
Multi-Table Joins Through Bitmapped Join Indices
Patrick O’Neil, Goetz Graefe

Microsoft Corp. ’

Abstract
This technical note shows how to combine some well-known techniques to create a method that
will efficiently execute common multi-table joins. We concentrate on a commonly occurring type
of join known as a star-join, although the method presented will generalize to any type of multi-
table join. A star-join consists of a central detail table with large cardinality, such as an orders
table (where an order row contains a single purchase) with foreign keys that join to descriptive
tables, such as customers, products, and (sales) agents. The method presented in this note uses
join indices with compressed bitmap representations, which allow predicates restricting columns
of descriptive tables to determine an answer set (or foundsef) in the central detail table; the
method uses different predicates on different descriptive tables in combination to restrict the detail
table through compressed bitmap representations of join indices, and easily completes the join of
the fully restricted detail table rows back to the descriptive tables. We outline realistic examples
where the combination of these techniques yields substantial performance improvements over
alternative, more traditional query evaluation plans.

1. Introduction
In recent years, decision support and on-line analytical processing have created a substantial
resurgence of interest in query optimization and query evaluation techniques. In the present
technical note, we present a method that improves performance for many queries in these
environments.

Star-Joins
In this paper, the term star-joins is used to mean a join of a main table, also called the detail table,
with multiple descriptive tables. The detail table is often very large, e.g., a row for each order for
any product, by any customer, through any sales agent, etc. The descriptive tables are typically
much smaller, e.g., one row per customer or one row per product. Many decision support queries
place restrictions on the descriptive tables that translate to restrictions on detail rows, e.g., find all
orders for products costing over $50.00 from customers with less than $1 Million dollar yearly
billing through agents in Chicago. Sometimes there are multiple levels of descriptive tables, e.g.,
customers referring to a regions table, and there may be restrictions connecting these levels of
descriptive tables, e.g., a query on the orders table restricts regions by a transitive join through
customers.

2. The Basic Techniques
Before attempting to combine the techniques used in our method, we will review each of the
techniques individually. None of the techniques is new; they are discussed here only in order to
make the paper self-contained and to give credit to earlier inventors and adopters.

Join Indices and Domain Indices
While traditional table indices map column values to containing rows in a single table, usually by
reference to a row identifier, join indices [VALD87] typically associate column values and rows of
two tables. In this way, the join index represents the fully precomputed join. It is a special form of
a materialized view. Typical organizations for join indices include B-trees or hash indices

’ The authors are on leave from UMass/Boston and Portland State University, respectively.

8 SIGMOD Record, Vol. 24, No. 3, September 1995

organized in any of the following ways: lookup by common join column value listing record
identifiers (RIDS) of rows in both tables that join with that value; lookup by RID for each row of
one table giving a list of RIDS of a second table for rows that join with the first row; lookup by (non-
join) column value of one table giving a list of RIDS of a second table for rows that join with the
rows in the first table with that column value; or by variations of these, for example where single
column values are extended to multiple columns. Using the precomputed join, it is also possible
to access rows of one table by arbitrary column values in a second, through a process that
determines rows with given column value in the second table and then transitively relates those
rows through the join index with joining rows of the first table.

Of course, join indices can be generalized from two tables to multiple tables. They are called
domain indices when they associate the values of a domain (say social security numbers) with all
columns of tables in the database where such values occur. Typically, there is only one table for
which the indexed column is a key; for the remaining tables, the column will be a foreign key, and
many rows can contain the same column value. We will come back to this point later when we
consider representations of sets and bitmap indices.

It is our understanding that join indices are being used in some current proprietary commercial
database systems, although there is little public acknowledgment of this. The original research
describing join indices is well known in the research community.

Semi-Joins for Data Reduction

If join indices are not available, it may be useful to scan the first table, say To, extract the relevant
join column, say To.A, possibly remove duplicates from the list of column values, and then join this
list with the second table, say T,, followed by a join of the first join’s result with the first table.
While this method seems rather roundabout, it has been shown useful in distributed database
systems with high communication costs, as published for the SDD-1 research prototype, as well
as some other cases.

Joining Indices instead of Base Tables

A special case of such semi-joins is to join a base table, say To, with the index of another table,
say T,.A; the result contains all columns from To plus record identifiers for table T,, permitting
completion of the join by fetch operations based on those record identifiers. This idea can be
expanded to join two indices, say To.A and T,.A, followed by fetch operations for both tables.
Whether or not these techniques are advantageous depends on the join selectivity and the costs
for scanning files and fetching records. Rooted in Kooi’s thesis [KOOl80], the lngres query
optimizer and executor have used these techniques for many years.

Bitmap Indices

A traditional table index associates with each index keyvalue a list of row identifiers (RIDS) or
primary keys for rows that have that value. It is well known that the list of rows associated with a
given index keyvalue can be represented by a bitmap or bit vector. In a bitmap representation,
each row in a table is associated with a bit in a long string, an N-bit string if there are N rows in the
table, and the bit is set to 1 in the bitmap if the associated row is contained in the list represented;
otherwise the bit is set to 0. This technique is particularly attractive when the set of possible
keyvalues in the index is small, with a large number of rows, e.g. an index on a sex attribute,
where sex = ‘Male’ or sex = ‘Female’. In this example, there will be only two lists to be
represented in an index, and the total number of bits stored will be 2N, while one out of two bits
will (usually) be 1 in both bitmaps. (We can’t be sure that these bitmaps will be complements of
each other, since a deleted row will result in a bit that is zero in both.) When a large number of
values exist in an index, each of the bitmaps is likely to be rather sparse, that is, very few bits will
be 1 in the bitmaps, resulting in heavy storage requirements for storing a lot of zeros. In such
cases, bitmap compression is used, e.g., run-length encoding (87 zeros turn into a prefix showing
zeros follow, and a count of 87), or by changing representation from bitmap to RID list and back
(as indicated in [O’NEl87]).

SIGMOD Record, Vol. 24, No. 3, September 1995

The point of using bitmap indices, of course, is the tremendous performance advantage to be
gained. To start with there is reduced I/O when a large fraction of a large table is represented
using a bitmap rather than by a RID list. In addition, a bitmap for a foundset on 10 million rows will
require a maximum of only slightly more than a megabyte of storage (10 million bits = 1.25 million
bytes) so bitmaps can commonly be pipelined or cached in memory, and the RIDS represented
are automatically held in RID order, useful when combining predicates and when retrieving rows
from disk. In addition, the most common operations used to combine predicates, AND and OR,
can be performed using very efficient instructions that gain a lot of parallelism by executing 32 or
64 bits in parallel on most modern processors. See [O’NEl91] for benchmark results where lOO-
fold performance advantages of bitmap indexes are measured for some single-table DSS queries.

One stumbling block to using bitmap indices in database systems is that they require an effective
mapping between integers (bit positions) and the rows indexed. This is typically done through a
row identifier, or RID, composed of a page number and a slot number within a page where the row
is stored. While it is quite reasonable to assign an equal number of bits to consecutive pages to
represent the rows on those pages on successive slots, most database systems support variable-
length records by permitting a variable number of records per page. The solution to this problem
is to define a maximal number of records per page, and reserve bits according to this maximal
numbers, as is done very effectively in CCA’s Model 204 database system, for example (see
[O’NEl87]).

In a join index supporting a star-join, a bitmap can be created for each row in a descriptive table
(lookup by RID or unique Key value) to represent the set of rows in a detail table that join with that
row. More generally, it is possible to define a join index that will look up any non-unique column
value in the descriptive table likely to be restricted in a star join, to find the bitmap of rows in the
detail table that correspond to rows in the descriptive table with that column value.

3. Query Plans for Star-Joins
Based on these techniques, one can define the following processing strategy for a star-join. First,
since they will be joined very frequently, it makes sense to maintain join indices between the detail
and descriptive tables. Since each descriptive table will typically join with the detail table via a
different column, a domain index does not really help here. So we assume that To is the detail
table and that the descriptive tables T (for i = 7, N for some N) join with the detail table via the
column Ai which is key for Ti and foreign key for To, i.e., joining through predicate To.Ai = T-A;. We
postulate a join index called ToT.Ai with entries for each RID of 7 containing compressed bitmaps
for all related rows in To. We expect to see star-join queries of the following form:

PI select distinct To.K, T1.A1, T2.Az, . . . , TN.ANfrom To, T,, T2, . . . , TN

where T,.A, = T,.A, and T&AZ = T2.A2 and . . . To.AN = TN.AN

and T,.B, = C, and T2.B2 = C, and . . . TN.BN = CN;

where the columns Bi are non-key values of the tables F, and the Ci represent constant values.
Let us further presume that for all likely selection predicates on T.Bi = Ci, there are indices for the
columns T.B, and that there are also table indices for key columns, T.Ai. Join indices from T.B;
to bitmaps of related rows of To would be particularly valuable, but are not absolutely required.

Given these assumptions, a number of query execution strategies become possible. One of them
seems particularly promising: First, for each descriptive table T, employ the index T.Bi to find
suitable rows for the predicate T.Bi = Ci; loop on all these rows and OR all bitmaps found through
the join index ToT.Ai to create a bitmap for all related rows of table Tp After doing this for each T,,
there will be N bitmaps on To, corresponding to each of the predicates T.Bi = Ci. Now, intersect
the bitmaps so determined, and this will be the set of rows in TO satisfying all restrictions on joining
tables T. In many cases the remaining set or rows in To will be so small that those rows in To can
be joined inexpensively through foreign keys with all rows in the indexed descriptive tables T, to
obtain the final query result. Alternative strategies exist in cases where the set of rows in To is

10 SIGMOD Record, Vol. 24, No. 3, September 1995

large enough so that unordered references in the descriptive tables would be wasteful; in this
case, foundsets on each of the T tables can be inexpensively restricted through the join index and
then sorted in join order to derive the correct result.

A Performance Example
A common goal in decision support queries is to avoid scanning the very large detail table, or
fetching a large number of rows from that table. If each of the predicates on the descriptive tables
has a selectivity of l%, or lo-‘, and if all those2fredicates are statistically independent of each
other, N such predicates have a selectivity of 19 . Even if the detail table is rather large, say lo*
rows, and the number of descriptive tables with predicates rather small, say N = 3, the result after
performing the bitmap technique given in the last Section will be that only 100 rows have to be
fetched from the detail table. Clearly fetching 100 rows is faster than scanning 10’ rows by a
large margin, large enough to hide the surprisingly small overhead of searching the join indices of
the descriptive tables and fetching descriptive table rows for the final assembly of the result.

Special circumstances can arise when the predicates that restrict the descriptive table do not
significantly restrict the detail table, or when the number of rows retrieved in a detail table is so
large that it is not cost effective to OR bitmaps of the join index T. To ensure the best decision
support performance, the query optimizer has to make cost-based decisions among alternative
execution plans. The point here is not to show that the execution techniques outlined are always
superior to all alternatives, but to demonstrate that they commonly result in efficient executions so
they are worthwhile to be taken into consideration by an optimizer.

Summary and Conclusions
In this brief technical note, we have outlined a query execution method for multi-table joins and
exemplified it for so-called star-joins. The challenge facing database systems developers is not to
implement any special, new, or complex query execution technique but to include suitable building
blocks into their query execution engines and to guarantee that their optimizers will consider them
when they are promising. To the best of our knowledge, no query optimizers with non-privileged
strategies currently consider the plans outlined above.

References
[KOOl80] Robert Kooi, The Opiimization ot Queries in Relational Databases, Ph.D. thesis, Case
Western Reserve University, Cleveland, OH, 1980.

[O’NEl87] Patrick O’Neil, Model 204 Architecture end Performance, Springer-Verlag Lecture
Notes in Computer Science 359, 2nd International Workshop on High Performance Transactions
Systems, Asilomar, CA, September 1987.

[O’NEl91] Patrick O’Neil, The Set Query Benchmark, The Benchmark Handbook for Database
and Transaction Processing Systems, Jim Gray (Editor), 2nd Edition, 1993.

[VALD87] Patrick Valduriez, Join Indices, ACM TODS, Vol. 12, No. 2, June 1987, Pages 218-
246.

SIGMOD Fiecord, Vol. 24, No. 3, September 1995 11

