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Fibonacci Multiplication 

DONALD E. KNUTH 

Abstract. A curious binary operation on the nonnegative integers is shown to be associative. 

A well-known theorem of Zeckendorf [1][3][4] states that every nonnegative integer has 

a unique representation as a sum of Fibonacci numbers, if we stipulate that no two con- 
secutive Fibonacci numbers occur in the sum. In other words we can uniquely write 

(1) 72 = Fk, + . - - + Fk2 + Fkl , 

where the relation “k >> j” means that k 2 j + 2. The Fibonacci numbers are defined as 
usual by the recurrence 

(2) Fo = 0, Fl = 1, Fk = Fk_1 -I- Fk_2 for k > 2. 

Given the Zeckendorf representations 

(3) m = Fj, + * * * + Fj, , 

let us define “circle multiplication” to be the following binary operation: 

(4) mon=keFj,+tC. 
b=l c=l 

In particular, Fj o Fk = Fj+k, if j 2 2 and k 2 2. 

The purpose of this note is to prove that circle multiplication satisfies the associative 
law: 

(5) (Zom)on =Zo(mon). 

The proof is based on a variant of ordinary radix notation that uses Fibonacci numbers 

instead of powers. Let us write 

(4. ..dld& = d,F,+--e+dlFl +d&. 

Then (d, . . . dldo)F is a Zeckendorf representation if and only if the following three condi- 
tions hold: 

Zl Each digit di is 0 or 1. 

22 Each pair of adjacent digits satisfies did;+1 = 0. 
23 dl = do = 0. 
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For example, here are the Zeckendorf representations for the numbers 1 to 16: 

1= (1oo)F 

2 = (1OOO)F 

3 = (1OOOO)F 

4 = (1OlOO)F 

5 = (1OOOOO)F 

6 = (1OOlOO)F 

7 = (1OlOOO)F 

8 = (1OOOOOO)F 

9 = (1000100)~ 

10 = (1OOlOOO)F 

11 = (1OlOOOO)F 

12 = (1OlOlOO)F 

13 = (10000000)~ 

14 = (10000100)F 

15 = (10001000)F 

16 = (10010000)F 

Addition of 1 is easy in radix-F: We simply set did0 t 11 (which adds 1 to the value) 
and then use the “carry” rule 

(7) Oil+ 100 

as often as possible until there are no two l’s remaining in a row. Finally, we set de t 0. 
This procedure makes dr = 0 after the first carry, so conditions (Zl, 22, 23) continue to 
hold. 

In fact, if we begin with any digits (d,. . . dld0)F that satisfy Zl, we can systemati- 

cally apply (7) until both Zl and 22 are valid. This is obvious because the binary w&e 

(d, . . . dld& = 2”d, + . . . + 2dl + do increases whenever a carry is performed; therefore 
the process cannot get into a cycle. A given integer has only finitely many representations 
as a sum of positive Fibonacci numbers, so the process must terminate. 

We can also try to add two numbers in radix-F notation, using a variant of ordinary 
binary addition. First we simply add the digits without carrying; this gives us digits that 
are 0, 1, or 2. Then we can use the two carry rules 

(8) O(d+l)(e+l) --) lde 

(9) O(d+2)0e -+ 1dOe 

to restore the conditions Zl and 22. 
In fact, we can start with an arbitrary sequence of nonnegative digits (d, . . . dldO)F and 

systematically propagate carries by using (8) and (9), always working as far to the left 
as possible. Each carry increases the binary value, so the process must terminate with 
a final configuration (d: . . . d\ db)F. Since rule (8) is no longer applicable, we must have 
d’id’i,, = 0 for all i >_ 0. Since rule (9) is no longer applicable, we must also have di 5 1 
for all i 1 2. 

LEMMA 1. If di 5 2 for all i 2 2 and dl = do = 0, the carrying process just described 
transforms (d, . . . dldO)F into a sequence (d: . . . did;)+- that satisfies 21 and 22. 

PROOF: The result is vacuously true when s 5 1. If s > 1, the carrying process ap- 
plied to (d, . . . d3 0 0)~ inductively produces (di . . . didhd:)p with all d: 5 1, hence hence 
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(A. , . dsdzdldo)F is transformed into (di . ..di(d2+dh)dido)~. Ifdzfdk 5 1 orifdk = 1, 

further carries with (8) will lead to termination without changing d\. Otherwise we have 
d; = 0 and 2 < dz + d: < 3. If di = I, rule (8) clears di; otherwise rule (9) sets do + 1 
and only O’s and l’s remain. 

The addition procedure just described is not complete, however, since condition 23 might 
not be satisfied. If we can add two numbers without “carrying down” into positions dl 
and do, we say that the addition is clean. An unclean addition can be finished up by 

setting db t di and then carrying if necessary. 

Let K be the smallest subscript, k 1, in the Zeckendorf representation of n, when n > 0. 

Thus we have n = ( . . . 10 . . . O)F, with ii zeroes after the rightmost 1. 

LEMMA 2. If ?ii > 4 and 5 2 4, the radix-F addition m + n is clean. Moreover, m + n 2 
-- 

min(m, n) - 2. 

PROOF: Lemma 1 shows that radix-F addition never reduces the number of trailing zeroes 

by more than 2. 

Circle multiplication m on has a natural radix-F interpretation, because it is completely 

analogous to ordinary binary multiplication. Thus, for example, 

6 o 12 = ( 100IOO)F o (1010100)~ 

= (10010000)~ 

+ (1001000000)~ 

(10) + (100100000000)~ 

because we have j, = 5, j, = 2, k3 = 6, ka = 4, and ICI = 2 in the notation of (3); the three 

lines of (10) represent Et=, Fjb+kc for c = 1, 2, 3. These are “partial products” m o Fk,. 

Radix-F representation makes it easy to see that circle multiplication is monotonic: 

(11) I<m * lon<mon, for n > 0. 

For if we increase the left factor by 1, every partial product increases. 

LEMMA 3. Radix-F addition of the partial products of m o n is clean. 

PROOF: The partial product m o Fk has m o Fk = ET+ k 1 k + 2. Since k, >> k,_l >> 

k,-1 >> . . . > k1, we have, successively, 

m o Fk, i-m 0 Fkr_l 1 h-1, 

m o Fkt + m o Fk,_l -I- m 0 Fk,_z > h-2, 

. . . m 0 Fk, -I **a +moFkl 2 h, 

by Lemma 2; all of these additions are spanking clean. 
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THEOREM. Let the Zeckendorf representations of I, m, and n be 

Then the three-fold circle product is the three-fold sum 

(12) (Zom)on= fIkkF,.+j,+*.. 
a=1 b=l c=l 

PROOF: By Lemma 3, each partial product (I o m) o Fk can be obtained by a clean ad- 
dition of the partial products (I o Fj) o Fk of Z o m, shifted left Ic. Hence (I o m) o Fk = 

CL CL Fio+jb+ky and the result follows by summing over Ic = Li, . . . , k,. 

Since the sum in (12) is symmetric in I, m, and n, the circle product must be associative 

as claimed in (5). 
We can extend the proof of Lemma 3 without difficulty to show that the three-fold 

addition in (12) is clean. Hence we obtain a similar t-fold sum for the t-fold circle product 
of any t numbers. 

The Fibonacci number Fk is asymptotically 4”/&, where 4 is the “golden ratio” (1 + 

&)/2; hence we have 

(13) Fj 0 Fk N &FjFk 9 as j, k -+ CO. 

It follows that the circle product m on is approximately &mn M 2.23mn when m and n 
are large. But 1 o n is closer to qS2n M 2.62n; and 2 o n is approximately d3n M 2.12(2n). 

This paper was inspired by recent work of Porta and Stolarsky [2], who made the 

remarkable discovery that the more complicated operation 

m*n=mn+ ~qhrnj[&zJ 

is associative. Their “star product” satisfies m * n M 3.62mn. 
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