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A method is presented for permitt.ing record updates by long-lived transactions without forbidding 
simultaneous access by other users to records modified. Earlier methods presented separately by 
Gawlick and Reuter are comparable but concentrate on “hot-spot” situations, where even short 
transactions cannot lock frequently accessed fields without causing bottlenecks. The Escrow Method 
offered here is designed to support nonblocking record updates by transactions that are “long lived” 
and thus require long periods to complete. Recoverability of intermediate results prior to commit 
thus becomes a design goal, so that updates as of a given time can be guaranteed against memory or 
media failure while still retaining the prerogative to abort. This guarantee basically completes phase 
one of a two-phase commit, and several advantages result: (1) As with Gawlick’s and Reuter’s 
methods, high-concurrency items in the database will not act as a bottleneck; (2) transaction commit 
of different updates can be performed asynchronously, allowing natural distributed transactions; 
indeed, distributed transactions in the presence of delayed messages or occasional line disconnection 
become feasible in a way that we argue will tie up minimal resources for the purpose intended; and 
(3) it becomes natural to allow for human interaction in the middle of a transaction without loss of 
concurrent access or any special difficulty for the application programmer. The Escrow Method, like 
Gawlick’s Fast Path and Reuter’s Method, requires the database system to be an “expert” about the 
type of transactional updates performed, most commonly updates involving incremental changes to 
aggregate quantities. However, the Escrow Method is extendable to other types of updates. 

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management-concur- 
rency; deadlocks; H.2.2 [Database Management]: Physical Design--deadlock avoidance; recovery 
and restart; H.2.4 [Database Management]: Systems--distributed systems; transaction processing 

General Terms: Algorithms, Design, Performance, Theory 

Additional Key Words and Phrases: Escrow transactions, hot spots, long-lived transactions, nested 
transactions, two-phase commit 

1. INTRODUCTION 

This section sketches the general background of systems for assuring transac- 
tional consistency in a multiuser environment, including salient details of two 
methods supporting high-speed transaction updates that do not forbid record 
access by concurrent transactions: Gawlick’s Fast Path and Reuter’s Method. It 
then introduces the basic idea of the Escrow Method, which has many similarities 
with the two earlier techniques. In Section 2 we present a detailed architecture 
to support the Escrow Method, applied to aggregate field quantities. In Sec- 
tion 3 we look at several areas where the benefits of the Escrow Method can best 
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be realized, notably, distributed transactions and human interaction during a 
transaction. Conclusions are presented in Section 4. 

1 .l General Transactional Methods 

The concept of “transaction” has had important applications to the needs of 
business where a set of record updates must succeed all at once or not at all, as 
with a transfer of money between two account records. Transactions serve a dual 
purpose in that they represent logically indivisible sets of record access (reads or 
updates) both for purposes of concurrency and recovery. These purposes are 
theoretically separable in the following senses: (1) In the absence of concurrent 
users, we would still wish to provide for recovery of logical sets of record updates 
in case of memory or media loss; and (2) if we postulate a system with absolutely 
dependable hardware so that recovery becomes superfluous, we would still wish 
to exclude multiple users from simultaneous access to a record field quantity in 
order to avoid the well-known “lost update problem.” 

Although most real-life transactional systems internally dovetail the methods 
of recovery and concurrency so that they become almost inextricable, it is still 
good practice to separate the two concepts as much as possible in theory. Without 
such a modular approach, it becomes difficult to keep a sufficiently large set of 
concepts in mind at once; we need these categories to structure any attempts at 
rigorous analysis when new designs for transactions are proposed. As will be 
seen, the Escrow Method adds a new dimension of recoverability to a type of 
high-concurrency transactional method that has been around for some time, 
resulting in a technique with valuable new applications. 

The most common solution to the problem of lost updates with concurrent 
transactions has been to lock records. The first transaction to update a record 
locks it so that another transaction cannot update it concurrently; the lock is 
held until the first transaction commits (concludes successfully) or aborts (con- 
cludes unsuccessfully), but in either case the database is left in a consistent audit- 
balanced state (where we assume that the transaction itself did not through 
some error introduce an inconsistency). For a thorough discussion of locking 
and other well-known methods of concurrency control such as time-stamping, 
see [1,4, 5, 111. 

1.2 The Fast Path Method of Concurrency Control 

A method of concurrency control that is less well known than locking is the one 
used in Main Storage Databases in IMS/VS Fast Path, as presented in 
[l]-[3] and [7]. Although the theory for this feature was developed in 1974 and 
1975, architectural details have not been available in published form until 
recently; furthermore, the approach itself requires extra sophistication in that it 
makes special distinctions in data types to speed up a certain kind of transaction 
involving “hot-spot” aggregate fields. It is for these reasons that Fast Path 
Concurrency has not received as much attention as some other methods that are 
perhaps less in actual use. For researchers interested in high-speed transactions, 
however, this method is quite familiar. 

Fast Path Concurrency deals with transactional access to aggregate field 
quantities, such as “quantity on hand” or “total cash received,” where the type 
of update envisioned nearly always has the purpose of performing an increment 
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or decrement to the quantity. It is further assumed that these quantities are 
accessed for update of this type with great frequency, so that these fields become 
“hot spots” and represent a major bottleneck to the transaction rate if a normal 
record-locking protocol is followed. It is therefore important to permit access to 
the field quantity without excluding other transactions from enjoying the same 
access, except for the shortest possible time; holding a lock on a quantity for the 
length of a transaction, even one that lasts just a second or so, is unacceptable. 

Fast Path allows the programmer to make special requests to VERIFY that an 
attribute (field quantity) bears some relation (c, I, =, 2, >) to a known value, 
and to MODIFY the field quantity by a constant amount (or to a different 
constant value). Thus, if the field QOH (quantity on hand) were constrained to 
remain nonnegative by the application, we would see a great many pieces of code 
performing the following logical steps: 

VERIFY QOH r CONST 
MODIFY QOH := QOH - CONST 

Fast Path validates the VERIFY requests at the time the logic is executed and 
again during commit processing. The MODIFY requests, however, are not ac- 
tually executed until commit time, after all VERIFY requests have once again 
been validated. The first test gives the application program a chance to take an 
alternative branch if the QOH field does not meet the VERIFY criterion, while 
the second test at commit time results in an abort if it fails. When the first 
VERIFY request is processed during in-line logic, no guarantee is given that the 
later commit processing will be successful, since the quantity is not actually 
updated until the transaction is ending. This is not possible without keeping 
some running idea of what values the quantity might take on if various outstand- 
ing MODIFY commands eventually succeed, presumably such a running value 
must be kept by making updates associated with the record when the MODIFY 
request is issued. Regarding this, Gawlick points out [2] that the idea of modifying 
a record when the MODIFY request is issued “creates problems for asynchronous 
image copies, and, more seriously, it does not allow retrieval of a consistent 
picture of the whole data base, unless one is willing to deadlock and/or delay the 
processing of many transactions.” We will refer again to this comment later, 

Note that the whole idea of Fast Path transactions of this sort is that the 
system becomes an “expert” on the intention of the program. At the time of 
commit, during a very short time window, the system is able to “replay” the 
series of VERIFY requests generated by the program logic, and be sure that the 
situation is acceptable so that the corresponding MODIFY commands can be 
applied. The real-time tests of the VERIFY requests during the program logic 
are simply to give confidence that this “optimistic” transaction will eventually 
succeed, the real-time tests could be omitted without loss of rigor. 

1.3 Reuter’s Transactional Method 

In [9], Reuter presents a slightly different paradigm for transactions on aggregate 
quantity fields, meant as an expansion on the Fast Path approach. The basic 
idea is that the aggregate field quantity QOH is subject to TEST & MODIFY 
requests as in Fast Path. (The TEST is analogous to the Fast Path VERIFY 
and is immediately followed by the corresponding MODIFY request.) The 
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MODIFY request actually makes immediate changes to the field quantity in the 
following sense. 

At any time, we only expect to know a range of values within which the 
quantity falls, for example, A 5 QOH 5 B for some constants A and B. Then a 
TEST criterion is TRUE if the quantity in question must obey the criterion 
(e.g., the criterion is C I QOH, and given the range A 5 QOH I B, we also 
have C I A), it is FALSE if the quantity in question cannot obey the criterion 
(e.g., as before, only now B < C), and otherwise the criterion is POSSIBLY 
TRUE (e.g., as before, only now A < C 5 B). A successful MODIFY request has 
the effect of expanding the range of uncertainty in which the quantity must fall; 
the range for the values of the quantity resulting from a MODIFY corresponds 
to the realization that the transaction that has requested this MODIFY may 
succeed or may fail: Accordingly, the incremental update may or may not occur, 
and this is the range of uncertainty. At a later time, when a commit or an abort 
eventually occurs, the range is reduced in the appropriate fashion, until the 
quantity has a single value with no uncertainty when there are no transactions 
outstanding that have modified the quantity. The detailed handling of the range 
for the quantity is presented later in Section 2.2 dealing with Escrow transactions 
for aggregate fields and is quite analogous to the scheme offered by Reuter. 

The important new functionality offered by Reuter’s Method over Fast Path 
is that Reuter attempts to provide a gzmrantee in real time that a TEST & 
MODIFY request that succeeds will never be denied during later commit 
processing. As will be seen, this is a crucial property for long-lived transactions 
that are supported by the Escrow Method, and an attempt will be made to journal 
this guarantee for later recovery. As a result, we will have completed phase 1 of 
a two-phase commit and will be able to UNDO or REDO the update at any future 
time, to use the notation of Gray [4]. 

In Reuter’s paper, the question of recovery is not fully dealt with. This is 
undoubtedly due to a desire not to overburden the exposition, since Reuter clearly 
had extensive ideas in this area as a coauthor of a framework to classify recovery 
schemes [6]. As mentioned at the beginning, it is perfectly reasonable that this 
paper would concentrate on concurrency to the exclusion of recovery. The 
difficulty is that it is not totally clear without careful treatment how recovery is 
to be added to this scheme; it is this difficulty to which Gawlick was alluding in 
the earlier quoted statement. It turns out that the analysis that gives recovery of 
completed transactions has an important dividend, in that it suggests how 
recoverability of intermediate results for long-lived transactions can be handled. 

To see some of the difficulty of recovery with this method, consider what would 
happen if a memory loss were suffered following a disk write of a field with an 
uncertain “range” of values. How would the true value for the field after a crash 
be determined, when the transactions that were in progress have lost their place 
in their trains of logic? 

There seems to be a problem of synchronization here: the range of a field 
quantity that has been introduced by several transaction updates should not be 
written to disk without other information that the recovery manager can use to 
back out incomplete transaction updates on recovery. Note that several trans- 
actions may be involved in updating the current field, each with its own contri- 
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bution to the range found for the field. Without knowing exactly what these 
contributions are, it is impossible to recapture the true value of the field in a 
later recovery, when some subset of the transactions have committed and the 
remainder must be backed out. Journaling information after every field update 
to achieve this recovery information is clearly to be avoided for efficiency reasons. 
The Escrow Method proposed here handles the stated need in a natural manner. 
To do this, it creates an entirely new entity, which is called an Escrow journal. 

1.4 The General Escrow Transactional Method 

In its full generality, the Escrow Method is not restricted to transactions involving 
aggregate fields, although this is the major example that will be offered here. The 
basic ideas underlying Escrow transactions are the following: 

(1) Some field quantities and a specified class of tests and updates for these 
quantities are designated to be of “Escrow type.” These might be the aggregate 
field quantities encountered above, the tests that require range restrictions, and 
the class of updates involving all positive or negative incremental changes; 
basically, these are the building blocks for a type of transaction for which the 
system is willing to take responsibility for being an “expert” in the sense indicated 
earlier. 

(2) When any attempt is made by a transaction to perform an “Escrow-type 
update” to some field, the system first uses its “expert” knowledge to guarantee 
that the update can be performed at any time in the future, and in any OFdeF with 
any subset of updates for which this guarantee has already been made. If a test is 
a necessary condition for the update, then it is considered a part of the update, 
and the guarantee must include assurance for the test as well, that it will be valid 
after any possible subset of already guaranteed updates have been applied, and 
of course that adding the current update to the set guaranteed will not make the 
test for some other update invalid in some possible schedule of commits. 

What we are doing here is assuring that with these guarantees in place we can 
still UNDO any transaction while maintaining other guarantees, and that no 
conflicts in serializability can arise between different fields since all updates can 
be committed in any order. The algorithm used by the system to do this is 
immaterial, but the algorithm may certainly make use of ESCFOW journals for the 
affected field, explained in the next paragraph. 

(3) After the guarantee above is made, an Escrow journal is created for this 
request by the system. The Escrow journal contains at least the following 
information: 

(1.1) Escrow journal contents 
Transaction ID making this request 
Escrow pool ID (e.g., positive or negative increment) 
Parameters of the request (e.g., test criteria and incremental change) 
Field being updated (implicit by placement of the journal) 

Additional system-accessible or application-accessible information may be 
included in the Escrow journals as necessary to the algorithm used. 
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These Escrow journals, as they are created, are placed in a data structure that 
is considered to be a logical extension of the field being updated. Thus, if an 
Escrow field being written to disk is referred to, it should be understood that all 
active Escrow journals-are included. It is not assumed that an Escrow journal is 
automatically placed on disk when the update occurs, but simply that it is placed 
in memory in (logical) proximity to the field of which it is a logical extension, so 
it will go out to stable storage with the field in question. The information 
contained in the extended logical field should be exactly the information needed 
to perform recovery. It will turn out that it is necessary to include, with the 
extended logical field, a time stamp that will allow the system to put in sequence 
updates of the field to stable storage and transaction commit logs that will be 
found on stable storage during recovery. In addition, whatever other information 
is held by the system to aid in determining legal requests, such as the range of 
the field value, may also be considered part of the logical extension of the field. 

(4) When a transaction that has made a request to update a given field 
eventually commits or aborts, the associated Escrow journal is applied as an 
update or discarded, as appropriate. Whichever action is performed, the logical 
field is updated appropriately, and the Escrow journal for that transaction is 
deleted from the logical field. (The Escrow journal, with the name of the field 
affected, should now be an appropriate object to log the success of the transaction 
in the event of a commit.) Note that, as the Escrow journals are applied, it is 
still the case that any subset of the Escrow journals remaining should be applicable 
in any order. In the case where several options are open for how an update is to 
be applied, the system must choose the one that makes possible all remaining 
subsets in any order. 

In the following section, a detailed example of the Escrow Method will be 
considered, which associates with an aggregate field a data structure, range, and 
set of actions the system should take under various circumstances. Most of these 
details are matters of efficiency only. It is clear that, if a set of Escrow journals 
and a starting quantity for a certain field is given, it can be determined whether 
each new request can be accommodated with any subset of the existing journals 
in any order. If necessary, all possible orders of applying journals (or not applying 
them when an abort occurs) can be attempted. Note that in this case the concept 
of a range of values allows one to determine applicability of the journals in a 
more efficient manner because of commutativity of addition, but the abstract 
theory of Escrow journals does not require such an efficient algorithm! Any 
method will serve that can take update requests and make the guarantee of 
Paragraph (2) above. Indeed, we are willing to go through quite a bit of calculation 
to permit multiuser access to fields undergoing Escrow update, and we should 
not blind ourselves to solutions that at first appear “inefficient.” Some examples 
are given in Section 4 to show how this Generalized Escrow Method can be useful 
in practice. 

2. ESCROW TRANSACTIONS FOR AGGREGATE FIELDS 

The term “Escrow journal” was originally chosen for its connotation in banking, 
where a portion of an account balance is taken to one side and held for some 
particular purpose. In its expanded meaning, the Escrow journal acts as a 
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representative of the guarantee that has been extended by the system that the 
update requested may be committed (or aborted) at any future time. Now a 
detailed example of the Escrow Method in the case of aggregate fields will be 
given. It is quite similar in some ways to Fast Path and Reuter’s Method. 

In Section 2.1 a notation for a programmer interface to use the Escrow Method 
on aggregate fields is introduced, and some of the issues that arise are investi- 
gated. In Section 2.2 details of some of the system design and an example of how 
changes occur within the extended logical field as Escrow requests are made and 
transactions commit and abort are given. In Section 2.3 it will be shown how 
recovery can be performed under the Escrow Method; 

2.1 Programmer Interface for Escrow Method on Aggregate Fields 

What is needed now is a new type of system request that an application 
programmer can make to put a quantity “in Escrow,” as well as a way to use the 
quantity for requirements of the transaction as these become apparent. 

Example (2.1) An ESCROW request: 
IF ESCROW(field=Fl, quantity=Cl, test=(condition), recover=BOOL) 
THEN continue with normal processing 
ELSE perform exception handling (such as abort) 

The ESCROW request above is a system function that asks that a quantity 
Cl (which.for the moment is assumed to be nonnegative) of the field quantity 
Fl be set aside in Escrow for later use by the transaction. The caller can specify 
in the “test=(condition)” parameter some condition that must be satisfied by the 
quantity in the field Fl after the quantity Cl is removed. This condition must 
hold if the return from the ESCROW request is to be successful (TRUE). If the 
ESCROW request does not result in a TRUE return, the program will perform 
some sort of exception-handling logic, such as aborting the transaction or looking 
at another field for some “replacement” for this missing quantity. If the 
test=(condition) turns out to be true, however, and taking the quantity Cl from 
the field Fl will not invalidate the test of some earlier successful ESCROW 
request of a transaction that is still live, the system will have taken the quantity 
Cl of the field Fl into an “Escrow pool,” and the programmer will be permitted 
to use a second system function of the form 

USE(field=Fl,quantity=Kl) 

where the quantity Kl now will be taken from the pool of Escrow items from the 
field Fl set aside by earlier ESCROW requests. The sum of quantities from a 
field that have been put in Escrow cannot be exceeded by the sum of the-quantities 
used. This would be a logic er5or in the program and would be trapped by the 
system at the time of the offending USE call. When the transaction in process 
ultimately commits, all of each quantity that has been put in Escrow but not 
used will be returned to the appropriate field quantity. Of course, if the transac- 
tion aborts, the entire Escrowed quantity will be returned. 

The “recover=BOOL” parameter in the ESCROW request allows the program- 
mer, in the case of “recover=YES,” to specify that the current Escrow pool state 
should be recovered in the event of later memory or media failure, with the 
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transaction restarted. This is not a commit action, since after recovery the 
program may still decide to abort the Escrow changes made so far. The purpose 
is to provide a way for the program to keep faith with outside agents (such as 
cohort processes in distributed transactions) that may be counting on the Escrow 
guarantee of eventual commit. Of course in the case of “recover=NO,” the request 
will be rolled back in the event of a crash, the normal fate of an update of an 
incomplete transaction during recovery. 

It is the responsibility of the program to recover its internal logical state and 
perform all appropriate USE requests when a recoverable ESCROW request is 
issued. Some mechanism to aid the programmer in this recovery is needed, but 
it is not proposed here. However, the value of an ESCROW request with a 
“recover=YES” parameter is that it will leave no concurrency window during 
recovery where a needed resource can be used up by another process. 

The USE function is a convenience to the programmer to permit a certain 
sloppiness in ESCROW requests; it does not actually have any connection with 
the concurrency control of the system. Nevertheless, it is useful in clarifying the 
options of the programmer. 

Thus, to transfer a nonnegative quantity C of some item from QOH while 
keeping the QOH nonnegative, we could give the following ESCROW request: 

IF ESCROW(field=QOH,quantity=C,test=(QOH L O),recover=NO) 
THEN USE(tield=QOH,quantity=C) (continue processing . . .) 
ELSE ABORT 

Recall that the test=(QOH I 0) takes place as if C were already subtracted. 
The effect of these combined ESCROW and USE requests is really quite simple. 
It should be clear that this rather complicated form is used only because of the 
considerations of multiuser concurrency and recovery that are present. The 
following is much preferred: 

IF (QOH - C L 0) 
THEN QOH := QOH - C 
ELSE ABORT 

The general form that the Escrow test=(condition) can take is subject to rather 
complex restrictions; in this paper it is restricted to the form (Fl 2 C2). Note 
too that a negative incremental quantity can be put in Escrow for later USE of 
negative quantities. These negative quantities can be thought of, for example, as 
returns of stock to a warehouse where only some limited amount of stock can be 
housed, and empty places must be reserved; there is an upper bound on final 
stock, and thus the condition to be checked is (Fl 5 C3). Of course, after a 
successful commit following a USE of a negative quantity, the field quantity will 
be increased. In the discussion that follows, the case of negative quantities is 
usually neglected in pursuing simplicity of explanation. The case of negative 
Escrow quantities is parallel to the case of positive quantities. It is also distinct, 
in that separate Escrow pools are required for positive and negative quantities of 
the same field. It is possible that other named Escrow pools may be useful to the 
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programmer under various circumstances; the defining characteristic of these 
pools is that each pool is conceptually distinct and treated separately during 
recovery. 

Note that a user may wish to Escrow more of some quantity than will be used 
immediately, since later logic may dictate that more be used (think of taking an 
advance on travel expenses). It is also possible to make a second Escrow call in 
the same transaction (think of requesting a second advance). 

2.2 Internal Design for the Escrow Method on Aggregate Fields 

Analogously to the terminology of [9], every Escrow ‘journaled (aggregate) field 
A has three quantities representing it at any time: 

val(A): The value A will assume if all ESCROW requests to A of currently 
live transactions are applied without any aborts. 
inf(A): The lowest value A might assume from any combination of commits 
and aborts of currently live transactions that have performed ESCROW 
requests on this field. 
sup(A): The highest value A might assume from any combination of commits 
and aborts of currently live transactions that have performed ESCROW 
requests on this field. 

In these definitions ESCROW requests are included for negative quantities as 
well as positive ones; indeed it is only by attempting to Escrow a negative 
quantity of the field A that inf(A) could be less than val(A). Note that only the 
ESCROW requests defined in Section 2.1 will make an actual change in the field 
quantities, inf(A), val(A), and sup(A). The USE request calls only on some 
quantity of an item that has already been placed in Escrow. For short, the 
ESCROW request asks for a “change to the field.” No other action the user takes 
can change the field (except a final abort or commit). 

If no transactions are currently live (exist uncommitted) that have requested 
a change to the field A, then inf(A) = val(A) = sup(A). From the definition, it is 
clearly the case that inf(A) I val(A) I sup(A). The need for the quantity val(A) 
as will be seen later is questionable, but it can be thought of as the most likely 
value of A, which may be of some value to the application programmer in certain 
edge cases. An Escrow journaled field can be thought of as existing physically 
with three values in a record. However, any attempt to access the three values 
inf(A), val(A), and sup(A) as normal fields in a user work area will fail; tests on 
these values can be performed only through an ESCROW request, possibly with 
a “quantity=O” parameter value. For example: 

IF ESCROW(field=A,quantity=O,test=(sup(A) 2 lOO),recover=NO) . . , 

Although an application program can specifically access any one of these three 
values within an ESCROW request, reference to inf(A), sup(A), and val(A) 
should be made only in tests and should not appear in ESCROW requests with 
a nonzero quantity. Standard usage should be to test the quantity A itself, and 
the system will follow a conservative policy when the quantity A is referenced. 
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Consider the following request: 

(2.1) 

IF ESCROW(field=A,quantity=C,test=(A 2 O),recover=NO) 
THEN USE(field=A,quantity=C) . . . 
ELSE . . . 

The system considers the condition test=(A 2 0) to be TRUE only if in fact, 
after the quantity C has been taken from A and placed in Escrow, (inf(A) L 0); 
that is, the smallest value A might attain still exceeds 0. This is the conservative 
assumption. If the condition were instead test=(A I D), then the conservative 
policy would be to return TRUE only if (sup(A) I D). In every case the 
conservative policy uses the value @f(A) or sup(A), which guarantees all eventual 
possible values will make the condition true. Note particularly that this policy 
makes the resultant THEN and ELSE clauses of the ESCROW request asym- 
metric: If test=(A > 0) fails, this is not the same as having test=(A < 0) succeed! 

If the condition in the ESCROW request of (2.1) above is TRUE, then the 
assignment A := A - C is performed by changing the values of inf(A), sup(A), 
and val(A) in accordance with their definitions, assuming that this assignment 
will not invalidate another inequality condition for this field imposed by an 
earlier live transaction. The need to maintain the consistency of conditions for 
earlier live transactions was mentioned earlier, and details appear below. 

2.2.1 Definitions. What follows is a definition of how inf, val, and sup quan- 
tities of a field are affected by ESCROW requests and transactional commits 
and aborts. In these definitions, unless otherwise stated, the value C is assumed 
to be positive. The definitions also give an account of how Escrow journals are 
created and deleted as the transaction proceeds. (See (1.1) above for the general 
layout of the Escrow journal. A detailed example of field structure changes during 
the life of several transactions is given directly after the definitions.) 

(1) When ESCROW (field=A,quantity=C, . . .) is requested successfully, the 
system sets inf(A) := inf(A) - C and val(A) := val(A) - C. (If the quantity 
C were negative, then inf(A) would not be affected, and we would have 
sup(A) := sup(A) - C.) An Escrow journal is created and placed in an extended 
logical field data structure for the field A; this will inform the system what to do 
if a back out or commit is later performed. Note in passing that the value C must 
be a constant as seen by the Escrow system, but may well be a calculated variable 
value to the program logic. 

(2) As later USE calls are made against the quantity placed in Escrow by the 
transaction, the Escrow journal is accessed to check that the quantity is available 
and to record the quantity remaining in Escrow that has been unused. Additional 
ESCROW calls (with a positive quantity) may also access this journal and add 
to the quantity remaining in Escrow. The logical field Escrow journal has an 
entry to keep track of the quantity USEd as well as the total quantity taken into 
Escrow by foregoing ESCROW requests. Separate Escrow journals are main- 
tained for at least the two Escrow pools that must exist for every transaction 
and field where positive and negative quantities are placed in Escrow, and may 
exist for other named pools as well. 
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(3) If the transaction that has made this request eventually commits, the Escrow 
journal in the extended logical field is accessed, and the unused quantity K 
remaining in Escrow (a nonnegative quantity) is placed back in the field by 
setting inf(A) := inf(A) + K and val(A) := val(A ) + K; then the total quantity 
placed in Escrow and used, U, is reflected by setting sup(A) := sup(A) - U. In 
the case where a negative Escrow quantity was requested, reverse the roles above 
of inf(A) and sup(A). The result should set inf(A) = val(A) = sup(A) again if no 
other simultaneous transactions were in operation on this field. The Escrow 
journal is deleted from the data structure of the extended logical field, and a 
logical copy of the Escrow journal is written with a commit log in case recovery 
is later required. In the commit log, the field affected in the Escrow journal is 
explicitly named, the transaction number is written once in the header, and the 
quantity named is the quantity U actually used. The commit log also contains a 
time stamp for sequencing with writes of extended logical fields to stable storage. 

(4) If the transaction that has made this request eventually aborts, the changes 
made when the request was first applied are reversed. The Escrow journal in the 
extended logical field informs the system it should set inf(A) := inf(A) + C and 
val(A ) := val(A) + C (again, this is the case where C is positive). Following this, 
the Escrow journal is deleted. 

2.2.2 Example. In the example that follows is a time line of ESCROW Re- 
quests, commits, and aborts. The example is simplified in that the commit logs 
that are written are not detailed, so coverage is limited to changes in the extended 
field. Recall that the extended field must contain the inf, val, and sup values for 
the field, a time stamp, and all Escrow journals for updates to the field. A time 
stamp is assumed that is incremented for every successful ESCROW request, 
commit, or abort, although of course other time-stamp schemes are possible. 
Transaction ID numbers are assigned sequentially at transaction start-up. 

We start with a layout for the Escrow journal: 

LAYOUT OF ESCROW JOURNAL 
TRANSACTION ID, POOL ID 
TEST CRITERIA: LO, HI 
ESCROWED = E I USED = U 

The pool ID value is either “P" or “N” according to whether the request 
creating the current journal is for a positive or negative quantity. Of course this 
is determined from the sign of the Escrowed quantity, but since other named 
pools might be desired, the explicit notation is adopted. The LO and HI values 
specify the range the field is restricted to based on the Escrow test(s) used; note 
that quantities --cx) and 00 for LO and HI indicate no restriction. 

A time line follows, detailing structure changes to the extended logical field 
QOH, starting with inf = val = sup when no transactions are outstanding. 

LOGICAL FIELD QOH 
INF VAL SUP 

pF!izsq 

Note that quantities --OO and CZJ for LO and HI indicate no restriction. 
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TRANSACTION 1 MAKES REQUEST: 
ESCROW(field=QOH,quantity=5O,test=(QOH L O),recover=NO) 
USE(field=QOH,quantity=50) 

INF VAL SUP 

TRANS #l, P: P 
ESCROW JOURNAL 1 

TRANSACTION 2 MAKES REQUEST: 
ESCROW(field=QOH,quantity=50,test=(QOH 2 20),recover=NO) 
* REQUEST FAILS, SINCE RESULT OF SUBTRACTING ANOTHER 50 
* WOULD BE INF(QOH) = 0, SO test=(QOH I 20) IS FALSE 

TRANSACTION 2 MAKES REQUEST: 
ESCROW(field=QOH,quantity=20,test=(QOH L 30),recover=NO) 
USE(field=QOH,quantity=20) 

INF VAL SUP 

30 ( 30 1 100 

TIME STAMP = 2 

TRANSACTION 1 MAKES REQUEST: 

ESCROW JOURNAL 1 

ESCROW JOURNAL 2 

TRANS #l, P: P 
LO=O, HI=w 
E=50, U=50 
TRANS #2, P: P 
LO=30, HI=oo 
E=20. U=20 

ESCROW(field=QOH,quantity=20,test=(QOH z O),recover=NO) 
* REQUEST FAILS, SINCE RESULT OF SUBTRACTING ANOTHER 20 
* WOULD BE INF(QOH) = 10, SO (QOH L 30) OF SECOND ESCROW 
* JOURNAL WOULD FAIL 

TRANSACTION 3 MAKES REQUEST: 
ESCROW(field=QOH,quantity=-30,test=(QOH I 200),recover=NO) 
* NEGATIVE QUANTITY CHANGES VALUE OF SUP, NOT INF 
USE(field=QOH,quantity=-30) 
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INF VAL SUP 

30 60 130 

TIME STAMP = 3 

TRANS #l, P: P 
ESCROW JOURNAL 1 LO=O, HI=oo 

E=50, u=50 

TRANS #2, P: P 
ESCROW JOURNAL 2 LO=30, HI=w 

E=20, U=20 

TRANS #3, P: N 
ESCROW JOURNAL 3 LO=-co, HI=200 

E= -30, u = -30 

TRANSACTION 1 COMMITS 

INF VAL SUP 

30 ) 60 ) 80 

TIME STAMP = 4 

TRANS #2, P: P 
ESCROW JOURNAL 1 LO=30, HI=m 

E=20, U=20 

TRANS #3, P: N 
ESCROW JOURNAL 2 LO=-m, HI=200 

(E=-30, U=-30 

TRANSACTION 2 ABORTS 

INF VAL SUP 

50 ( 80 80 

pyy 
ESCROW JOURNAL 2 LO=-m, HI=200 

TRANSACTION 3 COMMITS 

INF VAL SUP 

2.2.3 Maintaining Earlier Test Conditions. As noted in [9], a difficulty arises 
if the test condition of an earlier but still live transaction is made invalid by a 
modification (incremental change) of a later transaction. The problem, of course, 
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is that the earlier ESCROW request can no longer be commuted with the later 
one, and so a nonserializable schedule may be created (as soon as one transaction 
must precede another, it is easy to construct a deadlock involving two Escrow 
fields). The solution to this, as indicated above, is to disallow an ESCROW 
request that invalidates the test condition of an earlier transaction. (Note 
however that it is not meant to constrain the values of a field based on ESCROW 
requests with test conditions on inf(A), val(A), or sup(A). These tests are only 
for the information of the programmer in determining what to do if a normal 
ESCROW request on a quantity A fails. They are not guaranteed for any length 
of time thereafter.) 

If the Escrow field A has Escrow journals for outstanding transactions Tl, 
T2, . . . , TJ, . . . , TN, denote by (low(J, A), high(J, A)) the interval to which A 
is restricted in order to keep the test for transaction J valid. For example, the 
condition “test=(A 2: 12)” would result in the interval (low(J, A), high(J, A)) 
equal to (12, infinity); more tests by that same transaction might further restrict 
the interval. Now, while the transactions Tl through TN remain live, we want 
inf(A), the lowest value that A could take on after any set of updates, to be 
bounded below by MAX(low(J, A)) where J runs from 1 to N (we denote this by 
low(A) for short). That is, the validity of the most constraining lower bound, 
MAX(low(J, A)) is to be maintained. Similarly we want sup(A) to be bounded 
above by MIN(high(J, A)) where J = 1 . . . N, or high(A). These “constraints” 
resulting from successful ESCROW requests will cause new ESCROW requests 
to fail, even when they have a successful test=(condition) of their own, if the 
Escrow change to the field in question would cause an earlier Escrow test to fail. 

Note carefully that the condition of an ESCROW request is only later main- 
tained as a constraint if the request condition was successful; the duration of the 
constraint is the duration of the transaction that contained that ESCROW 
request. 

To implement these (low(J, A), high (J, A)) constraints, we can maintain a 
sort order using some sort of balanced tree scheme on the low’ values and 
separately for the high values of the Escrow journals associated with the field. 
When any new ESCROW request is made, the value low(A) can be read by direct 
access off the low tree, the largest value on the low tree; similarly, the value 
high(A) can be read off the high tree. When an ESCROW request is allowed, the 
test=(condition) of the request is translated to a finite lower or upper bound and 
is placed in the appropriate tree. When a transaction commits or aborts, its 
Escrow journal will be removed from the extended logical field, and associated 
values from the low value and high value trees can be simultaneously deleted. 
Naturally, a tree data structure of this kind is only appropriate if the design 
envisions numerous Escrow journals outstanding at the same time. 

Note that, for many applications, the low(A) and high(A) constraints are better 
set by the Database Administrator (DBA) since the logical constraints are 
common to all applications and a single value to test will avoid possible program 
errors. For example, a QOH for some commodity may not fall below zero; at the 
same time, the aggregate QOH for some record should not (through vendor orders 
and order returns) go above the quantity MAX-QOH that can be stored in the 
relevant warehouse. There is a real question as to whether ad hoc tests should 
be allowed by individual program requests: the implementation becomes more 
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complex, and since individual constraints lose their effect when the transactions 
commit or abort, there will be no long-lived global constraint on any field. This 
seems like an unusual state of affairs, and the flexibility hardly seems worth it. 
Even if the user freedom to further test an Escrow field were allowed, some 
method of placing global high and low values should also be present so that a 
new program with (inappropriate) weak constraints cannot damage the database 
of a large inventory system. 

2.3 Recovery of Escrow Updates of Aggregate Fields 

When a transaction commits, all the Escrow journals created for the transaction 
are taken out of their extended logical fields and written to a transaction commit 
log on stable storage, together with a time stamp for the time when the transaction 
has completed. When the write is complete, the commit has been performed. In 
this section it is demonstrated how recovery from memory or media failure can 
be achieved for the Escrow Method in the case of aggregate fields. Note first that 
media recovery is easily handled: the archive copy of the database is put in place, 
and commit logs are applied up through the last one written. This is the same 
method used with classical transactional schemes. Special care is needed to 
recover intermediate results requested with the “recover=YES” option, and the 
prescription below must be followed for memory crash recovery in that case. 
Redundancy will be specified in writing extended logical fields to stable storage 
so that a copy can be found of this needed structure even in the case of media 
failure. 

In what follows, a method is demonstrated for recovering from a memory crash 
to recapture completed transactions and roll back transactions that were incom- 
plete at the time of failure; obviously, loss of memory could be treated in the 
same way that media failure is, but it can be hoped that a much less time- 
consuming method than applying all logs written since the last archive can be 
found. After treating completed transactions, the recovery of intermediate 
updates that have been made by an ESCROW request with the parameter 
“recover=YES” will be demonstrated. The many questions associated with the 
proper general interface to use so that applications can recover intermediate 
results would be material for another large paper. Here, it is simply indicated 
how the database recovery request might be honored, and other questions are 
left for later research. 

The basic idea for memory crash recovery comes from the realization that the 
extended logical field structure, including the inf, val, and sup values and all 
extant Escrow journals, contains all the information of classical beforeimages 
and afterimages. Nondestructive writes to stable storage can be guaranteed by 
alternating updates of logical fields to two nonoverlapping areas; in this way, 
there is always a “good” stable copy. In addition, one good copy will be guaranteed 
for most cases of media failure. We wish to permit logical field updates to stable 
storage to be performed in a manner that is not synchronized with individual 
transactions, in a manner that is sensitive to channel capacity and does not act 
as a bottleneck to transactional throughput, but that still assures that updates 
do not collect in memory for excessive periods before being written out. This 
requirement is made more precise below. 
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Only two guarantees are needed to be able to perform crash recovery: 
(1) transactional logs are written to stable storage at the end of each transaction; 
and (2) checkpoints are taken from time to time that name a transaction number 
log from which to start recovery-they guarantee that all fields on stable storage 
are up-to-date as regards updates of transactions that had completed before that 
time. To clarify the second point, assume there is a guarantee at any time as 
transactions are being processed that all updates to extended logical fields more 
than two minutes old are up-to-date on stable storage-the fields updated are 
written out. What this means, in particular in the Escrow case, is that all Escrow 
journals that exist on the extended logical field on stable storage are associated 
either with transactions that have completed in that last two minutes or have 
not completed at all. (No earlier Escrow journals exist because they are deleted 
from the extended logical field when each transaction completes.) With this 
guarantee, a checkpoint can be written that stipulates that, if memory is lost, 
recovery should start with the commit log that was written two minutes ago. 
Then all later updates that went to commit logs will be considered during 
recovery; possibly some commit logs considered will be superfluous in that all 
fields updated were written to stable storage since the commit occurred, but this 
is something that can be dealt with as long as there is no missing information. 

In performing recovery following a memory crash, take the most recent stable 
versions of extended logical fields, and start to process commit logs from the 
point indicated in the last checkpoint. If a commit log indicates a change to an 
extended logical field that matches an Escrow journal in the field itself, apply 
the change and discard the Escrow journal from the logical field. If the commit 
log has a greater quantity used than the Escrow journal indicates (the “match” 
was for the transaction number and pool ID, not the quantity), it is presumed 
that the commit log has the correct quantity. If a commit log indicates a change 
to an extended logical field that does not match an Escrow journal in the field 
itself, there are two possibilities: The first is that the transaction had already 
completed when the field was written out to stable storage; the second is that the 
transaction in question had not performed the update to the field at that time. 
To decide between these two alternatives, it is only necessary to compare the 
two time stamps for the field update and the transaction commit log. If the 
commit log has an earlier time stamp than the extended logical field update, then 
the field update in question is simply discarded since it must previously have 
been applied. If the commit log has a later time stamp, then it had not already 
completed at the time the field update was written, so the field update of the 
commit log is applied to the field in question, and no Escrow journal is created 
or deleted. When all commit logs have been processed, all remaining Escrow 
journals are deleted from the extended logical field and the inf, val, and sup are 
updated as though the associated requests had been aborted. Following this, 
normal transactional processing may resume. 

THEOREM. The recovery process outlined is valid if there are no intermediate 
recoverable results. 

Consider the following cases involving the times when an extended logical field 
in the database was written out to stable storage (FW), the time when a specific 
transaction first updated the field in question (TU), and the time when the 
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transaction committed (TC). It is clear that the event (TU) must have preceded 
(TC), that is, (TU) < (TC), but it is also possible that a commit did not occur 
prior to the crash (either the transaction was still in process or else it aborted.) 
Therefore we see the following possible cases: 

(TU) < (TC) c (FW) (1) 

By the definition in Section 2.2.1, the logical extended field has been updated 
and the Escrow journal discarded at time (TC), prior to the time that the field 
was written out. Therefore an Escrow field will not be found during recovery to 
match the commit log, the time stamps will be checked to find that the transaction 
in question had completed at the time the field was written, and the commit log 
will be correctly discarded as already applied. 

(TU) < (FW) < (TC) (2) 

By the definitions, there has been an Escrow journal created associated with 
an update performed by the transaction in question. During recovery a commit 
log will be found for the transaction detailing an update to the field-since the 
Escrow journal might be out-of-date, the more recent commit log for the quantity 
to apply is taken, and the Escrow journal from the extended logical field is 
deleted. (The possibility of two different Escrow journals in a single transaction, 
one involving a positive and one a negative Escrow quantity, indicates a need for 
separate commit logs that is differentiated by the Escrow pool identifier in the 
Escrow journal. Then finding only one of the Escrow journals present during 
recovery indicates that there are two different (TU) times to be examined, one 
for each type of Escrow, and that there is a mixed case with (3) below.) 

(FW) < (TU) < (TC) (3) 

During recovery it is found that a commit log exists for which there is no 
corresponding Escrow journal, and that the transaction in question had not 
completed at the time the extended logical field had been written. Therefore, the 
commit update is applied, and Escrow journals from the logical field are neither 
added nor deleted. 

(TU) < O-9, (TC) did not occur (4) 

During recovery no commit log is found to correspond with the Escrow journal 
created at time (TU). The transaction was in train at the time of the crash and 
must be rolled back, or else it was aborted after the field write, with the same 
result. The Escrow journal is deleted and treated as an aborted transaction in 
setting the field values after all the commit logs have been processed. 

VW) < WJ), (TC) did not occur (5) 

No Escrow journal is found with the extended logical field since the field write 
occurred too early. No commit log is found since no commit occurred. Recovery 
never learns of this update event, with the effect that the incomplete transaction 
is properly rolled back. 

Note that the checkpoint manager must actually be aware of how long (time 
stamps) various extended logical fields have been in memory without having 
been written to disk after they have been updated (if they have only been read, 

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986. 



422 l P. E. O’Neil 

they need not be written). It is assumed that recovery takes some reasonable 
fraction of normal processing time, and the longer this is allowed to go on, the 
further back each checkpoint will indicate recovery must start relative to the 
current time. 

Normally one would picture some sort of least recently used algorithm govern- 
ing the logical extended fields to be written out (freeing up memory space if that 
is an issue). This has the advantage of a large number of updates for each write 
to stable storage. However, in situations where the stable storage copy of a field 
is getting too much out-of-date, the system must have some way of “pushing” 
the field out, possibly with several priorities, ending with a forced write before 
any further transactional access is permitted. 

To permit recovery of intermediate results, updates requested using an 
ESCROW request with the parameter setting “recover=YES,” the design is 
varied as follows: Escrow journals that correspond to requests of this form must 
be specially flagged, and the logical extended field must be written to stable 
storage immediately, before returning from the request. The recovery manager 
will recognize Escrow journals with this “recover” flag and will not delete these 
Escrow journals from the field when it has finished processing commit logs. 
Thus, the Escrow journals in question will still be in existence, and the field will 
have the appropriate range. 

3. UTILITY AND BENEFITS OF ESCROW TRANSACTIONS 

3.1 The Escrow Method Does Not Cause Deadlocks 

Since ESCROW requests always return to the caller immediately, without waiting 
for any event in the case the request cannot at once be satisfied, no deadlock can 
occur in the pure Escrow case. To be sure, one can decide to try the request again 
in some edge cases, but a deadlock will not occur without a chance for the 
application programmer to avoid it by ceasing repeated requests. 

An Escrow access can be viewed as locking an incremental quantity of an 
aggregate field (placing the quantity in Escrow) so that the rest of the field 
quantity becomes available again to other users. In this sense, the Escrow method 
is obviously more sophisticated than the standard record locking method, and 
this point will be referred to in considering distributed transactions. 

For now, consider the edge case where an attempt to access an incremental 
quantity fails under conservative assumptions, but might later succeed if cur- 
rently live transactions simply do not conclude in the worst possible way. For 
example, we have the following ESCROW request: 

IF ESCROW(field=QOl!$,quantity=C,test=(QOH L 0)) 
THEN USE(field=QOH,quantity=C) (continue processing . . .) 
ELSE ABORT 

Of course, if inf(QOH) is currently less than C, the test condition will fail. 
However, it may be possible that we are being too stringent in our test. If the 
current set of outstanding transactions is such that val(QOH) L C, or even if 
sup(QOH) 2 C, we might not want to accept this test failure as final and abort 
the entire transaction so far. In fact, Reuter [9] had the system wait under 
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conditions of uncertainty rather than reporting the test failure to the calling 
program. However, this approach entails the possibility of deadlock. Furthermore, 
the presence of deadlock can be particularly difficult to detect because, rather 
than finding a single other transaction blocking access to a desired field as could 
have been done in the classical record-locking case, there may be several trans- 
actions with Escrowed quantities from this field. Quite complex situations can 
arise, since perhaps no single transaction with these Escrows would release 
enough of the desired quantity by aborting for the current transaction request to 
succeed! It has been demonstrated in a separate paper that an algorithm to detect 
this sort of deadlock is NP-complete. For this reason and the considerations that 
follow, it seems that appropriate techniques for deadlock avoidance in the Escrow 
case may be more heuristic in character, such as timeout. In any event, a true 
deadlock detection scheme must conclude a “possible deadlock” is present in 
cases where perfect correctness may result in a nonpolynomial algorithm. 

This problem of Escrow deadlocks is not as important in real-world applications 
as it might appear, because of the following consideration: in the normal course 
of business, it must be rare that an order can be filled only through some 
combination of aborts and commits of other outstanding transactions. Rather, a 
long period of success would be expected that is followed by a very short period 
when edge cases are important, and then another (possibly long period) when 
the requests fail completely. This is not to say that consideration of such an 
event can be dispensed with, but rather that it is proper to treat it as an exception. 
Naturally there are a few applications that seem to consist nearly uniformly of 
exceptions of this kind: airline reservations, for example. Even so, the event of 
finding a situation where a WAIT for a field is appropriate is usually rather rare; 
a deadlock arising from such events is rarer still. Additionally, the situation 
where a deadlock occurs is entirely different than the one that obtains under 
classical record locking. In that case, a deadlock can occur whenever records are 
locked in a cycle, even though there may be plenty of each of the quantities 
desired by the various transactions. When a transaction is blocked, we hesitate 
to abort the requesting transaction, since a very good chance of eventual success 
remains. In the Escrow case, by contrast, we would only find ourself in such an 
edge condition if it was quite likely that the quantity required by some requesting 
transaction was exhausted. 

When the Escrow quantity has inf and sup values such that a current ESCROW 
request fails but a later retry of the transaction may prove successful, it is 
normally sufficient to give warning to the order-entry clerk (or equivalent) that 
this condition has arisen. The business will then have some policy regarding how 
hard the clerk should try to get the last quantity from the Escrow field in 
question. Creating a back order is probably the ultimate effort in this regard: the 
test can be performed again after most transactions have completed. If the system 
has some way to notify transactions that have enqueued on an item when it 
becomes free, so much the better, but we want to enter some form of exception 
processing in this case; at the very least the waiting transaction should be 
separated from the waiting terminal. For all these reasons, it seems that the more 
friendly system behavior is to report failure back to the calling application, but 
allow for exception handling. 
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IF ESCROW(field=QOH,quantity=C,test=(QOH 2 O),recover=NO) 
THEN USE(field=QOH,quantity=C) (continue processing . . .) 
ELSE 

IF ESCROW(field=QOH,quantity=O,test(sup(QOH) L C),recover=NO) 
THEN perform exception handling. 
ELSE ABORT 

Recall that the ESCROW request could fail if it brought the interval (inf(A), 
sup(A)) into a region that made some former test of a live transaction untrue. 
This condition is entirely comparable in its effects to the first Escrow test above 
failing, so that the initial ELSE clause will be activated. However, special 
handling is appropriate in this case, where the MODIFY action would make a 
former test invalid, so some method of testing for failure due to preexisting 
constraints should be available to the program. 

3.2 High-Concurrency Items Will Not Act as a Bottleneck 

This is the major use planned for the Fast Path Method and by Reuter. New 
functionality may be offered in this regard if it can be demonstrated that the 
generalized method applies to new field types in common use. More investigation 
is needed to demonstrate the utility of such field types. See Section 4. 

3.3 Human Interaction in the Midst of a Transaction 

The most natural desire in the world on the part of a customer is to know “how 
much it would cost to buy 10 gross of those widgets.” But a calculation of this 
kind can be complex if it involves sliding volume discounts, delivery charges, and 
sales tax. In addition, the order-entry clerk would like to be able to advise the 
customer as regards availability-would a back order be necessary? After saying 
that the quantity is available, it then becomes most embarrassing to try to order 
the quantity and find that it is not available after all. It does no good to explain 
that this transaction cannot be run to the desired point and then permit human 
interaction when the necessary information has been generated; as is well known, 
the resources involved under classical locking cannot remain locked for such an 
indeterminate period. But neither the customer nor the clerk understands this 
point, and the disappearance of the quantity because of a concurrent update 
transaction seems to them like a bug! Why couldn’t we hold this quantity aside 
for a few moments? In a real-world legal transaction, where the customer might 
have committed with another person based on the availability of this item, this 
behavior is unacceptable, and the quantity must be guaranteed by physically 
placing it in Escrow (buying it and then returning it in the case of an abort). 

What the clerk would like to do is enter a tentative order of this sort as if it 
were actual and read off the resulting information to the customer (price, delivery 
date, etc.). We do not want to duplicate all the logic of an order-entry transaction 
for such an inquiry, so the ideal method for doing this would be to run the 
transaction this far, tell the result to the customer, and wait for a decision. After 
the customer decides whether the result is acceptable, the clerk either clears 
(aborts) or accepts (commits) the transaction. Of course it might also be possible 
to make some small change in the order (e.g., quantity) and try again. 
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Simple as all this seems, the condition under classical locking that transactions 
cannot last across terminal interactions makes it extremely difficult to perform 
in practice. With the Escrow Method, since concurrent access to the records is 
possible while a transaction is live, the logic for terminal interaction becomes 
just as simple as it seems. It is simply allowed, as long as only Escrow updates 
have been performed by the transaction in question so far and they have been 
performed with the “recover=YES” parameter. 

3.4 Distributed Transactions 

The most significant problems with distributed transactions involve worst-case 
scenarios. What happens if the communication line goes down? What if a node 
goes down after it commits, but the other nodes do not know it has committed? 
It might seem that transactions are tailor-made to handle situations of this sort: 
every change made is reversible by an abort, so simply hold all transactions in 
that state until some agency decides a commit or abort is appropriate; it is clear 
that sooner or later all nodes will be informed of this decision. Where is the 
difficulty? 

The difficulty of course lies in the unstated assumption that we are in a hurry. 
While a distributed transaction is taking place and cohorts of that transaction 
remain uncommitted at various nodes, no other transactions can access the 
records that have been locked. Under normal circumstances, because of the time 
needed for communication, this might mean seconds elapse without concurrent 
access. If a line or node goes down, this condition has to be noticed quickly, and 
something has to be done about transactions that were involved so that other 
work can get done with the records that were involved. From being a natural 
form for distributed work, transactions become almost impossible to support in 
highly concurrent situations when record locking is involved. 

. 

For applications where the Escrow method can be used, most of the time 
pressure is removed. If some incremental quantity is locked in Escrow on a node 
while a transaction is in limbo, that is an unfortunate happening, but presumably 
normal work can progress even so. In addition, there is some argument that the 
Escrow method is the best method that can be applied to this problem. 

Example 3.1 Distributed Transactions-A Natural Use of the Escrow Con- 
cept. Consider an international corporation about to perform a business trans- 
action on several continents at once under conditions of uncertainty about the 
communication links involved. What would be thought of a design for the 
transactions that made the corporate bank account in the United States un- 
available while the transaction was in progress? But of course, no one would do 
it that way. Instead, an Escrow officer at the beginning of the transaction would 
establish a special Escrow account, withdrawing from the company’s general 
account the funds needed to perform this transaction. Now, if at any time a 
communication link was lost, or a revolution or hurricane put one of the sites of 
the transaction into an indeterminate state, the company would be able to 
continue its usual business, putting off the remote transaction until more normal 
conditions were restored. Furthermore, it seems clear that the resources of the 
company that are placed in limbo by the uncertain condition of this transaction 
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are exactly the minimum ones that were needed; the uncertainty was a part of 
the decision to do business. The Escrow officer, protecting all parties, will return 
the sum involved to the company only when it is clear that another party acting 
in good faith might not have concluded the transaction to the first company’s 
benefit. Assuming a reasonable communications protocol, it is arguable that this 
design is the best possible, and of course it is mirrored by the Escrow method of 
transactional consistency. 

A distributed transaction using the Escrow method would obey a rather 
standard two-phase commit protocol. Assume that there is one master transaction 
at some node Nl, and a group of subordinate transactions are created at other 
nodes. A reason might be that a local supply station is out of a needed commodity 
so that a remote transaction must be started to transfer some quantity of 
the item from the remote supply station. The only special precaution needed 
during the subordinate transaction is to log the Escrow quantity to ‘disk, a 
recoverable phase one commit using an ESCROW request with the parameter 
“recover=YES,” before notifying the master transaction that we have been 
successful; thus, if memory is lost at the remote node, this transactional state 
can be recovered. After the master transaction decides it is ready to commit, it 
may do so as far as its own record updates are concerned, although it must 
continue in existence until all subordinate transaction nodes have been notified. 
Notification consists simply of the message “Transaction ID commits,” and the 
usual method of message acknowledgment will notify the master transaction 
when all messages have been received and the transaction is complete. Note that 
there is no hurry at all about sending the commit message. All resources are 
already appropriately allocated, and finalization can take advantage of slack 
times on the message links. 

If the master transaction decides at any time that an abort is needed, it first 
aborts the local update increments and then sends a message to all nodes 
of subordinate transactions, “Transaction ID aborts.” When all nodes have 
acknowledged, the transaction is aborted. 

If a remote node crashes after it has acknowledged success of a subordinate 
transaction, later recovery will recover the abort/commit state, and the master 
transaction need not even be aware of this. 

If the node of the master transaction crashes at any time, recovery must have 
some record of remote sites where subordinate transactions took place so that 
they can be sent abort messages until the decision to commit is taken, after 
which commit messages should be sent; thus, information needs to be logged 
when the master transaction requests acknowledgment of such remote transac- 
tion precommits and when the master transaction makes a commit decision. The 
various problems of lost messages are quite easily handled with this model, since 
at every point the various states are robust and reversible. 

4. CONCLUSIONS 

It is not hard to see why early computer practitioners would think of a record 
field as something to be copied to a local buffer and then tested and altered in 
an arbitrary fashion. To limit the programmer to Escrow tests and changes of 
some field is clearly not a course to be embarked on without well-thought-out 
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and visible benefits. The major effort involved is in teaching the transactional 
system how to be an “expert” in transactions of the given type. The benefits that 
would accrue from the Escrow Method seem very important in applications where 
they are an issue, and the underlying concept is clearly one that has existed in 
the normal business world for centuries. In addition, it seems quite possible to 
adopt this method as a part of the more traditional methods of transactional 
consistency, leaving it to the application programmers to decide what applications 
might benefit from this new approach. 

4.1 Compatibility with Record Locking 

It may happen that we wish to perform actions on fields of a record cf a different 
kind where more standard lock types of read and write access are required. For 
example, we may want to change some character field, an address, or other 
informational field. It was shown in [9] that a locking policy that disallows 
mixing of read, write, and TEST/MODIFY access will result in serializable 
updates. The proof is immediately applicable to the Escrow case. This is hardly 
surprising since the locking policy amounts to the requirement that no Escrow 
journals be active, and therefore inf(A) = val(A) = sup(A). It then becomes 
simple to permit normal locking on the (single-valued) val(A). Since the Escrow 
Method permits extremely long-lived transactions, this result may be less useful 
than it appears. However, it seems possible to extend this result in certain ways, 
restricting activity in the Escrow journals rather than forbidding their existence 
while read and write locks are present. This is left as a topic for future research. 

4.2 Audit-Balanced Read-Only Transactions 

Another example of a different type of transaction on aggregate fields is where 
we wish to read all the aggregate fields of a database to produce an audit-balanced 
report. It seems possible to vary the design of the Escrow Method to accommodate 
such a requirement. Basically, the idea would be to preserve versions of the 
database extending into the past as is done on some Codacyl databases now. The 
variation would simply require that time-stamped Escrow journals be kept around 
after the transactions that created them complete, simply flagging the journals 
as complete; the journals would be kept so long as some audit-balanced transac- 
tions display an interest in a slice of the database corresponding to a time-stamp 
number that precedes the one that created the current journal. Since very long- 
lived transactions are envisioned, more sophisticated methods may be required 
to allow a time slice of the database while some transactions are in progress, but 
this can probably be achieved by inventing new Escrow pools for use while old 
Escrow pools are frozen. 

4.3 Generalized Escrow Field Types 

A primary area for future research should be to determine what other kinds of 
fields and updates might be amenable to the General Escrow Method of concur- 
rency control. A simple but useful example follows: 

Consider a quantity that, instead of being “aggregate,” or the result of sum- 
mation, is instead “maxmin,” or the result of taking the max or min of a set of 
quantities. The method of creating Escrow journals for updates arising out of 
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new values to compare to the current one is immediately obvious. Indeed, such a 
structure had to be created in the aggregate journaling facility because of the 
need to keep track of extant tests on bounds for the aggregate quantity. This is 
also a serious problem for real-life applications as a survey of field types in 
standard record layouts in reference [8] shows. There were numerous fields with 
descriptions such as oldest order number unfilled, date of last invoice, date item 
last. received in inventory, etc. The difficulty in a normal transaction of updating 
such comparative values in a valid way is obvious. It makes one wonder how it 
was done at all without the Escrow Method. 

Another type of field update that would seem to be amenable to the Generalized 
Escrow Method was suggested by Gawlick. It illustrates the statement made in 
Section 1.4 that any method for making the guarantee of eventual acceptance is 
usable. Assume that there are clients who wish to reserve seats on an airline, 
either window seats, aisle seats or “don’t-care” seats. If the seats are actually 
chosen as the callers ask for reservations, too many window seats might be 
handed out to “don’t-care” reservations and window-seat requests of late callers 
might not be satisfied, this is the case even though all requests could be satisfied 
if the “don’t-care” seats were apportioned at the end. With the Escrow Method, 
the only guarantee that needs to be made is that the reservations can be filled 
(an obvious requirement) and Escrow journals are held for all “don’t-care” 
transactions, apportioning the aisle seats and window seats as they come in. At 
any time, the reservations can be guaranteed if the total of aisle seats and window 
seats remaining exceeds the number of “don’t-care” seats requested. But with 
this method, the order in which the requests are received need not. be the order 
in which allocation is performed. 

The advantage seen in this resource-allocation problem can obviously be 
extended to much more complex situations. A characterization of the most 
general type of allocation problem that can be attacked with the Escrow Method 
has not yet been made. However, there seems to be a strong similarity between 
the Escrow Method and the Generalized Banker’s Algorithm for allocation of 
operating-system resources. The Escrow Method must solve a somewhat more 
general problem in certain ways since (1) resources may be permanently depleted 
by certain requests, and (2) recovery from nonvolatile storage must be supported. 
However, the similarity to the Banker’s Algorithm certainly hints at a wider field 
of allocation problems to be treated. 

Note that the recovery method presented for the Escrow Method in the 
aggregate field case in Section 2.3 seems to be reasonably easy to generalize to 
more general Escrow systems. The key idea lies in the Escrow journals them- 
selves. 

4.4 Recoverability of Intermediate Results 

The sketch of recoverability of intermediate transactional results at the end of 
Section 2.3 is meant only to show that a method is envisioned whereby the 
problem can be solved. Many details remain to be worked out, in particular, as 
regards a usable application interface for recovering through some set of updates 
that have been made “safe.” This is left for future research. 
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4.5 Distributed Transactions with Replicated Data 

Another possible area of investigation is how to generalize the Escrow Method 
to distributed transactions in the presence of replicated data. The Escrow Method 
seems to be extremely useful for one-copy distributed transactions because much 
of the commit becomes asynchronous. Is it possible to extend this property to 
the multicopy case, or is greater synchronism required while a consensus is 
reached? 

5. PREVIOUS WORK 

Important previous work in this area was performed by Reuter. Reuter took the 
rather theoretical work of Schlageter [lo] and demonstrated several new concepts 
that would be needed to make such a transactional system actually useful. He 
developed the idea of interval tests, basing these tests as he said on the IBM 
Fast Path feature. The current form of the ESCROW request is new, an evolution 
of Reuter’s TEST & MODIFY, which I believe solves some minor problems that 
had existed. For example, it is unclear from Reuter’s paper how the test performed 
and then put a constraint on modifications of other transactions (the example 
on his page 89 seems to be a problem arising from this). Further, the TEST & 
MODIFY action seems to run into difficulty because it tests quantities before the 
MODIFY is applied. The constraint that maintains the truth of this test cannot 
apply to the transaction that made the test, since then the transaction wouldxnot 
be able to withdraw a quantity C from a field, even though it contained more 
than C (but less than 2C). This problem cannot be patched. One way of viewing 
this difficulty is to say that the test constraints of Reuter seem to be MIN/MAX 
rather than aggregate, as in the case of our ESCROW requests. 

Gray in [5] also refers to the value of commuting UNDO and REDO methods 
of one transaction with DO operations of others. He points out that this can be 
achieved where objects are updated only by additions and subtractions where the 
journal records the delta rather than the old and new values. He also attributes 
use of this fact to the IMS Fast Path method of reducing lock contention. 

After I had written the first version of this paper, the two papers of Gawlick 
[2, 31 became available to me. It is clear that this field owes a great deal to the 
theory underlying Fast Path, which was developed by Gawlick and others as 
early as 1974 and 1975! 

, 
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