Reads)

NA
 (Read Only)

No Read Locks
taken at all

No Read Locks
taken at all

Read Committed Yes No No
Repeatable Read Yes Yes No
Serializable Yes Yes Yes

Note that Phantom Write locks are taken and held long-term in all
isolation levels listed. The implications are explained below.

The following ANSI SQL statements can be given prior to a Transaction start to
set the isolation level and specify whether the Transaction will perform updates:

set isolation level {read uncommitted | read committed | repeatable
read | serializable}

set transaction {read only | read write}

It is intended that transactions of different users using different isolation
levels can concurrently access the same data.

Read Uncommitted (RU). At this Isolation Level no locks of any kind are re-
quested. Thus transactions running in Read Committed can read uncommitted data on
which Write locks are held (nothing will stop the reader if it doesn't have to
WAIT for a Read Lock). Of course the Transaction can thus access unbalanced data,
but RU is just used to get a statistical idea of the data, say when the President

4 The ANSI Definition of SERIALIZABLE was strengthened by a statement that it
must provide concurrency that is generally recognized as serializability; so this
ANSI Isolation Level is valid on that basis. All known citations of the ANSI ILs
used only the Phenomena definition, however.

-19-

of a banking firm wants to know a ballpark figure of accounts on deposit. While a
transaction running in Read Committed can return a message to the user, it is
unable to Write any Data (when it is set to run in RU, it is automatically set to
be a Read Only transaction); this reduces the possibility that an error will
creep into the database itself.

Read Committed (RC). When a transaction running in Read Committed performs a
Write, it will take long-term Write locks on both rows and predicates (holding
them until EOT), but when the transaction performs a Read, it will take short-
term Read Locks on rows and predicates (which are released immediately after per-
forming the covered operation).

An Anomaly that can arise in a transaction running in Read Committed is a serious
one: Lost Update (Example 1, Section 1.1):

H1': R1(A,100) R2(A,100) W1(A,130) C1 W2(A,140) C2

Since Read Locks are released immediately, nothing stops the later W1(A,130); the
later W2(A,140) would be stopped by the WL1(A,130), but since this is the last
operation by this transaction, C1 dropped this lock, so the value of A will be
overwritten by T2 for a value of 140, instead of both increments adding for 170.

SQL provides an alternative way to perform this logic, however. Instead of:

select A.balance into :val; -- variable val to hold initial value of A = 100
val = val + incr; -- incr variable of 30 will make val = 130
update A set balance = :val; -- set A to 130

The program can perform the update in an indivisible manner:

update A set balance = balance + :incr;

Classical History notation has no equivalent to this, but we can postulate a new
operation RW that reads a value from a data item and sets it to a newly incre-
mented value.

H1*: RW1(A,100,130) C1 RW2(A,130,170) C2

Since RW occurs uninterruptibly, there is no way for T2 to interfere with T1, and
the two transactions must occur serially in one order or another.

Of course not all updates can be done this way; there are complex cases where the
rows to be updated cannot be determined by a Boolean search condition, or where
the amount to update is not a simple function. However this approach works well
enough for most commercial application logic.

Repeatable Read (RR)5. This is the isolation level most people think is all
that is meant by Serializable guarantees of Two-Phase Locking. All data items
read and written have RLs and WLs taken and held long-term (until EOT). However,
there are no Predicate Read Locks taken in this isolation level, so the Phantom
Anomaly example at the beginning of Section 4 can occur in RR.

5 Note that this is a confusing name. IBM (which invented Degrees of Isolation
before ANSI defined Isolation Levels) has the DB2 product, in which Repeatable
Read avoids the Predicate Anomaly, unlike the ANSI RR, which doesn't.

-20-

Serializable (SR). The Serializable Isolation Level takes all locks, including
Data item and Predicate Read Locks and Write Locks and holds them long-term. Thus
all known Anomalies are avoided by transactional histories running under SR.

Phantom Write locks held Long Term in Isolation Levels RC, RR & SR

The reason that Phantom Write locks are taken in all Isolation Levels that can
perform updates (Read Uncommitted Transactions are always Read Only) is implicit
in the content of the Paragraph on KVL Locking for Second Phantom Anomaly Example
at the end of Section 5. Specifically, the Example says a transaction Reading
through Accounts in BRANCH = 'Berkeley' to sum up the account balances must WAIT
if a different, still active transaction has deleted a row (with no trace left of
the record in the database). It was shown that Phantom Write locks (KVL locking)
would guarantee this. It turns out that even the lowest Isolation level that can
perform updates (including Deletes) of single rows must take long-term Phantom
Write locks when doing so, and also must take short-term Phantom Read locks that
will detect such a Phantom Write lock before Reading and so WAIT to avoid the
Anomaly. The need for this is implicit in the meaning of the Isolation level name
"Read Committed", since a transaction acting at this isolation level retrieving
the Sum of Account balances while ignoring an outstanding delete, might get the
wrong answer, and it would be doing so because it was reading uncommitted data!

Some Transactions Do Not Require SR

We have already indicated how certain banking transactions with individual row
accesses for deposits, withdrawals, and transfers, could perform these actions
without error at Isolation Level RC by using uninterruptible RW operations. Note
too that banking applications that do not support queries of more than one row
(where the row itself is locked) and do not update any columns they query through
an index, will not be susceptible to Phantom Anomalies. Longer queries that banks
need in the course of their business must wait for quiescent transactions.

6. Snapshot Isolation.

Snapshot Isolation (or SI) is a form of concurrency control that was first
presented in a 1995 paper [BBGMOO], and has since been adopted by two major Com-
mercial Database products, Oracle and Microsoft SQL Server. We define it below.

In a DBMS System running Snapshot Isolation, the System assigns a unique times-
tamp when any transaction Ti starts, represented by Start(Ti), and another when
Ti Commits, represented by Commit(Ti). The system is always aware of all active
transactions and their Start times. The time interval [Start(Ti), Commit(Ti)] is
defined to be the Lifetime of the transaction Ti. Two transactions, Ti and Tj,
with overlapping Lifetimes, are said to be Concurrent.

A transaction Ti running under Snapshot Isolation reads all data items from a
Snapshot of data that was most recently Committed as of the time Start(Ti),
except that Ti will always reread data that Ti itself has written during its
Lifetime. If two concurrent Transactions Ti and Tj write the same data item A,
only the first one to Commit will succeed, and the second will Abort; this is
called the First Committer Wins (FCW) Rule.

How is a Snapshot defined? Conceptually, we pretend that all Committed data at
the time transaction Ti starts has a "Snapshot" taken, so the Ti can always read
data item values that were most recently committed at that time. (For a data item
A that has never been updated and Committed, we pretend a Progenitor Transaction
Committed it at System Start-up time, giving it a version named A0.)

-21-

Of course, we don't really create a Snapshot of all the data when a transaction
starts, as that would involve inefficient copying. Instead, we use the following
logic. Every time a data item D is updated by transaction Tk and the transaction
Tk Commits, we create a new Version of the data item called Dk; at the same
time, we keep older versions of D available in the database as long as they might
be referenced by some transaction. Thus we might also be keeping Dj available, a
version prior to Dk that was created by transaction Tj. Note particularly that a
data item version Dj is never actually created until Tj Commits -- up to that
time, even if Tj has already performed the logic to write the data item D, it is
only a potential new version Dj.

Now there is an order to when these versions of Data Item D were created, and the
System knows when Dk is the next version after Dj; then Dk = NEXT(Dj). Given this
definition, we say that any data item version Dj has valid-time-interval of
timestamps in [Create(Dj), Create(NEXT(Dj))), i.e., any timestamp t such that:
Create(Dj) ≤ t < Create(NEXT(Dj)). If there is no later version of D than Dj, then
the time Create(NEXT(Dj)) can simply be taken to be the present. What we mean
when we say that transaction Ti running under SI reads from a snapshot of data
that was most recently committed as of the time Start(Tj) is this: When Ti reads
the data item D, it will read Dj iff Create(Dj) ≤ Start(Ti) < Create(NEXT(Dj)).

When we speak of versions of data items, it should be understood that we refer
not only to rows but to index entries as well. When a new row version is created
and an index entry is added (to all indexes) to access that row version, we
clearly need to differentiate index entries with the same keyvalue that access
different versions of the same row. Thus the index entries themselves must have
timestamps to permit the System to follow the proper row version pointer.

Snapshot Isolation Versioned Histories and Anomaly Avoidance

Snapshot Isolation can be thought of as another Isolation Level to be added to
the ANSI Isolation Levels. This is appropriate because Snapshot Isolation does
not guarantee true serializability. However many Anomalies that occur in lower
ANSI isolation levels are avoidable with SI. We illustrate this with a number of
examples, starting with the Lost Update Anomaly that can occur in Read Committed.

H1': R1(A,100) R2(A,100) W1(A,130) C1 W2(A,140) C2

In Snapshot Isolation this Anomaly will not occur, because of the First Committer
Wins (FCW) Rule.

H1SI': R1(A0,100) R2(A0,100) W1(A1,130) C1 W2(A2,140) A2 (because of FCW; Now Retry)
R3(A1,130) W3(A3,170) C3

The Inconsistent Analysis Anomaly can occur in Read Committed; given H2',

H2': R1(A,100) R2(B,100) W2(B,50) R2(A,100) W2(A,150) R1(B,50) C1 C2

None of the Reads in H2' hold locks long enough to forestall the two Writes. But
in SI, we would see this:

H2SI': R1(A0,100) R2(B0,100) W2(B2,50) R2(A0,100) W2(A2,150) R1(B0,100) C1 C2

Since T1 and T2 are concurrent, T1 cannot see any data item versions written by
T2, so T1 sees the proper sum of A and B that existed before T2 executed.

-22-

No transaction in Snapshot Isolation will ever see an inconsistent set of data
from an intermediate transactional state.

Consider the English Language versions of the ANSI Phenomena for Isolation Lev-
els; we will see that SI avoids them all, seemingly guaranteeing Serializability.
It was this realization that gave the hint that there was a flaw in the
Phenomena, since it can be shown that SI is not truly Serializable.

P1 (Dirty Read): Transaction T1 modifies a data item. Another transaction T2
then reads that data item before T1 performs a COMMIT or ROLLBACK. If T1 then
performs a ROLLBACK, T2 has read a data item that was never committed and so
never really existed.

Clearly this can't happen with SI, since if T2 reads a data item before T1 com-
mits, T2 will read an earlier version than the one T1 wrote. There is no problem.

P2 (Non-Repeatable Read): Transaction T1 reads a data item. Another transac-
tion T2 then modifies or deletes that data item and Commits. If T1 then attempts
to reread the data item, it receives a modified value or discovers that the data
item has been deleted.

This won't happen, because if T1 rereads the same data item a second time it will
read the same version it read the first time. There is no problem.

P3 (Phantom): Transaction T1 reads a set of data items satisfying some <search
cond>. Transaction T2 then creates data items that satisfy T1’s <search cond> and
Commits. If T1 then repeats its read with the same <search cond>, it gets a set
of data items different from the first read.

As we've pointed out, SI versions all the data, including Indexes. Thus if T1 re-
peats its read, it will NOT find the new data items created by T2.

The reason the three Phenomena did not give Snapshot Isolation any trouble is
that the assumption the Phenomena took was that if a Read by T1 follows a Write
by T2, T1 will read T2's output. No thought seemed to be given to versioned
histories, a surprising lack given that the intent was to apply to concurrency
methods other than Locking. Versioned concurrency methods have been known for
quite some time (see [BHG], Chapter 5).

To illustrate Concurrency Anomalies that can occur when running under SI we
provide a few Examples..

Skew Writes SI Anomaly. Consider two data items A and B, representing
balances of two bank accounts held by husband and wife, with a joint constraint
that A + B > 0.

H6': R1(A,50) R1(B,50) R2(A,50) R2(B,50) W1(A,-40) W2(B,-40) C1 C2

Interpretation. T1 sees A = 50 and B = 50, and concludes it can withdraw 90
from A and keep a total balance over 0, while T2 concludes the same about
withdrawing 90 from B. There is no collision on updates, so First Committer Wins
doesn't prevent the problem. The values updated are "Skew", but dependent on each
other. This could not happen in a Serial schedule so it is non-serializable.

Note that we could avoid such an error as this by creating a third data item C
that materializes the constraint. Transactions must maintain C = A + B, and must
determine that the transaction leaves C ≥ 0. Then history H6' becomes:

-23-

H6'': R1(A,50) R1(B,50) R1(C,100) R2(A,50) R2(B,50) R2(C,100) W1(A,-40) W1(C,10) C1
W2(B,-40) W2(A,10) A2 (Because FCW on C update; a retry of T2 will fail
because of too small a balance.)

A second way to prevent this Anomaly in H6' is to require T1 and T2 to Read both
A and B FOR UPDATE. (There is a way to Select For Update in SQL.) Each will
actually update one data item but reads the other for update so no other
transaction will be able to change the value being depended on -- such an attempt
to change will result in FCW.

Here is a different Anomaly, also dependent on common constraints, but which has
the earmarks of a Phantom Anomaly.

Phantom SI Anomaly. We have a table named employees, a table named projects,
and a table named assignments that lists assignments for given employees to
specific projects on a given day for an integer number of hours.

employees projects assignments

eid ename prid projname eid prid date no_hrs

e01 Smith P01 Bridge e01 P01 11/22/98 2

Assume multiple rows are given. There is a constraint that SUM(no_hrs) for any
eid on any date must not exceed 8. Think how we would execute the following:

exec sql select sum(no_hrs) into :tothrs from assignments
 where eid = :eid and date = :date;

if (tothrs + newhrs <= 8)
 exec sql insert into assignment values (:eid, :prid, :date, :newhrs);

But assume, as in H6', that two concurrent transactions read this set of values,
then both insert new assignments rows with no_hrs = 2. The total no_hrs in each
case could have started at 6, and this means that the two transactions together
have caused the total no_hrs to be updated to 10.

This is not a "Skew" Write. Each insert is totally new, but depended on a sum of
no_hrs that would be different if the other insert were known to it. There is a
way to guard against this sort of Anomaly as well, by materializing the con-
straint (a common solution). We define another table: totassgn, with columns eid,
date, and tot_no_hrs. If the tot_no_hrs is kept up to date in each transaction
making a new assignment for a given eid on a given date, no pair of assignment
transactions will be able to cause the Anomaly displayed without causing a FCW
error in tot_no_hrs.

So Snapshot Isolation does NOT imply Serializability. However it is quite popular
with database practitioners, since it seems that Queries will be able to provide
consistent results without ever having to WAIT for update transactions. The query
values might be slightly old but they would be even older if WAITs were enforced,
and we can show that all Queries are reading commit-consistent data as of a re-
cent period. There is no comparable way to perform non-waiting queries in Locking
schedulers, so Snapshot Isolation has an advantage. A short article in SIGMOD
record demonstrated a subtle Anomaly that could occur with a query in Snapshot
isolation, but it is probably not a practical concern for most users, so Snapshot
Isolation is much sought after.

-24-

References

[AGRA] R. Agrawal, M. Carey, M. Livny, "Concurrency Control Performance Modeling:
Alternatives and Implications", ACM Trans. on Database Systems, 12(4), Dec, ���1987.

[ANSI] ANSI INCITS 135-1992 (R1998) Information Systems - Database Language - SQL;
INCITS/ISO/IEC 9075-2-1999 Information Technology- Database Language-SQL Part 2:
Foundation (SQL/Foundation); INCITS/ISO/IEC 9075-2-2003 (foundations part)-Infor-
mation technology - Database languages - SQL - Part 2: Foundation(SQL/Foundation)
http://webstore.ansi.org/ansidocstore/

[BACH] Charles W. Bachman, Private Communication.

[BBGMOO] H. Berenson,. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil,
"A Critique of ANSI SQL Isolation Levels," ACM SIGMOD, May 1995, pp. 1-10. URL:
http://www.cs.duke.edu/~junyang/courses/cps216-2003-spring/papers/berenson-etal-
1995.pdf

[BHG] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison Wesley, 1987. (The text is out of print but
can be downloaded from http://research.microsoft.com/pubs/ccontrol/default.htm)

[CHETAL81] D. Chamberlain et al. A History and Evaluation of System R. CACM
V24.10, pp. 632-646, Oct. 1981. (This paper is also in: Michael Stonebraker and
Joseph Hellerstein, Readings in Database Systems, Third Edition, Morgan Kaufmann
1998.)

[DEWITT] D. DeWitt et Al., "Implementation Techniques for Main Memory Database
Systems," Proc. ACM SIGMOD Conf, June 1984.

[EGLT] K. P. Eswaran, J. Gray, R. Lorie, I. Traiger, “The Notions of Consis-
tency and Predicate Locks in a Database System,” CACM V19.11, pp. 624-633, Nov.
1976.

[FOO} A. Fekete, E. O'Neil, P. O'Neil, "A Read-Only Transaction Anomaly Under
Snapshot Isolation," ACM SIGMOD Record, Vol. 33, No. 3, Sept. 2004

[GLP] J. Gray, R. Lorie, and F. Putzolu, “Granularity of Locks in a Large Shared
Data Base,” Proc. First Conf on Very Large Databases, 1975

[GLPT] J. Gray, R. Lorie, F. Putzolu, and I. Traiger, “Granularity of Locks and
Degrees of Consistency in a Shared Data Base,” Published in 1976, now available
in "Readings in Database Systems", Fourth Edition, Chapter 4, J. M. Hellerstein
and M. Stonebraker, Eds., M.I.T. Press 2005.

[GR97] Jim Gray and Andreas Reuter. "Transaction Processing: Concepts and Tech-
niques, 3rd Printing. Morgan Kaufmann, 1997.

[GRAY] Jim Gray, Private Communication.

[GRAY81] Jim Gray. "The transaction concept: Virtues and limitations" Proceedings
of the 7th International Conference on Very Large Data Bases, Sept. 1981. pages
144–154.

[GRAYPUT] J. Gray and G. F. Putzolu, "The Five-minute Rule for Trading Memory
for Disc Accesses, and the 10 Byte Rule for Trading Memory for CPU Time,"
Proceedings of SIGMOD 87, June 1987, pp. 395-398.

-25-

[LRU-K] E. O'Neil, P. O'Neil, G, Weikum, "The LRU-K Page-Replacement Algorithm
for Database Disk Buffering," ACM SIGMOD Conference, May 1993, Washington, D.C,
Proceedings pp. 296-306.

[MOHAN90] C. Mohan. Aries/KVL: A Key-Value Locking Method for Concurrency Con-
trol of Multiaction Transactions Operating on B-Tree Indexes. Proceedings of the
16th VLDB Conference, 1990, pp. 392-405.

[MOHAN92] C. Mohan. ARIES/IM: An Efficient and High Concurrency Index Management
Method Using Write-Ahead Logging. Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 1992, pp. 371-380.

[Sabre] Wikipedia: http://en.wikipedia.org/wiki/Sabre_(computer_system) Sabre
Computer System: History

[TAYGS] Y.C. Tay, R. Suri, and N. Goodman, "Locking Performance in Centralized
Databases," ACM Trans. on Database Systems 10(4), pp 415-462, December 1985.

[TPC-A,TPC-B,TPC-C] The Benchmark Handbook for Database and Transaction
Processing Systems, Second Edition: Final Chapters. Jim Gray, Editor, Morgan
Kaufmann 1993. http://www.sigmod.org/dblp/db/books/collections/gray93.html

