
Adjoined Dimension Column Clustering (ADC Clustering) to im-
prove Data Warehouse Query Performance

Xuedong Chen Patrick O'Neil Elizabeth O'Neil
Computer Science Department, University of Massachusetts Boston

{xuedchen/eoneil/poneil}@cs.umb.edu

1. Introduction

Data warehouses are typically made up of multiple star
schemas, called data marts. A star schema example
from [6] is shown in Figure 1, with a central Fact table
and four dimension tables. Queries on star schemas
usually restrict columns in the dimension tables to re-
trieve rows from the central fact table.

Product Key (PK)
Many Attributes

Date Dimension

Date Key (PK)
Many Attributes

Promotion Dimension

Promotion Key (PK)
Many Attributes

Store Dimension

Store Key (PK)
Many Attributes

Date Key (FK)
Product Key (FK)
Store Key (FK)
Promotion Key (FK)
Transaction Number
Sales Quantity
Sales Dollars
Cost Dollars
Profit Dollars

POS Transaction Fact Date Dimension

Figure 1. Example of a Star Schema

Star Schemas were first devised by Red Brick Systems
[11] to speed up queries on data loaded from opera-
tional databases at intervals of about a day, with no
updates between loads. Variant designs (allowing
some updates) were adopted by Oracle [8,12], DB2
[1,7], Sybase IQ [14] and recently Vertica [13].
 Dimension tables have relatively small numbers of
rows compared to the fact table. The POS Transaction
fact table of Figure 1 has nine columns, a total of 40
bytes, and disks on an inexpensive PC can contain a
fact table of a few hundred gigabytes, or several billion
rows, while the largest dimension table is usually
Products, with up to a few million rows. (There are on-
ly a few thousand rows in Dates, Stores, etc.). As a re-
sult, practitioners commonly place a large number of
descriptive columns in dimensions; most queries re-
strict these dimension columns, and combined joins
from dimensions determine fact table rows retrieved.
 In the late 1980s, a query filter factor of about 1/300,
selecting rows on about one disk page out of ten, led to
a DB2 query plan that retrieved just the selected subset
of disk pages; if more than one disk page in ten was se-
lected, a sequential scan that retrieved all table pages
gave better performance. Since that time, disk technol-
ogy has sped up sequential scans about 35 times more
than it has sped access to selected disk pages. A query
filter factor of about 1/10,000 or less is now required
to retrieve just the selected pages, so most Data Ware-

house queries scan across hundreds of GB of the fact
table. To improve performance, some form of cluster-
ing must limit query retrieval range on most queries.
 A form of clustering by several attributes at once
was introduced in 2003 with IBM’s Multi-dimensional
Clustering (MDC) technology, explained in Section
2.2. MDC provides a powerful new tool, but does not
directly solve the star schema access problem because
the attributes typically used in queries on star schemas
lie in dimension tables, not in the fact table as assumed
by MDC. The fact table normally has just the foreign
keys to the dimension tables, typically meaningless
surrogate keys.

1.1 Contribution of this Paper
1. We introduce ADC clustering to cluster the fact table
by commonly queried dimension columns. This accele-
rates star schema data warehouse queries that have
range predicates on these column hierarchies.

2. We show how ADC clustering applies to database
products with either good concatenated column index-
ing or native clustering support on multiple dimen-
sions, such as DB2's MDC or Oracle's Partitioning.

3. We introduce the Star Schema benchmark (SSB) de-
rived from the TPC-H benchmark [15], and demon-
strate improved performance of three commercial
Windows database products using ADC clustering.

2. Introducing ADC Clustering

Single column clustering works well when there is one
standout column on which to sort the data that will
speed up most queries of interest. But what if there is
not? Figure 2 displays the schema for the Star Schema
Benchmark (SSB); SSB is derived from the TPC-H
benchmark in a natural way as described in the ex-
tended ADC Clustering paper [2].

The SSB Star Schema has dimensions customer,
supplier, part and date. Queries of SSB restrict ranges
on one to four hierarchies within these dimensions
(queries that restrict only one dimension hierarchy also
restrict columns in the lineorder fact table). The cus-
tomer dimension has a hierarchy c_city(250)-
c_nation(25)-c_region(5), where parenthesized num-
bers represent cardinalities of the named columns; The

supplier dimension has the same city-nation-region
hierarchy, but with s_ prefixes; the part dimension has

EXTENDEDPRICE

LINEORDER (LO_)
 SF*6,000 ,000
ORDERKEY

LINENUMBER

CUSTKEY

PARTKEY

SUPPKEY

ORDERDATE

ORDPRIORITY

SHIPPRIORITY

QUANTITY

ORDTOTALPRICE

REVENUE

TAX

COMMITDATE

SHIPMODE

 PART (P_)
200,000*[1+log2 SF]

PARTKEY

NAME

MFGR

CATEGORY

BRAND1

COLOR

TYPE

SIZE

CONTAINER

CUSTOMER (C_)
 SF*30,000

CUSTKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

MKTSEGMENT

SUPPLIER (S_)
 SF*2,000
SUPPKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

 DATE (D_)
7 Years of Days

DATEKEY
DATE
DAYOFWEEK
MONTH
YEAR
YEARMONTHNUM

YEARMONTH
DAYNUMINWEEK

DAYNUMINMONTH

DAYNUMINYEAR

MONTHNUMINYEAR
WEEKNUMINYEAR
SELLINGSEASON

LASTDAYINMONTHFL
HOLIDAYFL

WEEKDAYFL

DISCOUNT

SUPPLYCOST

Figure 2: Star Schema Benchmark (SSB) Schema

hierarchy brand1(1000)-category(25)-mfgr(5) and the
date dimension has a day-week-month-quarter-year
hierarchy (though weeks do not roll up to months, they
range in the same order, a crucial point in clustering;
there are just under seven years of days). The SSB we
ran for this paper has Scale Factor 10 (SF10), and thus
60,000,000 rows in the 6 GB lineorder fact table.

2.1 ADC Indexed Fact Table in Sort Order
One approach to ADC clustering adjoins physical cop-
ies of a column from each dimension to the fact table.
We adjoin columns from high levels of dimension hie-
rarchies commonly used in query restrictions, and sort
the fact table data in order by a concatenation of these
columns, then index these adjoined columns in the re-
sult. In SSB, we achieve this by using a Select state-
ment on the original SSB Star Schema that extracts the
fact table and the adjoined columns, write these rows
out as data, then load this data into the adjoined ver-
sion of the fact table and index it.
 From SSB hierarchies named at the end of the last
section, here are the adjoined columns (and their car-
dinalities) that determine fact table sort order:
d_year(7), s_region(5), c_region(5) and
p_category(25). These columns generate a moderate
number of conjoint values: 7x5x5x25 = 4375. All rows
having the same conjoint value will be clustered when
loaded in this sort order, and if we picture the fact table
as a cube with each edge a dimension range of ad-
joined columns, the clustered conjoint values will be
cubical cells partitioning the cube, while most multi-
dimensional range restrictions intersect a local rectili-

near region of these cells. With only 4375 such cells
(on about 6 GB of lineorder data at SF10) we ensure
that cells contain enough data that sequential access
within the cell outweighs disk inter-cell access time.
The right number of cells depends on the size of the
fact table and disk performance. We note a few minor
drawbacks of the sort order.
1. Queries with restrictions on dimension columns in
the ADC hierarchy need restrictions added to the ad-
joined columns of that hierarchy in the fact table.
2. An insert of a new row to the fact table must have
appropriate ADC column values adjoined. The row to
be inserted will have foreign keys to dimension rows
that determine these ADC column values. Naturally
the newly inserted rows will not be in sort order.

2.2 ADC Native Multi-Dim Clustering
DB2 was the first database product to provide a native
ability to cluster by more than one column at a time,
using Multi-Dimensional Clustering (MDC), intro-
duced in 2003 [1,3,4,5,10]. This method partitions ta-
ble data into cells (physically organized as sets of
Blocks on disk), by treating some columns within the
table as orthogonal axes of a cube. As with the conca-
tenated sort order index of Section 2.1, each cell cor-
responding to a different conjoint combination of indi-
vidual values of these cube axis columns. However the
fact that the "dimensions" of a table in MDC are col-
umns within the table means that there is still a need to
adjoin columns from the dimensions of a Star Schema
to the fact table to accelerate typical Star Schema que-
ries. This can be done in DB2 either by adjoining se-
lected dimension columns in a select statement and re-
loading the table as in Section 2.1, or by creating a ma-
terialized view (MV) to adjoin the columns. It turns
out, however, that presorting the fact table data by the
adjoined columns before loading into MDC improves
performance, probably because otherwise MDC
Blocks on disk don't cluster the cells sufficiently for
best performance. Adjoining columns to MDC using a
MV solves minor drawback 2, but not 1, listed at the
end of Section 2.1.
 Oracle too has a method called partitioning (and
sub-partitioning) that provides native multi-dimen-
sional clustering [9,12]. Many of the values of MDC
apply, such as the need to adjoin columns, and sorting
the fact table in advance being of value in MVs.

3. The Star Schema Benchmark

The Star Schema Benchmark, or SSB, was devised to
evaluate database system performance of star schema
data mart queries. The SSB schema is derived from the
TPC-H benchmark [15], but in a highly modified form.
The details of the modification [2] are of interest to da-

ta warehouse practitioners: Given a normalized data-
base schema, how can it be transformed to star schema
form? Figure 2 gives the Schema of the SSB.
 The 13 queries of SSB [2] are grouped into Query
Flights that represent different types of queries, e.g.:
different number of restrictions on dimension columns,
while queries within a Flight vary selectivity of the
clauses so that later queries have smaller filter factors.

3.1 Experimental Results
We used 3 commercial database products, anonymized
with names A, B and C, running SSB tables at SF10.
Our measurements were performed on a Dell 2900
running Windows Server 2003, with 8 GB of RAM,
two dual-core processors (3.20 GHz), and data on
RAID0 with 4 Seagate 15000 RPM SAS disks (136
GB each), stripe size 64KB. All queries were run from

cold starts. Parallelism to support disk read ahead was
employed on all products to the extent possible.
 We measured two different forms of the lineorder
table, one with no adjoined columns from the dimen-
sions (called the BASE form), and one with four di-
mension column values adjoined, d_year, s_region,
c_region and p_category. Results are shown in Table
3. The Geometric mean (Gmean) in the last line sum-
marize (as in TPC-H) the preceding measures of the
column. For products A and B, both row stores, the ra-
tio of BASE Elapsed time to ADC Elapsed time is 12.4
to 1 (for A) and 8.7 to 1 (for B), a significant speedup.
For Product C, a column store, the Elapsed time ratio
is 5.48 to 1, a more moderate speedup, but the base
times for C are much smaller because only part of the
table data needs to be accessed. Product C is the fastest
for both the base and ADC cases.

 A
Base Case

B
Base Case

C
Base Case

A
ADC Case

B
ADC Case

C
ADC Case

Query Elapsed CPU Elapsed CPU Elapsed CPU Elapsed CPU Elapsed CPU Elapsed CPU
Q1_1 99 9.9 43 2.62 9.8 1.04 7.6 1.04 7.9 0.49 4.1 0.018
Q1_2 58 5.22 41 2.26 8.7 0.8 8.1 1 8.4 0.45 2.7 0.015
Q1_3 55 4.4 37 0.52 6.6 0.56 7.6 0.93 8.1 0.4 2 0.004
Q2_1 63 10.0

8
49 3.19 14.4 2.17 2.4 0.14 6.4 0.42 1.2 0.002

Q2_2 66 1.98 45 2.79 14.1 1.99 1.9 0.09 5.9 0.35 0.8 0.001
Q2_3 23 0.92 41 1.44 14.3 1.07 1.6 0.06 5.8 0.33 3.3 0.01
Q3_1 66 10.5

6
58 3.54 14 3.12 6.3 0.7 7.8 0.72 6.2 0.065

Q3_2 55 9.35 46 1.06 12.6 2.21 3.2 0.24 4 0.24 1.1 0.002
Q3_3 13 0.39 15 0.39 13.6 1.25 2.8 0.21 3.5 0.18 2.7 0.007
Q3_4 11 0.22 6 0.2 7.1 0.72 4.7 0.09 1.8 0.05 0.7 0.001
Q4_1 70 11.2 58 3.54 18.2 3.79 5.6 0.7 3.3 0.29 2.2 0.006
Q4_2 66 10.5

6
56 3.08 20.3 3.39 2.3 0.13 1.8 0.15 5.8 0.099

Q4_3 39 1.95 49 1.62 20.2 2.69 1.5 0.04 1 0.07 4.3 0.052
GMean 44.7 3.40 36.8 1.50 12.6 1.60 3.60 0.24 4.23 0.25

6
2.29 0.008

1

Table 3 Measured Performance of Queries on Products A, B and C

4. REFERENCES
[1] Bhattacharjee B. et al. Efficient Query Processing for
Multi-Dimensional Clustered Tables in DB2, VLDB 2003.

[2] Chen, X., O'Neil, P., O'Neil, E. Adjoined Dimension Col-
umn Clustering (ADC Clustering) to improve Data Ware-
house Query Performance. http://www.cs.umb.edu/
~poneil/ADCClustering.pdf

[3] Cranston, L. MDC Performance: Customer Examples &
Experiences. http://www.research.ibm.com/mdc/db2.pdf

[4] IBM Research. DB2's Multi-Dimensional Clustering.
http://www.research.ibm.com/mdc/

[5] Kennedy, J. Introduction to Multidimensional Clustering
with DB2 UDB. IBM DB2 Inf Mgt Tech Conf,, 2005.

[6] Kimball, R. and Ross, M, The Data Warehouse Toolkit,
Second Edition, Wiley, 2002.

[7] Lightstone, S., Teorey, T. and Nadeau, T., Physical Data-
base Design, Morgan Kaufman, 2007.

[8] Oracle White Paper. Star Queries in Oracle 8. June 1997.

[9] Oracle, Partitioning in Database 10g Release 2. May
2005.http://www.oracle.com/solutions/business_intelligence/
partitioning.html

[10] Padmanabhan S. et al. Multi-Dimensional Clustering: A
New Data Layout Scheme in DB2. SIGMOD 2003.

[11] Red Brick Systems White Paper. Star Schema
Processing for Complex Queries. 1995. http://www-
306.ibm.com/software/data/informix/redbrick/

[12] Scalzo, B. Oracle DBA Guide to Data Warehousing and
Star Schemas. Prentice Hall PTR Oracle Series.

[13] Stonebraker M. et al. One Size Fits All? Part2: Ben-
chmarking Results. Keynote address, CIDR 2007, http://www-
db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p20.pdf

[14] Sybase Data Warehousing White Paper. Sybase Interac-
tive Warehouse. 1997.
http://www.dbmsmag.com/9708d17.html

[15] TPC-H Version 2.4.0 in PDF Form.
http://www.tpc.org/tpch/default.asp

