
USER GUIDE TO UNIX SYSTEMS IN THE CS DEPARTMENT VERSION 15 2
Read This first 2

Getting Help 2
The Apply Procedure 3

When to Run Apply 3
Choosing a Good Password 3
How to Apply (Running the Apply Procedure) to Get a UNIX Account 4
Show ID to Get Your New Account Approved 4
Top Reasons Your Account Will Not Be Approved 5
The tcsh Shell and Login Environment 5

Logging In and Communicating from Home 5
File Transfers 5
How to forward your email from cs.umb.edu 5

The MOST Basic UNIX Commands 6
The ls Command 6
Example: Copying an Assignment to your Directory 6
Help in UNIX 7
The "man" command in UNIX 8
UNIX Reference Books 8
UNIX Command Shell 8
Modules and Paths 8

Editors 9
The vi Editor 9

vi Command Mode 9
vi Insert Mode. 10
vi Last Line Command Mode. 10
vi - More Advanced Commands. This is still only a subset of the vi editor's commands. 10

Emacs 10
Email 11

The pine Email Command on UNIX 11
Getting mail on your PC through the Internet 11
Forwarding UMB Email 11

The C Programming Environment 11
The gcc Command: Compiling C Programs 11
The gdb Command: Debugging C Programs 12
The gdb Command - more advanced commands 13
The script command 14
UNIX file protection 15

Who's Who in the CS Program 16

2

USER GUIDE TO UNIX SYSTEMS
IN THE CS DEPARTMENT

Version 15
January 20, 2010

Read This first
This GUIDE is intended as an aid for UNIX systems users at the Computer Science Lab of the
Department of Computer Science at UMASS/Boston. This GUIDE was originally written for
students in CS240, but we hope it will be useful to everyone.
If you are new to this and are taking a course in which UNIX will be used, the first thing you
need to do is go to the UNIX LAB in S-3-158 (Science Building, Floor 3, Room 158.) See the
MAP in this Guide for directions. Note that all bold terms in this Read Me First section can be
looked up in the index for immediate reference. In the UNIX LAB you need to go through the
Apply Procedure, explained in a section below. After a few hours, assuming the Apply Proce-
dure worked, you should be able to perform the Login Procedure, explained in the section fol-
lowing the Apply Procedure. Various methods of performing login from home and executing
file exchanges from your home PC are also explained in that section.
Following this, we deal with UNIX commands for file creation and modification (Editors),
communication by email (probably the pine command), and program development (gcc, gdb,
script, file protection, etc.). The Guide ends with a Who's Who giving instructors and staff in
the department that you might wish to contact and a MAP of the departmental area, followed by
an Index for this document containing page numbers of all these terms and more.
Getting Help
If you need help with UNIX details, consultants are available in the UNIX LAB (S-3-158) or in
the adjoining UNIX Operations room (S-3-157) to the left of the UNIX LAB (the phone is
287-6480). If one consultant is unable to answer your questions, try another; they have various
areas of expertise. You can also use email (e.g.: pine) to ask for help: just address your message
to "operator@cs.umb.edu". Other students in the UNIX LAB are often helpful as well if you ask
them about simple early problems with the system. Phone numbers and UNIX email usernames
of instructors and graders are in the Who's Who Phonelist at the back of the printed version of
this GUIDE. You can also find email usernames, and sometimes other information about stu-
dents, instructors and graders, by using the finger command, explained below.
There are help pages on the CS Department Website. Go to www.cs.umb.edu and see a menu bar
near the top. Click on "Resources", and find near the bottom "Answers to Frequently Asked
Questions (FAQ)". For example, see "How do I log on to the CS Networks from off-site?"
For questions, requests and complaints about normal operations, mail "operator@cs.umb.edu".
This email will reach System Administrators: Rick Martin, username rickm, and Leonard David,
ldavid. (usernames turn into email names by adding @cs.umb.edu, e.g. ldavid@cs.umb.edu.
Various email usernames are also in Who's Who.
If you have suggestions for improving this GUIDE, please send mail to "poneil@cs.umb.edu".
Good luck with your Computer Science experience at UMass/Boston!

3

The Apply Procedure
When to Run Apply
The apply procedure is what you use to initialize your account, give your user name and pass-
word, and specify what course you are using the account for. You should go through the apply
procedure every time you take a new CS course, even if you already have a UNIX account. You
keep your home directory and username for the duration of your studies here, but the apply pro-
gram will give you a course directory, add you to the class mailing list and give you permission
to use any other resources that you may need for each course. Some courses require a special
server machine with unique capabilities (e.g., database use), and you should expect your instruc-
tor to tell you which one to use. Then after logging in, you can use the rlogin command to con-
nect to that machine as your home (or just connect directly).
Choosing a Good Password
Before applying, you need to choose a good password. We check how good your password is,
and will fail your apply if it is not up to specification. Of course if your first password is re-
fused by apply you can always try again! A good password is at least six letters and is not in
any dictionary or any list of people or place names. It combines numbers, upper and lowercase
letters, and ideally contains at least one non-numeric, non-alphabetic symbol (~<>|\#$%^&*).
Passwords are too easy to guess if they contain:
• any part of your name or name+initials or name+date
• any part of any name found in the password file
• names or words that are backwards
• words with a single digit added (like "pascal1")
• two small words put together (badbad, baddab)
• strings that are all numbers (123321)
• short or repeating nonsense words ("glup" or "frgfrg")
• acronyms or scrambled words (umbcslab, aajv011)
Cracking software comes with huge "dictionary" lists of words in many languages, real and
imaginary, and English transliterations of languages in other alphabets: Russian, Mandarin, Swa-
hili, Vietnamese, Arabic, Farsi, Hindi; all the words in the Koran; the CIA World Factbook's list
of every place name in the world; car names, people names, botanical names, science fiction
names, Klingon words. Here are examples of bad passwords modified from the Security FAQ:
• alec7 it's based on the users name (and it's too short anyway)
• 12345678 it's in a dictionary (and people can watch you type it easily)
• Computer just because it's capitalized doesn't make it safe
• wombat9 ditto for appending some random character
• 6wombat ditto for prepending some random character
• merde3 even for French words...
• mr.spock it's in a sci-fi dictionary
• zeolite it's in a geological dictionary

4

How to Apply (Running the Apply Procedure) to Get a UNIX Account
UNIX distinguishes between lower case and upper case, so you need to consistently type all of
your lines in lower case and end with a carriage return, unless directed otherwise.
To apply, you need to take the following steps:
• Read the previous section on Choosing a Good Password
• Proceed to a UNIX workstation in room S-3-158
• At the login prompt, type apply and press RETURN.
• At the password: prompt, press RETURN.
• Follow the rest of the instructions Very Carefully. See HOW TO APPLY on wall or ask

someone if you run into problems.
You will be asked if you already have an account on cs, meaning any CS Department computer.
If you are not sure if you have an account, see an operator in room S-3-157. If you have an ac-
count, please use your existing username.
If you do not already have an account, you will be asked to choose a username. Usernames can
be between two and eight characters. Your username MUST be all lower case letters or lower
case letters and numbers and should start with a letter.
We strongly suggest that you use the first letter of your first name, followed by the first 7 letters
of your last name, that easily identifies you. For example: "jmcnama" for James McNamara. If
someone else is already using your first choice you will see the password: prompt. This means
you will have to choose another name. Our example James McNamara might use: "jmcnam2".
You will now be asked for your real name. Type it in using uppercase and lowercase letters in
natural order, NOTE: "James Q. McNamara" not "McNamara, James Q."
You will be asked what password you want. Read the prior section in this Guide as to how to
choose a good password. Passwords are checked by a program that tries all the dictionary words
and additional "easy" passwords.
If you are applying for a new account, apply will ask you to choose a type of account: undergrad
or grad. Apply will now ask you to select the name of the course and instructor you are applying
for; type in a number of an item from the list, 1-18 (or so). You may choose more than one
course. When you have no new courses to add, type " q" for " quit" in place of a number.
Show ID to Get Your New Account Approved
If you have never had an account before on the system, go and show student identification to the
Operator in the UNIX Operations Room (S-3-157). ACCOUNTS ARE NEVER ACTIVATED
UNTIL YOU SHOW AN ID TO THE OPERATOR!
You should receive the account you asked for in a few hours. Test if the account exists by trying
to login, following the same procedure you did to apply, except that in response to the "login:"
prompt from the system you should respond with your username. You will then be prompted for
your password, and after providing it should see a UNIX prompt ending in "%".. If you do not
have an account after a few daytime hours have passed, go to the UNIX Operations Room (S-3-
157) and find out why. Do not run apply again unless the operator asks you to.
If you get an account but it has problems, send mail to "operator" or go visit one.
IMPORTANT: Never share your password with ANYONE. We have a strict one-account, one-
user policy. We can help you communicate with other systems and share group files without
sharing passwords. If you share your password you might lose your UNIX account.

5

Top Reasons Your Account Will Not Be Approved
1. You Do Not Show an ID to an Operator in room 157 (MOST common)
2. Your username starts with a number or a capital letter
3. You still have a prior account on our system that was disabled
4. Your full name field is nonsense or indecipherable
As explained above, after your apply has been successful, you can approach any workstation in
the UNIX LAB and duplicate what you did to apply. When the workstation prompts "login:" you
should reply with your username. Then when it prompts for a password, give the password you
chose and you should be successfully logged in (see a prompt from the system ending with
"%".). See the section below on The Most Basic UNIX Commands at this point, since you
should be in UNIX Command mode in the "tcsh shell". The remaining subsections of this Sec-
tion deal with details such as recognizing your shell (UNIX Command Environment), logging in
from home, and transferring files from your home PC to the UNIX Server and back.
The tcsh Shell and Login Environment
When you login to your UNIX account, you should see a prompt that begins with the host name
and contains the percent-sign, "%", like so:
blade41%
This is how you know you are in the tcsh shell. (Actually, this is the behavior of the slightly sim-
pler C shell too.) A Linux machine will have the "$" prompt instead and you should ask someone
for a UNIX machine to use. The tcsh (pronounced "tee cee shell" or "tee shell") is the shell
(command environment) you are given when you apply for the first time. The shell is the part of
UNIX that understands the commands you type. If you have the wrong environment, everything
will act strangely and you may have other problems, so ask the operators in (S-3-157) for help.
If you are reading UNIX books, pay attention to what shell the book is using in its examples.
Each shell is slightly different, so a program written for one shell often will not run on any of the
other shells.

Logging In and Communicating from Home
Most students have a PC at home and access our network via the Internet. Once you have an In-
ternet connection, if you have an IBM PC, connect your browser to http://www.puttyssh.org, and
download putty.exe from that site. When you run putty, select ssh in putty’s Configuration win-
dow. Then specify users.cs.umb.edu or whatever system you need to access at UMB. It will con-
nect you and show a login prompt, where you can enter your new UNIX username and password.
If you have a MacIntosh OS/X, you do not need to download a program. Simply open a Termi-
nal window and use the command “ssh -2 -l newname users.cs.umb.edu”, where newname is
your UMB UNIX username, and “-l” uses a lowercase L.
File Transfers
Go to www.cs.umb.edu & navigate to "Resources/FAQ" (as explained above), then click on
"How do I transfer files to/from my PC".

How to forward your email from cs.umb.edu
Create a file named .forward in your home directory with the user@host information of your
other email account on a single line, for example joe@hotmail.com.
Note that some students have a .umb email account, so we need to say .cs.umb for ours.

6

The MOST Basic UNIX Commands
These are the basic commands:
cat print out a file to your workstation screen all in one stream (see "more" below)
cd change directory - move from one directory to another
cp copy a file, to a file with a new name and/or in a different directory
login how to get online; explained in article on the apply procedure
lpr print a hardcopy of a text file on the lineprinter
ls list files existing in a directory - many different options, explained below
more print out a file to your workstation screen one page at a time
mv move a file from one place to another; or change name of file
mkdir create a new subdirectory
pwd print working directory - list the "pathname" of the directory you're in
rm remove, that is, delete named file
rmdir remove named subdirectory
CTRL-C (hold down CTRL key and hit C) interrupt current ongoing action
You need all of the commands above to function at all. If you do not understand the idea of tree
directory structure, read the overview book or get someone else to explain it to you.
The ls Command
The ls command lists the names of files in the current directory or in a directory named as an ar-
gument. The ls command has many options, which are hyphenated letters following the com-
mand that modify the action it performs. For example, filenames beginning with a "period" are
normally not listed, but such files will be listed if the "-a" option is used ("-a" stands for all files).
You can see the size in bytes, last modification date, and file protection for each file with the "-l"
option (for "format = long"). These options can be combined: ls -la or ls -al. The "man ls" com-
mand will show you a (numbingly complete) list of options for ls.
The ls command can also use wildcards, such as "*" to stand for an arbitrary string in a character
name. For example, to see only files whose names end with "*.c", representing C source files,
type:
blade41% ls *.c
The ls command only shows one directory at a time. To get a listing of all files ending with ".c"
in any subdirectory of the one you are in, you can use the more powerful "find" command:
blade41% find . -name "*.c" -print
The initial "." means to search down from the current directory, the "-name" means list the file
name, the " character is placed before the * to give the wildcard to find instead of it being inter-
preted by the shell, and the " -print" option at the end tells find to show you the results.
Example: Copying an Assignment to your Directory
As an example of a skill you need, you will probably be asked to get copies of homework assign-
ments from your instructor's directory. Let's say your instructor is Prof. Morris. You can find his
username with the finger command:
blade41% finger Morris
The command will give you any information it has about a user by that name (think of it as an
online "Who's Who"). If your instructor is Patrick O'Neil, O'Neil being a name with an embed-
ded apostrophe ('), quotes are needed around the name:

7

blade41% finger "O'Neil"
The command will give information on Patrick O'Neil and Elizabeth O'Neil, as well as any other
users with the same names. The finger command MAY also give you some extra information
which is in a file named ".plan" created by that user (poneil), for example containing schedule,
office hours, and home phone number. You can create a ".plan" file in your own main directory,
to give your home phone number, schedule, and whatever other information you want to make
available.
Knowing the username, you can move to poneil's home directory by giving the command:
blade41% cd ~poneil
Type pwd to see that you have been successful. Do ls -f to see what files and directories exist
(the directories will have an attached "/" sign). You should see "cs240" as one of the directories.
To move down into that subdirectory, you can simply type:
blade41% cd cs240
Now, pwd should show that you are in the directory /home/poneil/cs240. If you type ls again,
you should see a subdirectory "hw1" and you can now type "cd hw1" to get down to that direc-
tory. Type ls again, and you should see a file named "assignment". You could have shortened the
search above if you knew the subdirectory names in advance by typing:
blade41% cd ~poneil/cs240/hw1
Now you can type more assignment to list the assignment on your workstation screen. To copy
this file over to your own directory, type:
blade41% cd
alone on a line to return to your home directory. Now type
blade41% cd cs240
to get into your special course subdirectory. If you do not have a course subdirectory, you need
to run apply for cs240 for this semester and you will get one. Next type
blade41% mkdir hw1
to create your own hw1 directory. Now type "cd hw1" and copy the assignment over from poneil
by giving the command:
blade41% cp ~poneil/cs240/hw1/assignment .
The SECOND argument of this cp command is a single period, "." meaning that the files copied
should have the same name and be placed in the current directory. A full pathname could be used
instead:
blade41% cp ~poneil/cs240/hw1/assignment ~yourname/cs240/hw1/
Always be careful that you are in the right directory when you copy something into your current
directory using the "." argument; copying to the wrong directory is a common beginner's error.
You can always check where you are with the "pwd" command.
Help in UNIX
UNIX does not come with a built-in help command. Instead, the 'man' command displays pages
from the UNIX manuals.
We strongly suggest that you read the help sections on Frequently Asked Questions (FAQ).

8

The "man" command in UNIX
The man command comes with the UNIX system and provides descriptions of UNIX commands
in full detail. The detail can sometimes be quite overwhelming, but there is a lot of useful infor-
mation in these pages.
UNIX Reference Books
You might need to buy some sort of UNIX reference book. The CS240 class is using the UNIX
text "UNIX for Programmers and Users", [The Latest Edition] by Graham Glass & King Ables,
from Prentice Hall, referred to in what follows as Glass.
UNIX Command Shell
In the tcsh, the default UNIX command shell, there are two files in your directory which control
your environment: ".login" and ".cshrc". These files will not show up when you type ls alone,
because files whose names begin with a period are normally invisible. To see that they are there,
you need to type:
blade41% ls -a
You can edit these files to make changes to your options. The .login file has a section that is
commented as being too technical for a beginner. Prove us wrong if you want, but be warned.
If you make changes to these files and have problems, you can copy the original "new user" ver-
sion into your home directory, but you will also wipe out any useful changes you have made. To
perform the copy, give the following sequence of three commands:
blade41% cd (get to your login directory)
blade41% cp /usr/local/lib/.login .
(the second argument above and below, "." (period), means current directory)
blade41% cp /usr/local/lib/.cshrc .
Modules and Paths
In UNIX, commands can live in many different directories. Your "path" is an "environment vari-
able" which tells UNIX which directories to search for commands.
We use a package called Modules which allows you to set your path and environment variables
using "modulefiles."
Each modulefile contains the information needed to configure the shell for one application. Your
instructor may tell you to edit your .cshrc file and add a module for your course. Typically mod-
ulefiles instruct the module command to alter or set shell environment variables such as PATH,
MANPATH, etc. Modulefiles may be shared by many users on a system and users may make
their own collection to supplement or replace the shared modulefiles.
The command
module avail
will show you a list of installed modules. See man module for additional information on module
files. If you are accessing a database in your course, for example, you might need to check that
your PATH is set correctly.
NOTE: Make sure that needed environment variables are set in your .cshrc, not in your .login.
Your .cshrc is executed every time you start a shell (including X workstation windows, sub-
shells, shell commands from an editor, etc.;) but your .login is only executed once, at login, after
the .cshrc. This means that anything you set in your .login will not be set for sub-shells. Use your
.login to set your terminal type and do house-keeping, and put everything else in your .cshrc file.

9

Editors
There are two important editors in use on the UNIX System. These are vi and emacs. Addition-
ally, there is the ed editor, a very simple line editor, which does not require full-screen capabil-
ity. This was once useful for printing paper terminals, but the only reason to know it now is that
vi is based on ed and some manual pages refer to it.
The emacs editor is the most powerful one, but rather complex to master, and not available at
many sites. Some instructors recommend vi for new users, and others require emacs.

The vi Editor
The vi editor has a tremendous number of commands (too many) This article explains only the
basic commands. There's also a list of less frequently used commands, but this is still only a
small fraction of the total that exist. Don't worry though; most people who use vi never learn
most of the commands and never miss them.
You can create and edit a file with the name "fname" by typing:
blade41% vi fname
If the file "fname" does not already exist, an empty file with that name will be created. The vi
editor has three major modes of operation: command mode, insert mode and last line command
mode. You enter the vi editor in command mode, and your screen will show a window on the
first page of existing text in the file.
vi Command Mode
In command mode, you can move the cursor around using the "arrow" keys, or perform any of
the following actions by typing the character string commands without typing a return (you
will not see the characters, only the action):
command action
[n]x delete the [next n] character[s] under the cursor
[n]dd delete the [next n] line[s] under the cursor
[n]G or :n move cursor to line number n
G move cursor to last line of the file
i enter insert mode, before character under the cursor
 (need "i" to insert at beginning of line)
a enter insert mode, after character under the cursor
 (need "a" to insert at the end of line
o enter insert mode on NEW LINE created below current line
 (need "o" to insert new last line in file)
O enter insert mode on NEW LINE created above current line
 (need "O" for the first line in file)
: (colon :) enter last line command mode
ZZ save file and return to UNIX
Some of the commands may be preceded by an integer, symbolized by "[n]" in the above, which
repeats the command action "[n]" number of times. Thus, typing x three times deletes the next
three characters, or you can type 3x to do the same thing with a single command. The command
3dd will delete three lines, starting at the current line.

10

vi Insert Mode.
In insert mode, everything you type will be placed in the text. To leave insert mode and return to
command mode, hit the ESC key.
vi Last Line Command Mode.
The colon character, ":", will bring you from command mode to last line command mode. The
colon will appear at the beginning of the last line along with successive character you type, and
you should terminate these commands with a RETURN. Historically, last line mode is equivalent
to the old ed editor, and you may see these called "ed" commands:
command action
:w filename write contents of file to file "filename"
:w write to default filename the was opened by vi
:r filename read file "filename" into current buffer
:q (or :q!) quit back to UNIX without saving updates to file

The RETURN at the end of line returns you to the normal command mode.
vi - More Advanced Commands. This is still only a subset of the vi editor's commands.
command action
/string search forward in text to find "string"
?string search backward in text to find "string"
J Join the next line with the current one
 --i.e. delete intervening newline char
[n]yy yank (cut out copy) of next n lines
p paste yanked lines into text on new lines
 following current cursor
D Delete characters to end of current line

There is also an "ed" command to change text, which can be used by vi, like all ed commands,
by prefacing a colon to enter last-line command mode; this is particularly useful for global edits:
:m,n s/text1/text2/g
This will search from line m to line n and change all occurrences of text1 strings to text2.

Emacs
Emacs is more than an editor; it is a flexible, extensible command environment. However, it is
not available at all UNIX sites so being able to use the vi editor is a valuable skill. Where Emacs
is available -- for example at UMass/Boston -- some users spend all of their time online in
Emacs. Emacs has extensions to compile and debug programs, edit directories, manage files,
send mail, and read Usenet news. Emacs comes with its own LISP language.
Emacs also has a tutorial, and the best way to begin using Emacs is to start Emacs and run the tu-
torial. Enter emacs and then type CTRL-h-t (Hold down the Control key and type CTRL-h, then
release the control key and type t.) For a full listing of emacs command see the Emacs manual at
http://www.gnu.org/software/emacs/manual/emacs.pdf.

11

Email
The pine Email Command on UNIX
To read your mail using the pine mail program, give the UNIX command
blade41% pine
After you give this command, you will enter an environment with menus of single-letter com-
mands. The program pine has on-line help. The simplest approach for dealing with a MIME
message (with attachment) is to forward the message through pine to your personal email. There
you should be able to read the attachment and interpret the various formats: .pdf (through Acro-
bat reader), .doc (through Microsoft Word), etc.
Getting mail on your PC through the Internet
If you have a home PC with a connection to the Internet, you can retrieve your mail from our
mail machine. See the IMAP/POP topics in the FAQ section under "RESOURCES" on the UMB
Department Web Page Menu (www.cs.umb.edu). Our pop server is at pop.cs.umb.edu and the
smtp server is smtp.cs.umb.edu. Please use these aliases as they are guaranteed to work.
Forwarding UMB Email
You can forward your email from our site to your preferred email address. See "How to forward
my *@cs.umb.edu account email" in the FAQ section mentioned in the prior paragraph..

The C Programming Environment
The first course at UMass/Boston dealing with the UNIX System and C Programming is CS240.
The basic C texts are The C Programming Language, 2nd Edition, by Kernighan and Ritchie
(abbreviated "K&R"), and UNIX for Programmers and Users, Latest Edition, by Glass and Ables
(Referred to as Glass). There are a number of procedures you will need to master for CS240 that
we cover here, some of which are non-standard in the UNIX world. You will use the gcc com-
mand to compile your program, and the gdb debugger to run it under interactive control to find
errors in logic (debug the program). You will use the script command to prepare a turn-in that
demonstrates the workings of your program assignments.
The gcc Command: Compiling C Programs
The command gcc is the version of the cc command that we use in all programming classes; gcc
is "Gnu cc", part of the "Gnu" software from the Free Software Foundation; similarly gdb is the
Gnu debugger. To compile a C program, give it a filename ending in ".c", for example "prog.c"
then compile it by typing:
blade41% gcc prog.c
This creates an executable file known as a.out. You can see this in your directory using the ls
command, but don't try to edit "a.out", since the format is not one that can be viewed. If you type
a.out alone on a line, followed by a carriage return, you will execute the program. If you want to
give a specific name other than a.out to your executable file, say the name "runfile", you can
compile with the -o flag:
blade41% gcc prog.c -o runfile
and now typing runfile alone on a line will execute the result. To be able to debug your program
(as explained in the \index{gdb} article below), you would use the flag -g.
blade41% gcc -g prog.c -o prog

12

HINT: Do NOT name your program "test.c" or make an executable program called "test!" The
UNIX shell contains a "built-in" command called test and this will run instead of your program!
As you will learn in Chapter 4 of K&R, it is possible to have different routines of a single pro-
gram in different files. The different files might be named as in the example of Chapter 4: main.c
getop.c, stack.c and getch.c. Then you can compile all of these files at once into an executable
file named calc, allowing for debugging use, by giving the command:
blade41% gcc -g main.c getop.c stack.c getch.c -o calc
This command will create "object" files in your directory, main.o, getop.o, stack.o and getch.o.
These are files for which most of the compilation work has been done, but the final linked load
into the executable is yet to be performed. Now if you need to modify a single one of these files
to fix a bug, say stack.c, you can save a lot of time in recompiling by giving the command:
blade41% gcc -g main.o getop.o stack.c getch.o -o calc
By specifying the ".o" extension (suffix) on three out of the four modules named, the compila-
tion step is skipped, only one module is compiled, and the result is link loaded together with the
existing object files into calc.
In cs240 you will learn about the make command, which is a program that manages compiler op-
tions and program building. NOTE: It is good practice to ask gcc for more warnings than it gives
by default.
blade41% gcc -g -Wall prog.c -o prog
The Wall flag will give all (or almost all) warnings as well as errors. The makefiles for CS310
give more examples of options.
The gdb Command: Debugging C Programs
The gdb command lets you run a program so as to interactively control its progress and watch
the results of its operations; in this way you will be able to detect how bugs arise. The first step
in debugging a program is to compile it with the -g flag, as explained in the gcc command above:
blade41% gcc -g prog.c -o prog
Following this, you can give the command
gdb prog
The program is now loaded into the gdb environment, but it is not yet running. Before starting it
running, you will probably first wish to set up a "breakpoint", to make it stop when it reaches a
particular source line. As an example, you can set up a breakpoint to make the program stop after
it enters main() (a number of things can happen in running a program before the main() function
you wrote is entered), and then start it running, taking its standard input from some file named
infile:
(gdb) break main
(gdb) run < infile
To reduce confusion you will want to provide interactive input to the program through an infile,
so that all interaction during debugging is with gdb. After a breakpoint is reached, gdb will print
out the C language statement reached. You can now make the program progress through single
steps, executing consecutive source lines of program logic in the flow of control, by giving the
command:
(gdb) s -- s is for "step" -- enter and step through statements of function when
 a function call is encountered
(gdb) n -- n is for "next" - step, but skip over function calls

13

(gdb) r -- run program
(gdb) r small -- run program, and give it "small" as an argument.
(gdb) r < infile -- run program with input from file "infile".
As each step is executed, the corresponding source line will be printed out. You can type CR on
successive lines after the first command to perform successive steps. At any time where your in-
put is expected, you can print out the value of any variable in the scope of the current logic or an
expression involving such variables (such as 3*i), by typing:
(gdb) p 3*I -- p is for "print"; i is a variable in scope of current position
The type printed will be the type derived from the variables in the expression; if special output
formats are needed, you can use the "p/format" form for print:
(gdb) p/x 3*I -- x for hexadecimal, o for octal, d for decimal, f for float,
 c for char, s for string
You can also get the (default type) values of all variables in your scope by typing:
(gdb) i lo -- i is for "info" -- gives values of local variables and current stack level
(gdb) i var -- values of global and static variables
You can get relatively useful help messages while in the debugger by typing:
(gdb) h -- h is for help -- list of help topics
(gdb) h topic -- help on named topic
(gdb) h p -- help on print command (or any other command)
At any time, you can quit:
(gdb) q - q is for "quit", i.e. Leave the debugger.
The gdb Command - more advanced commands
So far we have only told you how to set a breakpoint at the entry to the main program, and how
to perform single steps in running the program. This is enough control only for very short pro-
grams. More generally, you need to be able to set breakpoints at arbitrary positions and continue
running the program after one breakpoint until you get to another breakpoint.
(gdb) b 36 - break at line number 36 of current source file
(gdb) b 36 if i==3 - break at line 36 of current source file if the variable i is equal to 3
 (A condition such as if "i==3" can be added after any breakpoint definition.)
(gdb) b fn.c:22 - break at line number 22 of source file fn.c in this executable
(gdb) b func - break at function "func" entry point (or in source file fn.c: b fn.c:func)
(gdb) i b - info breakpoints. Lists all breakpoints now set up.
(gdb) d - delete all breakpoints (d 1 for just #1).
An executable file (a.out if the -o option is not used) can be compiled from a number of source
files in C, and the will know about these source files and the lines they contain. To find source
line numbers so you can set breakpoints, use the following commands:
(gdb) l 23 - list to workstation screen 10 lines of current source centered at line 23
(gdb) l fn.c:22 - print 10 lines from source file in fn.c centered at line 22
(gdb) l func - print 10 lines around function "func" entry point (or l fn.c:func)
(gdb) l - print 10 or more lines after lines last printed
(gdb) l fn.c:1 - print all lines starting from line 1 in source file fn.fc
Some other commands for examining memory and program information are:
(gdb) i sources - info on sources - print the names of all source files
(gdb) i lo - info locals: values of all local vars, current function

14

(gdb) i var - info variables: values of global/static vars
(gdb) i s - info stack:calls made to get to this execution point.
(gdb) bt - same as i s
(gdb) where - same as i s
(gdb) up - go up one stack level (to caller)
(gdb) down - go down one stack level (to called function)
(gdb) x 0x20034 - examine memory address 0x20034
(gdb) x/s 0x20034 - examine memory, addr 0x20034, as a string (also x/f
(gdb) display x - prints x each time program stops
(gdb) whatis x - prints type information for x

NOTE: While running, CTRL-C brings you back to the (gdb) prompt to examine the program
state. This is useful for programs that are in an infinite loop or hung and for debugging perfor-
mance problems.
To begin running a program again after a break (including the first break at main) type:
(gdb) c - continue running program from stopped point
(gdb) c 22 - continue, don't stop at this breakpoint again until it is encountered 22 times

In setting a breakpoint we were allowed to give a condition (b 36 if i==3). In a counted continue
(c 22), the condition is not checked until the breakpoint has been encountered 22 times. To find
out what breakpoints exist and delete them:
(gdb) i b - info on breakpoints - returns list of breaknumbers
(gdb) d 3 - delete break number 3
(gdb) d - delete all breakpoints

You can create an array starting at any position to print out values all with the same type:
(gdb) p array[3]@12 - will print out values starting at array position 3 for 12 positions
You can also call your own function from within the debugger:
(gdb) p my_function () - calls a function
(gdb) call my_function () - same as p
(gdb) p my_function (10, "Boston") - call function with values
(gdb) p my_function (x, p->name) - call using variable values

Other gdb capabilities exist which are useful for heavy-duty debugging. There are some photo-
copied GDB Manuals (stapled, marked: "PLEASE DO NOT REMOVE FROM UNIX ROOM")
either in the CS Department UNIX LAB or in the CS Library in room 157.
The script command
The script command is used to make a record of an interactive session. If you type:
blade41% script (begins recording in file "typescript")
... (any sequence of commands)
blade41% exit (ends script command, closes "typescript" file)

you will create a file named "typescript" which contains all the keystrokes you type on the key-
board and all the characters which appear on your workstation screen. Your instructor may ask
you to create a script file to demonstrate your work. Commonly, you will be asked to list the con-
tents of your program (use the cat command), perform compilation, and exercise the program to
demonstrate that it works properly. The typescript file can be left in your directory or can be
printed out to be turned in at class.

15

Be careful that if you have a typescript file you don't wish to lose that you rename it (mv com-
mand) before giving the script command again, since the new script command will wipe out the
contents of the old typescript file.
Also DO NOT try to print out binary files (a.out or *.o files!) The printer cannot handle binary
files and you will create a huge mess.
UNIX file protection
When you are given a new account, you will start off with settings that make any file you create
readable by everyone else on the system. This is good because it lets you exchange information
easily with other users, and learn from them. However, your instructor will want to place restric-
tions on sharing assignment work, so new users will find they have a subdirectory for each
course they have applied for, cs240 for CS240, with special access control. Any file you create in
that directory will be protected from access by normal users ("others" in the file protection no-
menclature), although it will still be accessible to your instructor and grader (people in your
grading group).
The file protection settings used in UNIX are explained in any UNIX reference manual. The
command ls -lg shows file protection and group ownership. The chmod command allows you to
set protection on individual files or directories. There are three categories of readers: u for "user",
the original creator of the file, g for a member of a "group" with the user, and o for "other". Your
instructor and grader are members of your group, everyone else is other. You will be able, using
the chmod command to "add" (+) and "subtract" (-) capabilities for members of these user cate-
gories to have various kinds of access to your file. the types of access are: r for "read", w for
"write" (or "update" as in an editor) and x for "execute". To disallow other students from reading
and executing your file, fname, type:
blade41% chmod o-rx fname
while to allow such access use "chmod orx fname+". Notice that the standard meanings for these
types of access change when they are applied to directories; consider giving the command which
denies "x" access for the user category "o" on your directory, fname:
blade41% chmod o-x fname
The effect will be that other users are not allowed to execute a listing of your directory structure,
and therefore all files existing in that directory are protected from access (even if the files are
readable by "other", such users can't access them since they can't interpret the directory they sit
in). This is the type of protection you start with in your "cs240" directory.
In your course directory the protections have been set for you. It is important that you do not
touch the protection on any files in the course directory. For complex reasons, if you change the
protection you will not be able to correct it, and your grader will be unable to access your files.

16

Who's Who in the CS Program
Note that more information is often available through the command "finger username".
Office extensions are available within UMB by dialing the last five digits, starting with
7, e.g. 76444 for E. Bolker; from outside UMB, the area code is 617.
Full Name Office Phn. Office username [@cs.umb.edu] Home Phone (until <)
Faculty
Ethan Bolker 287-6444 S-3-189 eb 617-969-2892 < 9 PM !!
William Campbell 287-6449 S-3-183 william.Campbell@umb.edu 617-547-2738 < 9 PM !!
Ron Cheung 287-6474 S-3-075 cheungr
Wei Ding 287-6428 S-3-075 ding
Peter Fejer (Chair) 287-6463 S-3-184 fejer
Colin Godfrey 287-6479 S-3-088 cgodfrey
Nurit Haspal 287-6414 S-3-071 nurith
David Levine 287-6464 S-3-088 dlevine
Robert Morris 287-6466 S-3-176 ram
Elizabeth O'Neil 287-6455 S-3-169 eoneil 617-354-6460< 11 PM
Patrick O'Neil 287-6468 S-3-167 poneil 617-354-6460 < 11 PM
Karl Offner (work) 603-884-1468 S-3-092A offner 978-443-4697 < 10 PM
Marc Pomplun 287-6443 S-3-171 marc
Dan Simovici 287-6452 S-3-173 dsim 617-731-3297 < 9:30PM
Jun Suzuki 287-6462 S-3-168 jxs
Duc Tran 287-6452 S-3-070 duc
Robert Wilson 287-6475 S-3-176 bobw

System Staff
Leonard David 287-6477 S-3-072 ldavid
Richard Martin 287-6465 S-3-089 rickm
UNIX Operator 287-6480 S-3-157 operator

Office Support
CS Office 287-6440 S-3-181
Allison Christiansen 287-6476 S-3-182 allisonc CS Department Admin
Danielle Goncalves 287-6441 S-3-181 danielle Graduate Program Admin
John Lewis 287-6448 S-3-094A jmlewis

17

18

.cshrc file, 8

.login file, 8
apply procedure, 4

each new course, 3
Failure, 5

C shell, 5
compiler, gcc, 11

warning flags, 12
debugging with gdb, 12
editor

vi, 9
extension (suffix for a file, 12
file protection, 15
gcc compiler, 11
gdb debugger, 12
Glass text, 8, 11
gnu software, 11
home login, 5
Kernighan and Ritchie text, 11
logging in from home, 5
make command, 12

Map, 17
password

choosing, 3
pine email, 11
protection of files in UNIX, 15
script command, 14
shell

tcsh, 5
tcsh shell, 5
typescript file, 14
UNIX file protection, 15
username

choice, 4
vi

commands, 9
cut and paste, 10
last line command mode, 10
search, 10

vi editor, 9
Who's Who List, 16

