
- 2 7 -

n = n + 10; Shorthand expression like n++. Note you wrote a reverse
function yourself.

Example, with int of -253, generate '3', '5', '2', '-', '\0'. Then reverse.

Note function itoa is not in UNIX Library, function atoi on the other
hand IS in the UNIX Library. To achieve itoa, would use sprintfL

sprintf(s, "%d", n) /* char s[], int n * /

- 2 8 -

Daily Course Notes for CS240
Computer Architecture 1

Patrick E. O'Neil

Class 8.

Give QUIZ 1. Exam 1 on Class 14 through end of Chap 4: Open Book/Notes.
Hw 2 due next class. Hw 3 is or soon will be on-line.
Finishing Chapter 2 of K&R. Read K&R through Chapter 4.2.
We will go through Chapter 3 very quickly. Not a lot is new.

Any more questions from prior lecture?
Lots of little tag-ends now. Try not to tune out!

How to convert Uppercase chars to lowercase. VERY USEFUL.

int lower(int c) /* this is function tolower(int c) if
 #include <ctype.h> (see K&R, App. B2) */
{
 if (c >= 'A' && c <= 'Z')
 return c + 'a' - 'A'; /* c - 'A' is letter number... */
 /* ...where 'A' = 0, so c -'A' + 'a' is corresponding
 lower letter */
 else
 return c;
}

Idea of conversion, casts K&R Sect 2.7.

 char c1, c2 = 15;
 int j = 2379;
 float g = 12.1;

 printf ("%d\n", c2 + j); /* what is type, what printed out? */
 (int, 15 + 2379 = 2394)
 c1 = j; /* value of c1? */ (2379 % 256 = 75)
 printf ("%d\n", c1 + c2); /* value printed out? */ (90)
 printf ("%d\n", c2 + (char) j); /* value? */ (90)
 printf ("%9.1f\n", j + g); /* type, value? */
 (float, 2379. + 12.1 = 2391.1)
 printf ("%d\n", j + (int) g); /* type, value? */
 (int, 2379 + 12 = 2391)

- 2 9 -

Declarations and initialization. Section 2.4.

int x, a[20]; /* external vars, initialized to zero */
int w = 37, v[3] = {1, 2, 3}; /* happens once */

main ()
 . . .
func () /* entered 1000 times per second */
{
 int y, b[20]; /* automatic -- contains junk on entry */
 int s = 37, t[3] = {1, 2, 3}; /* happens on each entry */
 . . .
}

The C language never does a possibly significant amount of work without
this being specified by the programmer — unlike Java. The main()
function is treated just as func() is (could call main recursively).

Increment and decrement operators. Section 2.8.

 ++n and --n vs. n++ and n--.

Both ++n and n++ have effect of n = n + 1; Except that evaluating ++n as an
expression, n is incremented BEFORE n is evaluated, and in n++, value is
returned THEN n is incremented.

Example.
 int arr[4] = {1, 2, 3, 4}, n = 2;

 printf("%d\n", arr[n++]); /* values printed? */
 printf("%d\n", arr[--n]);
 printf("%d\n", arr[++n]);

Assignment operators. Section 2.10.

Just as i++ means i = i + 1; we have i += 3 means i = i + 3;
We can also use other operators.

 int i = 3;

 i += 3; /* value now? */ (6)
 i <<= 2; /* value now? */ (24)
 i |= 0x02; /* value now? */ (24 = 0x18. 0x18 | 0x02 = 0x1a)

Homework Exercise 2-9. (Cover Lightly)

- 3 0 -

Say why x &= (x-1) sets the rightmost 1-bit to 0: see below!. Use to write
faster version of bitcount. Example:

char x = 0xa4 has bits 10100100

x 10100100
x-1= 10100011
& 10100000 New value for x

Do it again.

x= 10100000
x-1= 10011111
& 10000000

Again.

x= 10000000
x-1 01111111
& 00000000 Bits all counted.

Conditional Expressions. Section 2.11. Example of z = max(a, b)

if (a > b) \
 z = a; | can be written: z = (a > b)? a: b; (see pg 53)
else / (Same as Java!)
 z = b; / (NESTS: can also write: z = (a > b)? a: ((x < y)? b: 0)

Can always do this as long as alternatives only set one variable value.

Note that precedence, pg. 53, specifies the binding order, not the temporal
order. Consider following two statements:

 n = 5;
 m = n-- + 7;

In second statement, grouping is: m = ((n--) + 7);

The value of n-- is evaluated first, but we still take value 5 for n. The
value of n is not decremented to 4 until the WHOLE EXPRESSION has been
evaluated (in this case, the whole assignment statement). Temporal order
of this kind is not specified by binding of operators in expression.

In fact (experiment), hard to predict sometimes. With the following code
fragment:

- 3 1 -

 n = 3;
 n = (n++)*(n++);

Do we get 3*3+1+1 = 11? It might be different on different machines, so
don't do this!

With "gcc" we get result 4! With gcc -O (optimize) we get 11!! (Optimized
compilation keeps result in one register and increments twice at end.)

printf ("%d %d\n", ++n, n); ??? Unclear what is printed out. Which
expression is evaluated first?

Chapter 3 next time. Very quick.

- 3 2 -

Class 9.

Read Chapter 4 for next time. Exam 1 on class 14 through end of Chap 4;.
Make-Up policy. Go over QUIZ 1 answers. Turn in hw 2. Should have started
hw 3 by now.

Here is an example of If-Else, section 3.2. You can study this, I will not
cover anything in class with a bar on the left. **Just like JAVA**

Example. If a number n is divisible by both 2 and 3, set the flag bit 0x08
in the char flag variable v. Otherwise, if it is not divisible by 5, set the v
bit 0x10.

n == 6 -- v = 0000 1000
n == 9 -- v = 0001 0000
n == 10 - v = 0000 0000
n == 30 - v = 0000 1000

Easiest way is:

 int n;
 unsigned char v;
 . . .
 if (n % 2 == 0 && n % 3 == 0)
 v |= 0x08;
 else if (n %5 != 0)
 v |= 0x10;

Is it appropriate to use else here? (Yes.) NEED else since second condition
and first overlap. If left out else, what would be different? (n == 6)
Now consider:

 if (n % 2 == 0)
 if (n % 3 == 0)
 v |= 0x08;
 else /* What is true here? (n divisible by 2, not by 3) */
 (else goes with second if — indentation of else is wrong)
Now this.
 if (n % 2 == 0) {
 if (n % 3 == 0)
 v |= 0x08;
 }
 else /* What is true here? */ (n not divisible by 2)

- 3 3 -

Consider:

 if (C1)
 ST1
 else if (C2)
 ST2
 . . .
 else if (Ck)
 STk
 else STk+1

Note. Could be that C1 and C2 and C3 intersect as conditions.
(Draw Venn diagram) But only ONE of the ST1 . . STk+1 ever get
executed.

Else-If. Sections 3.3. Consider the two constructions:
 int func1(int n) int func2(int n)
 { {
 if (n % 2 == 0) if (n % 2 == 0)
 n /= 2; n /= 2;
 if (n % 6 == 0) else if (n % 6 == 0)
 n /= 3; n /= 3;
 return n; return n;
 } }

What's the difference between the two? What is func1(12)? Answer: 2
What is func2(12)? Answer: 6 Work them through.

Switch. Section 3.4. Consider cascading else-if sequence:

 if (i == 1) /* NOTE: == */
 statement-1
 else if (i == 2)
 statement-2
 . . .
 else if (i == 49)
 statement-49
 else
 statement-50; /* The default of "catch-all" */

This is a standard way of choosing between a set of alternatives. But also
have switch statement in special limited situations. **LIKE JAVA**

- 3 4 -

 switch (i) {
 case 1: statement-1
 break;
 case 2: statement-2
 break;
 . . .
 case 49: statement-49
 break;
 default: statement-50;
 }

The way the if-else cascade works is to test if i == 1, then if that fails if
i == 2, When we test i == 27, we have performed 26 prior tests.

With the switch statement, we achieve the same effect, but probably
faster: usually compiled into assembly language as a jump table, an array
of "go to" instructions subscripted by the value of i, so that if i = 27 we
"look up" the goto at address 27 (only) and go execute that goto.

Else-if can be more general, not just simple tests whether a variable is
equal to a constant.

int axtoi (char s[])
{
 int i, n, flag;

 n = 0; flag = 1;
 for (i = 0; flag; i++)
 switch (s[i]) {
 case '0':case '1':case '2':case '3':case '4': /* fall... */
 case '5':case '6':case '7':case '8':case '9': /* through */
 n = 16*n + (s[i] - '0');
 break; /* need this so don't fall through */
 case 'a':case 'b':case 'c':case 'd':case 'e':
 case 'f':
 n = 16*n + (s[i] - 'a' + 10);
 break; /* could also have cases for A...F now */
 default:
 flag = 0; /* alternatively, goto ret; ... */
 break; /* then don't need flag */
 }
 ret: return n;
}

Note the need for a break statement. The default action is to cascade
down to the next case, and we must explicitly say when to stop cascading
and leave the switch. (In ***JAVA*** have "labeled breaks" to goto ret)

- 3 5 -

Break statement works for: for loop, while loop, do loop and switch.
Brings you to end of loop or switch statement ONE LEVEL ONLY. Use goto
to break out TWO OR MORE levels. IT IS OK TO USE GOTO as long as always
do it in a FORWARD direction. (Seen this above, then don't need flag.)

Break, continue, goto and labels. Section 3.7 & 3.8.

Continue Statement. Section 3.7. (Same as ***JAVA***)
The continue statement is like a break, except it causes next pass of loop
to start (break causes whole loop to end). Routine to bring Upper Case
letters in s[] to lower case.

void lower (char s[])
{ int i;

 for (i = 0; s[i] != 0; i++) {
 if (s[i] < 'A' || s[i] > 'Z')
 continue;
 s[i] = s[i] - 'A' + 'a';
 }
}

There are easier ways to do this, as in K&R example: if (is Upper Char)
something, rather than if not continue. Or could use if (TRUE) something,
else all other cases.

When would continue be a real use? When we are in the middle of a long
set of tests, lot of continues possible (not easy to give such an example).

For loop. Section 3.5. (Same as *** JAVA***)

Note any part of for loop can be left out. for(init; loop-test; increment)
If init or increment expression is left out, just not evaluated (program
must be initializing, incrementing by other means). If leave out loop-test,
assumed permanently true and loops forever. Must break or goto to end.

Comma operator: "," most often used in for (NOT in JAVA). Pair of
expressions separated by "," are evaluated left-to-right and type/value of
expression is type value of result. See P53, precedence.

- 3 6 -

#include <string.h> /* need this header file */
/* reverse: reverse string of characters s[] in place */
void reverse (char s[])
{
 char c, i, j; /* Single expressions with commas */
 / /
 for (i = 0, j = strlen(s) -1; i < j; i++, j--) {
 c = s[i]; s[i] = s[j]; s[j] = c;
 /* Note can write many statements per line */
 }
}

char t[] = "Hello, world";
reverse (Show how cursors move with this string. If instead of i < j, have
j >= 0, what does this do? (brings chars back into place).

Next example is just something you should know (if-else form not such a
big deal). Homework exercise on this.

/* binsearch: find x in v[0] <= v[1] <= . . <= v[n-1] */
int binsearch (int x, int v[], int n) /* returns subscript */
{ \
 int low, high, mid; (Would be int[] v in ***JAVA***)

 low = 0;
 high = n - 1;
 while (low <= high) {
 mid = (low + high)/2;
 if (x < v[mid])
 high = mid - 1;
 else if (x > v[mid])
 low = mid + 1;
 else /* found match */
 return mid;
 }
 return -1; /* no match */
}

Idea is same as 20 questions. Think of a number from 1 to 1000 (or 1 to
1024). (Have someone do this and ask what number is. Now show how to
guess it.) Is it > 512? Next: > 512 + or - 256? Only ever ask one
question.

Next go through binsearch with n = 11. v[] = { 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23}. Try with x = 11. Write it all out step by step.

low = 0, high = 10, mid = 5. 11 < v[5] = 13, so high = 4.
low = 0, high = 4, mid = 2, 11 !<= 7, 11 > 7, so low = 3, So on.

- 3 7 -

What if had chosen x = 10? All the same except now fall out of loop,
return -1.

Note often ask second question, but never asked second question in 20
questions. If we were charged money for the time spent to answer each
question, we'd take a different approach.

E.g., we were doing this in the code above: if (x < mid) do 1 else if (x > mid)
do 2, else return; /* on return we know x == mid */

Clearly not efficient -- we can do better. This is on the homework.

- 3 8 -

Class 10.

Exam 1 Class 14 through end of Chapter 4. (Hand out practice exam.) Bit
harder Make-Up Exam. Both Exams returned. Then WITHDRAWAL deadline.
BOOKS BEING RETURNED FROM BOOKSTORES SOON. LAST CHANCE.
Starting Chapter 4 for assignment due soon.

Sections 4.1 - 4.5. A program is a set of definitions of variables and
functions. The functions can occur in any order, and the source program
can be split into multiple source files.

We will be writing a program to input a stream of characters from stdin,
and parse the stream as an input to a reverse polish calculator:

 123 21 + 567 432 - * (Means: (123. + 21.) * (567. - 432.))

and then perform the calculations on a stack, leaving the final answer as a
single float number on the stack. (Book assumes double; our assignment
changes to int. We won't need to deal with negative numbers: 2 - 6 won't
happen, 6 - 2 will be OK.)

We use the following files containing functions. (leave following non-
indented lines up on board).

main.c: main() -- does the calculation. Uses getop, push, pop, atof. Pg 76.

 type = getop(s) - 123, type == NUMBER (i.e., 0): push(atof(s))
 type = getop(s) - 21, type == NUMBER (i.e., 0): push(atof(s))
 type = getop(s) - + , type == '+': push(pop() + pop())

getop.c: int getop(char s[]) — trivial parsing (returns NUMBER (value 0) or
char value, such as '+'), uses getch, ungetch.

stack.c: void push(double f) and double pop(void). Use nothing

getch.c: int getch(void) and void ungetch(int). Use nothing.

To compile the program, use form:

 gcc main.c getop.c stack.c getch.c -o calcit

- 3 9 -

TWO PHASES. Phase 1, Compilation of multiple files. Each compilation
knows only what it finds in each source file (with header files included).

After Phase 1, compilation, you used to see a set of what are called
"relocatable object" files, main.o, getop.o, stack.o, getch.o (standard
suffix .o), result of compilation; now these get cleaned up.

A relocatable object file is one where the compilation has been done (they
are binary files in machine language), but they still have not been loaded
together into an "executable" file, calcit (an executable file can simply be
entered and flow of control will progress).

Note, we will see shortly how we can still generate the .o files.

Phase 2, Load/Link. The relocatable object files have hooks which allow
them to be "loaded/linked" together at arbitrary positions in memory, and
so that a function call from one file will be found, located in another file.
(Demonstrate this.)

If we had to correct a bug in ONE of these files, getop.c, would not have to
recompile everything. Just Recompile the single file.

 gcc -c getop.c /* compile, generate getop.o file only, no load phase */

If you didn't use -c, would try to Load as well and fail because no main().
Now the load/link step can be done explicitly, by writing:

 gcc main.o getop.o stack.o getch.o -o calcit /* load all together */

A shorthand for the single file compilation and load/link is:

 gcc main.o getop.c stack.o getch.o -o calcit /* same as above 2 */

There is something called a "makefile" in the hw4 assignment directory.
If you type the command "make", the makefile will execute a set of rules
so that any source file, such as getop.c, which has been modified since it
was last compiled, will be recompiled, and calcit will then be reloaded.

Makefiles are particularly useful for large projects, with more than one
implementor. You are responsible for understanding makefile syntax. See
comments of file as well and make sure you can follow what's happening!

- 4 0 -

A makefile has a set of "rules" (Glass & Ables Ch. 11) of the form:

<target>: <dependency list of files used in creating target>
 <command to use to achieve target>

The <command> MUST be preceded by a TAB! It won't work otherwise. The
<target> is normally a file, but not always.

When you type "make", the rules of the makefile are considered. If a
<target> file is older than one of its dependency list of files, or nonexis-
tent, the rule is triggered and the command is issued automatically.

This continues until all files have ages that do not trigger rules. For
example, in the makefile of the hw4 assignment, we have four rules like:

getop.o: getop.c calc.h /* recompile if change header file */
 $(CC) -g -c getop.c /* $(CC) stands for gcc compile */

CC is defined early in the makefile with the line:

CC = gcc

Then using $(CC) causes substitution. There's also a rule to perform the
load:

calcit: main.o getop.o stack.o getch.o
 $(CC) main.o getop.o stack.o getch.o -o calcit

The user can type the command "make", or make with a named target.
"make getop.o", for example, to cause the rules leading up to the target
getop.o to be executed, if needed.

When the user types "make" without a target name, the FIRST rule listed
will be the default target constructed. Thus the "calcit" rule should be the
first rule listed.

Draw a tree to show how makefile views dependencies of time changes.
calcit above main.o & getop.o & etc., main.o above main.c & calc.h.

At the end of the makefile, there is a rule with a target name "clean".

clean:
 rm *.o

- 4 1 -

Since "clean" is not a file, there is no dependency list (ages of files don't
matter); this rule is only called when you give the command "make clean".
It deletes any files you want that will reduce the clutter in the directory.

Communication between files.

Recall that a program is a set of definitions of variables and functions,
possibly in several files. However, the normal scope of a function or
external variable definition lasts from the point of declaration to the end
of that file.

In order to have an external variable defined in one file known to logic in
another (foreign) file, it is necessary to use a special declaration in the
foreign file, an "extern" declaration.

In file 1 (where m is defined as a variable external to any function):

 int m; (like an "eye" of a "hook and eye")

In file 2, an extern declaration:

 extern int m; (like a "hook" of a "hook and eye")

This extern declaration tells the compiler and link/loader to look for the
name m of int type in a different file. Names like this are hooks in
compiled object files. If the extern declaration were not present, other
file declares would be invisible and compilation would announce that any
use of m, without a source-file local declaration, was illegal.

NOTE THAT AN EXTERNAL (GLOBAL) VARIABLE IS simply a variable whose
definition lies outside any function -- does NOT have to have "extern" first
(in fact such a declaration would not define the variable).

Note that extern definition can be inside a function. However cannot refer
to a variable defined inside a different function (scope is function only).

The same sort of thing occurs with functions. In one file, the function is
defined, in another file the "functional prototype" is given to make it clear
what the return type and argument types are (arguments of different types
in a function call will be converted as if casted). (Also need functional
prototype to describe functions coming later in same file.)

- 4 2 -

There is a difference though, in that the functional connection will be
made between files even if no prototype is used.

The compiler will make an implicit assumption when it first encounters a
function use — the compiler will assume a return type of int, and there
will be no argument conversion.

Thus, for example, the getop.c file must have functional prototypes for
getch() and ungetch(), and main.c needs prototypes for push(), pop(), and
getop(). Here is the file getch.c as it should be coded.

#include <ctype.h> /* OK to use C library functions, like
isdigit() IN THIS ASSIGNMENT ONLY!! */

int getch(void); /* functional prototypes */
void ungetch(int);

/* getop: get next operator or numeric operand */
int getop(char s[])
{ . . . } (LEAVE ON BOARD, MAY FILL IN LATER)

Similarly, main.c needs getop, push and pop. especially important since
double pop(void); is not the default return type.

Now there is nothing wrong with having more functional prototypes than
you need. Header files are a way of saving a lot of typing. A header file
will contain a needed set of functional prototypes and extern declared
variables, as well as #define statements, macro definitions, and typedefs
to be defined at a later point. When we say:

#include <stdio.h>

we are copying a set of declarations into the current file at this position,
from another file named stdio.h. The angle braces surrounding the file
name mean that the compiler will search for the file in a default directory
(e.g. /usr/include, but not for gcc). Go look at stdio.h in that directory.
We can also create our own file, in the current directory, calc.h, and write:

#include "calc.h"

Quotes surrounding mean search for the header file in current directory
(with source files). In our case, calc.h file contains the functional
prototypes for push, pop, getop, getch, ungetch, and at the beginning:

- 4 3 -

#define NUMBER 0

When you want to use math functions (SIN() or SQRT()), write
#include <math.h>, but also the compiler must be invoked with a special
f lag:

 gcc -lm . . . (lm means library, math)

Let's consider the getop, getch, ungetch functions. In getop(), we will try
to input a char string for a floating point number. But if the string ends
with a '+', we want to put that back in stdin, somehow, for a successive
invocation of getch. We do this with ungetch(). Here is the file getch.c.

#define BUFSIZE 100

static char buf[BUFSIZE]; /* buffer for ungetch */
static int bufp = 0; /* next free position in buf */

(static is difficult idea. When external, means variable can't be
referenced from another file even if declared extern; when
internal to a function, static means variable lives forever, not
on stack.)

int getch(void) /* get a pushed back?) char from stdin */
{
 return (bufp > 0) ? buf[--bufp] : getchar();
}
void ungetch(int c) /* push char back so can getch later */
{
 if (bufp >= BUFSIZE)
 printf("ungetch: too many characters in buffer.\n");
 else
 buf[bufp++] = c;
}
Go over logic. If still time, do getop, push & pop, then main.

- 4 4 -

Class 11.

EXAM 1 on Class 14. OPEN BOOK, NOTES, CLASS PERIOD.
FINISH UP Chapters 3 & 4, Start reading Chapt 5. Hw4 soon on-line.
Go over Hw 2 solns. Hw 3 due next class -- HARD DEADLINE!!

You are responsible for: 4.6 Static Variables.

An automatic variable is one normally declared inside a function: it
appears on the stack when the function is called and disappears when the
function returns (therefore it doesn't hold a value between function
invocations); the scope of the variable is private to the function (and
certainly private to the file containing the function).

Idea of external variable: if you declare a variable outside of any func-
tion, it does not appear on the stack, and holds values across all function
invocations (we can think of it as static, but that's confusing). It is ac-
cessible by any function in the file but is private to file UNLESS you de-
clare the same variable name and type "extern" in other file.

If declare a variable static outside of any function, it becomes private to
the file (cannot be referenced by "extern" from another file). KIND OF CON-
FUSING NAME! E.g., see pg. 82, static char buf[BUFSIZE], explained on pg. 83.

But Internal static means something QUITE DIFFERENT, and occurs if
define a variable INSIDE a function:

 unsigned int rand(void)
 {
 static unsigned int seed;
 . . .
 }

Such a variable is PRIVATE to the function (cannot be referenced outside
it) but does NOT appear on the stack and keeps its value across function
invocations.

4.11 C Preprocessor. Explain idea -- preprocessing before compilation.

4.11.1 #include copies other file (called header files, xxx.h) into source
file before compiling -- has been covered.

- 4 5 -

Note there is a rule that a header file should not contain definitions of
variables or functional code that takes up memory space at runtime.

Should only include declarations (of structs), #define statements, etc.

4.11.2 Macro Substitution (NOT in JAVA). Simplest form:

#define name replacement-text (e.g., #define NUMBER 0)

Single line, but can continue long definition using backslash character (\)

Macros are substitutions which have ARGUMENTS. Adds tremendous power!

#define square(A) ((A)*(A)) -- always enclose whole expression in ()s

Now if write in program: n = square(x) + 1;

will be replaced by:

n = ((x)*(x)) + 1;

Show how precompiler looks for Macro string and left parenthesis, assigns
argument replacement, then does substitution. n = square(p+1) + 1;

Be careful! Macros do not understand what they're doing, don't understand
about expressions. Only doing precise character substitution. If had
wr i t ten :

#define square(A) A*A

would translate: n = square(p+1); as:

n = p+1*p+1; Not what you expected. If p = 6, result is 13. Shows we
should have instead defined square(A) by: #define square(A) (A)*(A)

Recall that in stdio.h, getchar() is defined as a macro to improve perfor-
mance. See /usr/include for various header files! Now another example:

 #define exchg(t, x, y) {t d; d = x; x = y;\
 y = d;} - t is a TYPE

Note \ simply says to compiler following line is really same logical line.

- 4 6 -

What does the following macro do? The way it is to be used is to swap
the values of two variables, say they are u, v, and w of type char:

 exchg(char, u, v);

This will turned into the following text string (one statement per line).
 { char d; /* *NOTE* this dummy variable decl. is block local */
 d = u;
 u = v;
 v = d; }

Recall idea that function calls are CALL BY VALUE (can't exchange variable
values in a function unless pointers are passed). This is NOT true for
Macros, because the statements within a Macro expansion act like in-line
code!!!!!

Quick point. What does the following expand to (had on an exam)?

 #define move(t, x, y, z) {t d; d = x; x = y; y = z;\
 z = d;}

 move(char, u, v, w); --this will become (nxt pg, indented)

 {char d; /* this dummy variable declaration is block local */

 d = u;
 u = v; /* if start with u == 1, v == 2, w == 3,... */
 v = w; /* end with u == 2, v == 3, w == 1 */
 w = d; }

Substitutions do NOT take place within quotation marks. If we want to
print out the variable makeup of an expression and then the evaluated
value (e.g., x/y = 17.2) it doesn't work to do it like this:

 #define dprint(expr) printf("expr = %g\n", expr)

(%g is same as %f: see p 246.) In writing the above, we might hope that
when we encounter the following in the program logic:

 dprint(x/y);

We will see: x/y = 17.2 Instead, it will expand as:

 printf ("expr = %g\n", x/y);

Want to see line: x/y = 17.2
See instead: expr = 17.2, because there is no substitution in quotes.

- 4 7 -

However, there is a way to get around this, using a special convention
with the # character. When we define:

 #define dprint(expr) printf(#expr " = %g\n", expr)

The special form #expr means: (1) do substitution, (2) put quotes around
result. Now if we write:

 dprint(x/y);

this expands as:

 printf("x/y" " = %g\n", x/y); ** It Works! **

4.11.3 K&R Conditional Inclusion

There are a few reasons why we might want to control when precompiler
directives such as #define or #include are executed. This can be done at
precompilation time with conditionals meaningful at that time.

#if (works with conditions such as !defined(SYMCONST)
#ifdef SYMCONST (like saying #if defined(SYMCONST)
#ifndef SYMCONST (like saying #if !defined(SYMCONST
#elif (like else if)
#else (like else)
#endif (end scope covered by originating #if)

These conditionals work for any C statements in their scope, and can be
used to drop code (and the memory space it takes up) in some conditions.
For example, we might define a DEBUG condition.

#define DEBUG

Then we can print out certain information in that case

#ifdef DEBUG
printf (. . .)
#endi f

A software release might have different header files to for different UNIX
OS's. Then before main() we could show which OS is being used. Start with:

#define SYSV 100
#define BSD 101
#define MSDOS 102

- 4 8 -

And depending on which system is being used (say SYSV) we write:

#define SYSTEM SYSV (or we could write: #define SYSTEM 100)

Then we can define other symbolic constants in conditional way:

#if SYSTEM == SYSV
 #define HDR "sysv.h"
#elif SYSTEM == BSD
 #define HDR "bsd.h"
#elif SYSTEM == MSDOS
 #define HDR "msdos.h"
#else
 #define HDR "default.h"
#endif

#include HDR

Another reason for using such conditionals is that we often include header
files in other headers, recursively. It might happen as a result that we
include two headers that both recursively include another file.

It can lead to a compiler warning, maybe even an error, if the same func-
tional prototype appears twice in a compilation.

Therefore we do NOT want to include the declarations contained in a
header twice. The following precompiler conditionals achieve this, when
placed inside a header named xxx.h.

#ifndef XXX_HDR
#define XXX_HDR /* we don't need to provide a value here */
 (Next time XXX_HDR will be defined so #ifndef will fail)
. . . (contents of header file go here)
#endif /* XXX_HDR */

Register Variables. Section 4.7. For speed!

void f(register int n)
{
 register int i;

 for(. . .; . . .; i++, n--)

- 4 9 -

Gives a lot of extra speed for frequently modified variables. There are a
limited number of registers in a machine (where arithmetic is usually
performed -- have to load register from memory location of variable,
perform increment/decrement, store value back).

 L r1, VAR
 INC r1
 ST r1, VAR

Declaring a variable as a "register" variable is an advisory to the compiler
to make the normal location of the variable in the register (so don't have
to pick it up and put it back in memory).

Advisory only, because number of registers is quite limited, and only in
creating the code is it clear what is best. Still, usually works.

A static variable cannot be register type (use register for all time). Can
only have automatic variables and formal function parameters (treated
like local variables) as register variables.

A pointer is to a position in memory. If n is a register variable, can't use
expression &n!

Recursion. Section 4.10

Any C function you use may call itself recursively, either directly or after
intermediate function calls. Recall that each time a call is made, a frame
is placed on the stack, containing passed arguments, automatic variables,
and a position to return to.

int f(int u, int v)
{
 int w, x;
 . . .
 f(w+ 6, x -7)
 . . .
}

and call to f from main with values f (100, 100).

Show what stack will look like.

Only reason for recursion is that it may make the code easier to
understand.

- 5 0 -

Class 12. (Prior lecture marks end of material for Exam 1, but makeup
will include ptrs.)

Exam 1 Class 14, two classes, Graded Class 14, Make-Up after Class 15.
Go over solutions to HW3. HW4 on-line.

Now Chapter 5, pointers and arrays. Will be simple questions on Make-up.

Consider the declarations:

 int x = 1, y = 2, z[10];
 int *ip; /* ip is a pointer to int */
 \
 Always read *xp as: "the thing pointed to by xp"

When we declare a pointer, we do it indirectly by saying: "The thing
pointed to by ip is an int." We can never declare a pointer without saying
what type of object it is pointing to. A pointer could even point to another
pointer (which points to an int).

Now draw a picture of memory, with locations for x, y, z[0] . . z[9], and ip.

 _____________________ Memory Address (Hex)
 x 00...............001 1024
 y 00.............. 010 1028
 z[0] 102C

 z[9] 1054
 ip ...0001'0000'0010'0100 1058 (Junk init, later Hex 1024)

Now if we execute the following statements:

 ip = &x; /* ip now points to x -- draw arrow in picture */

This is another new operator, &, and the value of &x is "the pointer to x"

 y = *ip; /* y set to x (the thing pointed to by ip) picture */
 /* just as if wrote y = x; */
 ip = 0; / x is set to 0 */
 ip = &z[0]; /* ip now points to z[0] */
 ip = 3; / set z[0] to 3 */
 *ip = *ip + 10; /* set z[0] to 13 */

Note that & and * are both unary operators Look at table on pg 53.

 y = *ip + 1; /* adding 1 to the thing pointed to by ip */
 ip += 1; / incrementing the thing pointed to by ip */

- 5 1 -

Now look at:

 ++*ip; /* increment the thing pointed to by ip */
 (same as ++(*ip); binds first right to left)
 *ip++ (how bind? *(ip++). increment ip, return value)
 (*ip)++; /* increments thing pointed to by ip */
 (needs ()s, otherwise same as *(ip++); the thing pointed to
 by the incremented ip.)

It IS possible to increment a pointer. All machine addresses are byte
addresses, and a pointer is a number corresponding to the byte address of
the thing pointed to. When you increment a pointer, the pointer-address is
incremented by THE NUMBER OF BYTES IN THE THING IT POINTS TO.

For example a char pointer cp declared as

 char *cp;

when incremented, as in cp++, the pointer-address in machine terms will
be incremented by 1, but an int pointer-address will be incremented by 4,
and a double pointer-address will increase by 8. The int pointer however
is not THOUGHT OF as being incremented by 4, that's hidden from the C
programmer -- it's simply said to be incremented by an integer value, 1.

To reiterate what we covered earlier, recall that the following function

**** DOESN'T WORK **** **** POINTER VERSION INSTEAD ****
void swap (int a, int b) void swap (int *pa, int *pb)
{ { \
 int dummy; int dummy;
 dummy = a; dummy = *pa;
 a = b; *pa = *pb;
 b = dummy; *pb = dummy;
} }
(Left-hand example doesn't work in Java either, and no simple ptr fix.)
With the second version, to call swap to exchange the values of two
variables x and y, write: swap(&x, &y);

Section 5.3. Pointers and arrays. Declaration/Initialization

 int a[10], *pa = &a[0]; /* initialize pa to point to a[0] */

Note that although we read *pa as "the thing pointed to by pa", when we
are performing initialization in the declaration, * is part of the type. Then
really initializing pa, setting to the thing after the = sign, not *pa.

- 5 2 -

Now a point which is relatively difficult to grasp is that an array name
(without subscripting) and a pointer are treated in THE SAME WAY by C.
We could write:

 pa = &a[0]; or we can write the equivalent: pa = a;

It is as if the array name "a" was a specially initialized pointer which
points to the array element subscripted by 0.

But a is an unchanging (constant) pointer: a = a+1 is not possible; like
writing 7 = 7+1. (Also, defining (not just declaring) an array sets aside
space for contents! No contents declared when declare a pointer!)

Now we see that the way incrementation works for pointers is perfect for
picking off successive elements of an array it points to:

 *pa means same as a[0]
 *(pa + 1) means the same as a[1].
 *(pa + m) means the same as a[m].

Consider the example:

 int a[] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18};
 int *pa;

 pa = &a[3];
 What is the value of *(pa + 3) ?
 What is the value of *pa + 3 ?
 What happens when evaluate the expression *pa++? What is value?
 What happens when we evaluate ++*pa? What is the value?

Be careful: *pa++ evaluates from right to left, meaning that we can write
the parentheses as *(pa++), but the ++ still happens later in time !!!

Now perhaps even more surprising, we see that an array name can be
incremented in the same way as a pointer (in an expression -- it cannot be
changed permanently).

 *(a + m) is the same as *(pa + m), where pa = a.
 &a[m] is the same thing as a + m

On the other hand, *(pa + m) can be written as pa[m].

- 5 3 -

We are finally in a position to understand how C programmers deal with
strings in functions. Here is a variant of the way we used to do it.

 int strlen(char s[]) /* return count of chars before \0 */
 {
 int n;

 for (n = 0; *(s+n); n++)
 ; (use s+n as ptr, dereference, and test value non-zero)
 return n;
 }

We can call this with arguments such as: strlen(arrayname) or strlen(ptr)
where the array and pointer are of char type, or strlen("hello, world").
This can be made more efficient.

 int strlen(char *s) /* return count of chars before \0 */
 { /* strlen is a C library function */
 char *cp;

 for (cp = s; *s ; s++) (no sum)
 ;
 return s - cp;
 }

We don't keep track of the subscript n, only increment the pointer s; s is
just copy, so no real change to calling variable occurs; show on stack!

The expression s - cp has an int value, corresponding to the number of
elements we have advanced in the array s. Slightly more efficient: ALL C
programmers use pointers in cases like this.

Section 5.5. Here are another few programs using char pointers.

 void strcpy (char *s, char *t) /* copy t to s */
 {
 while (*s++ = *t++) /* stops when *t = '\0' */
 ; /* look at page 105 examples */
 }

Go over why this works. Note there is an assignment statement inside the
while (), not a comparison, and the copy stops AFTER the assignment to *s
of the final value 0.

- 5 4 -

Here's another one.

 /* strcmp: return < 0 if s < t (alpha order), > 0 if s > t,
 0 if s == t */
 int strcmp (char * s, char * t) (note can put space after *)
 {
 for (; *s == *t; s++, t++)
 if (*s == '\0')
 return 0;
 return *s - *t;
 }

Why this works. If ever see * s == '\0', since *s == *s, we know we have
compared strings and found no mismatch. Otherwise, on the first mis-
match (*s != *t), we will return *s - *t, < 0 if *s < *t and > 0 if *s > *t.

Another nice example (simplest form yet: see pg 39, K&R).

 /* strlen: return number of chars in s[] before '\0' */
 int strlen (char *s)
 {
 char *p = s;

 while (*p++)
 ;
 return p - s - 1;
 }

- 5 5 -

Class 13. Exam 1.
Class 14. Make-Up Next Class.
Hw 4 is on-line,

Review. Introduced pointers.

 int x = 3, a[] ={1,3,5,7,9,11,13,15,17,19},
 *pa = &a[4],*pb = &a[1];

 What is the value of: *(a + 2)? Same as a[2]
 What is the value of: pb - pa? -3
 What is the value of: pb[1]? Same as a[2]
 What is the effect of: *pa += 5? a[4] += 5
 What is the effect of: *(pa += 2)? pa = &a[6], value is a[6]
 What is the effect of: *(a += 2)? Illegal, can't increment a
 What is the value of: pa[3]? Same as a[9]

Recall pointer and array are just the same, except that array name takes
up no memory space and therefore can't take on a new value.

Valid pointer arithmetic is:
(1) Setting one pointer to the value of another pointer of the same type.
 pa = pb or pa = &a[3]
(2) Adding pointer and an integer: pa + 3, pa -5
(3) Subtracting or comparing two pointers to members of the same array
(same type): pa - pb, if(pa <= pb). Note: pa -pb is an integer.
(4) Assigning or comparing a pointer (of any type) to zero, also called
 NULL (in stdio). pa = 0; if(pa != NULL); BUT NOT pa > 0

Note that a NULL pointer doesn't point to anything (indicates a failure of
routine meant to return a pointer).
All other arithmetic is invalid.

If we add new declarations to above, which assignments below are valid?:

 char s[] = "Hello, world!", *cp = &s[4];

 cp = cp - 3; YES
 pa = cp; NO Might be: pa = (int *) cp; (alignment problem?)
 pa = pa + pb; NONONO
 s[4] = (cp < pa)? 'a': 'b'; NO
 s[4] = (cp > 0)? 'a': 'b';
 cp = NULL;

- 5 6 -

Section 5.6. Pointer Arrays; Pointers to Pointers. Recall that if we define

 char a[10];

We are setting aside space in memory for the elements of the array a, but
a can be treated as a pointer. We can write *a or *(a + 5).

Now think about the declaration:

 char *a[10];

What does the array a contain, class? (Pointers to char: strings!) Though
it's hard to think about, we could now write:

 **a, or *(*(a + 5) + 2) (The third char in the string ptd to by a[5]).

Now what is the use of keeping an array of pointers to char strings? book
gives the example of reading in a sequence of lines, placing them
"somewhere" (in malloc() blocks, perhaps) and building an array of
pointers to them.

 char *lineptr[MAXLINES];

 •-----> defghi
 •-----> klmnop
 •-----> abc

Then sort everything, changing the POINTERS rather than moving the
strings around (they might be quite long). More efficient as a sort.

 •--\/----> defghi
 •--/\/---> klmnop
 •---/\---> abc
 ___ (Relevant to hw4 tail problem)

How to write out lines in ptr order.

 void writelines(char * lineptr[], int nlines)
 { __ could be char **lineptr!!!
 while (nlines-- > 0)
 printf("%s\n", *lineptr++);
 } __ could be lineptr[i++],if had var i

- 5 7 -

How to write out the hex ascii value of the third char in each line. Change
printf to: look up
 /
 printf("%x\n", *((*lineptr++) + 2); (%x does not expect ptr)

Section 5.10, Command-line arguments. The main() function is provided
arguments by the runtime C environment. (Must declare them to use them.)

 main (int argc, char *argv[])

The value of argc is the number of char strings in the array argv[] (array
of ptrs to command line tokens separated by white space).

argv[0] always points to the name of the runtime name typed in by the user
to invoke main, and if there are no other arguments then argc = 1.

If there are other arguments, for example, if the program was compiled as
echo, and the user typed

 echo hello, world

then argc will be 3; argv[0] points to "echo", that is: e c h o \0, argv[1]
points to "hello," (comma in token), and argv[2] points to "world". argc
counts the number of strings pointed to, starting with subscript [0]

The program can print back the arguments typed in by the user after echo
(this is the meaning of calling the program "echo").

 int main (int argc, char *argv[]) (Picture: argc = 3, argv[])
 {
 while (--argc > 0)
 printf("%s%s", *++argv, (argc > 1) ? " " : "");
 printf("\n");
 return 0;
 }

Note that *++argv starts by pointing to first argument, incrementing argv
(copied pointer, not array name, and therefore incrementable) to AFTER
argv[0] which contains a pointer to program name. Stop when --argc == 0.

Nice example given in Section 5.10. The program compiled with the run
file name find looks for a pattern in standard input and prints out lines
found. Want to add options -x and -n to the invocation: find pattern.

- 5 8 -

 find [-x] [-n] pattern

could also be find -xn pattern. -x means all lines except the lines with
this pattern (e.g., students who do NOT have "U.S." in line), and -n means
include line number in print out (location of reference in 20,000 lines of
help text).

Program will parse first, set of option flags: except and number. Loop to
parse options and set up flags is:

DRAW argv[] What is meant? loop through argv entries while first
 / char ptd to is '-' (maybe find -x -n pattern)
 while (--argc > 0 && (*++argv) [0] == '-')
 while (c = *++argv[0]) <--- What meant? incr ptr to string
 switch (c) { of arg, maybe more than one not '\0'
 case 'x' : except = 1; break;
 case 'n' : number = 1; break; (maybe find -xn pattern)
 default : printf("find: illegal option %c\n", c); break
 }

Very important how (*++argv)[0] and *++argv[0] differ.

- 5 9 -

Class 15. START USING LIBRARY FUNCTIONS!!

Skip 5.7, 5.8 for now. Will not cover Sect. 5-12, complex declarations.

Sect 5.4. Idea of alloc and free. The call p = alloc(n) returns a pointer p to
a block of usable space, n characters in length, to be used by the program,
which gives the block of space back when it is finished by calling afree(p).

Example in Section 5.4 is "rudimentary", meaning that it must be called
last alloced, first returned. Stack-like. Draw diagram, left-to-right.

 #define ALLOCSIZE 10000 /* size of available space */

 static char allocbuf[ALLOCSIZE]; /* storage for alloc */
 static char *allocp = allocbuf; /* next free position */

 char *alloc(int n) /* return pointer to n character block */
 {
 if (allocbuf+ALLOCSIZE-allocp >= n) { /* if request fits */
 allocp += n; /* point to after this block */
 return allocp - n; /* return p pointing to this block */
 } else /* not enough room
 return 0;
 }

 void afree (char * p) /* return block pointed to by p */
 {
 if (p >= allocbuf && p < allocbuf+ALLOCSIZE) /* ptr OK? */
 allocp = p;
 else
 printf("Error in afree call, return ptr %x\n", p);
 }

Explain. if() in alloc might better be:

 right of new allocation fits to left of right end of allocbuf
 / /
 if (allocp + n <= allocbuf + ALLOCSIZE)

if() in afree is too trusting in book. Might better check a bit more:

 if (p >= allocbuf && p < allocp)

If not, there is an error. I added the else ERROR in afree()

There are better functions malloc() and free(), library functions (so we
will have to use other names if we write our own).

- 6 0 -

Former hw 5 asks you to write better alloc and freef. Explain a bit of this
later, allow as special extra-credit homework.

Section 5.11. Pointers to Functions.

The idea here is that we sometimes want to make a procedure insensitive
to variations in data by passing pointers to functions. The functions
pointed to will handle these data variations differently. The example
given is to sort things, either numerically or lexicographically.

Note that the char string "123" is less than the char string "2", but
atof("2") is less than atof("123"). strcmp(char *s1, char *s2) will do the
first kind of compare. (Returns <0, 0, >0.) Create

 int numcmp(char *s1, char *s2)

to do the second kind, convert s1 and s2 to double, and return appropriate
-1, 0 or 1.

Now declare qsort (not same as qsort of C library, pg. 253:

/* qsort: sort v[left] . . . v[right] into increasing order */
void qsort(void *v[], int left, int right, int (*comp) (void *, void *))
 { . . . }

See page 120. I will go into detail on this function in a moment.

Note that the declaration: void *xx means xx points to ANY type (used in
arguments). So void *v[] declaration adds to flexibility to sort other type
objects in future. Don't want to make qsort() routine aware of all types.
Any pointer can be cast to (void *) and back without information loss.

Now argument in qsort: int (*comp) (void *, void *)) is a function pointer
declaration, of a function with two arguments returning an int.

The declaration: int *comp (void *, void *) would be a function returning
a pointer to an int (and should not appear as an argument of qsort).

Note implicit declaration: *comp is a function. Function would be decl:

 int xx(void *, void *); <-generic compare.

- 6 1 -

The var comp is a fn pointer. It gets invoked in the body with the call:

 if ((*comp) (v[i], v[left]) < 0) . . . (*comp) is the function pointed at.

Now look at the main() routine in pg. 119, where qsort is called. (Copy
pgm on board.) Call looks like:

 An array of pointers to things (chars?)
 /
 qsort((void **) lineptr, 0, nlines-1,
 (int (*) (void *, void *)) (numeric ? numcmp : strcmp));
 \
 this is a cast to function ptr of either numcmp or strcmp

Cover qsort logic: Idea. (1) find some value in array, move all smaller
values in the array to earlier positions, all larger values to later
positions. (2) Now recursively repeat 1 with the smaller values ; do the
same with the larger values. End up with all values sorted.

Copy qsort routine on board (pg. 120); example: v[0] to v[5] = (9, 5, 7, 1, 3}

Works well as long as each value found has about the same number of
array elements larger and smaller. Efficiency of 20 Questions.

* NOTE: We will not cover Section 5.12, Complicated Declarations.

Chapter 6. A struct is a collection of variables, possibly of different
types, grouped under a single name for common reference as a unit.

Example of a point in coordinate space, point p in x-y space follows:

 tag (optional)
 / ^
 struct point {
 int x; <-- members •(4,3)
 int y; <--
 } pt; __________>
 \----- struct variable
or struct {
 int x, y;
 } pt, q;
 pt q
 ------------ -----------
 pt.x pt.y q.x q.y
Layout in memory: |-----|-----|-----|-----|

- 6 2 -

Given that we have the tag, point, can declare other variables
(structs) by

 struct point pt1, maxpt = {320, 200};
 ** struct point is like a new "type' **

Reference to members:
 /-- prints out as (320, 200)
 pt1.x = 320; pt1.y = 200; / ^
 printf("(%d, %d)\n", pt1.x, pt1.y); ________• pt2

Struct inside a struct (nesting).

 struct rect { •_______
 struct point pt1; /* lower left */ pt1
 struct point pt2; /* upper right */
 }; ______________________>
 struct rect box;
 box

 box.pt1 box.pt2
Memory layout of box: ----------------- -----------------
 box.pt1.x box.pt1.y box.pt2.x box.pt2.y
 |---------|---------|---------|---------|

Idea is that pt1 is lower left hand corner and pt2 is upper right hand
corner. I.e., box.pt1.x < box.pt2.x && box.pt1.y < box.pt2.y

 int rectarea (struct rect box) /* Find area of a rectangle */
 {
 return (box.pt2.x - box.pt1.x) * (box.pt2.y - box.pt1.y);
 }

- 6 3 -

Class 16. Quiz 2 Class 18. START USING LIBRARY FUNCTIONS!!

Hw 5 up, structs ptrs. Review structs. struct point; struct rect;
Layout in memory. Assignment: 5.1-5.5, 6.1-6.5, 6.9. Read through 6.5 for
next time or you might have problems following class.

What can we do with a struct? (1) Reference member: rect.pt1.x (2)
Assignment of entire struct: pt1 = pt2; (3) Create a pointer to: p = &pt1;

(Need declaration: struct point *p;)

Not legal to compare whole struct: pt1 == pt2 (INVALID)

/* ptinrect: return 1 if point p in rect r, 0 else */ (LEAVE UP)
 int ptinrect (struct point p, struct rect r)
 {
 return p.x >= r.pt1.x && p.x <= r.pt2.x
 && p.y >= r.pt1.y && p.y <= r.pt2.y;
 }

Suggest to class they try to create ptbordrect, which returns 1 if point p
on border of rect r.

Pointers to structs. As we mentioned earlier, can declare a pointer to a
st ruct .

 struct point *pp;

 /-- (look at precedence)
Then can refer to (*pp).x and (*pp).y, but it is more common to use the
notation: pp -> x (same as (*pp).x) and pp -> y (same as (*pp).y) instead.
 \--- (careful: pp points to struct, x names member)

 struct rect r, *rp = &r;

 (rp -> pt1).x = 22; (same as saying r.pt1.x = 22;) (or
 (*rp).pt1.x = 22;)

 -> is hyphen followed by GT symbol

Highest precedence on p 53: . , -> , () (function calls), [] (subscripts)
(know everything about precedence now!)

 struct string {
 int len;
 char *cp;
 } *p;

- 6 4 -

Then ++p -> len goes to ++(p -> len), increments len !
 *p -> cp goes to *(p -> cp), and it is a char !
 *p -> cp++ goes to *((p -> cp)++) is a char, and cp gets
 incremented after reference.

Translate ptinrect() to ptr based.

 /* ptinrect: return if point p pointed to by pp lies in rect r
 pointed to by rp, 0 otherwise */ (SEE LEFT UP FN)
 int ptinrect (struct point *pp, struct rect *rp)
 { ** GO SLOW **
 return pp -> x >= rp -> pt1.x && pp -> x <= rp -> pt2.x
 && pp -> y >= rp -> pt1.y && pp -> y <= rp -> pt2.y;
 }

Section 6.3 Arrays of structs. Let's consider a new struct type, colored
rectangles, for graphics display.

 struct crect {
 struct point pt1;
 struct point pt1;
 char color;
 };

When passed to graphics display routine, draw rectangle and fill in color.
If this is only display object, there is some limit of number on a screen,
say 100 -- then can declare a screen of them.

 struct crect screen[100]; (screen[3] is now a struct of type crect)

Reference to screen[33].pt1.x for example. Come back to later. Note that
because structs are often declared in headers, and programs sometimes
use them without knowing their internal structure yet need to be able to
know their size, have preprocessor functions defined in stddef.h:

 sizeof(struct crect) (for types, use parens, returns 20 for bytes) and
 sizeof screen (for variables such as screen, returns 2000)

sizeof (in number of bytes) evaluated in precompiler; you might guess size
of char array wrong, but sizeof works. Will also work for ordinary types:
sizeof(double) or sizeof db, where earlier declaration of form: double db;

- 6 5 -

Class 17. Typedef. Quiz next time on Chs. 5 & 6 through Section 6.6.

Now to prepare for Memory Allocation assignment, hw4, we skip ahead.

Section 6.9, bit fields.

Idea, might want to "pack" information, several bits at a time, into a
larger data item, a (four-byte longword?) in memory, to save space.

The book gives the example of naming flags in a word. Uses struct form:

 struct {
 unsigned int flg1 : 1; /* ": 1" means "1 bit in length" */
 unsigned int flg2 : 1; <-- These are called "fields"
 unsigned int flg3 : 1;
 } flag; /* variable */

Minimum size data item is implementation dependent, as is order that
fields sit in memory. But here's an idea of layout in memory.

 flag (flg1, flg2, flg3)
 \\\
 |--------|--------|--------|--------|

Can set values (in this example: flag.flg1 = 1; if (flag.flg1 = 0), etc. But
we can have LONGER fields, like little integers. (Change flg1 : 1 to : 2.
Now can use integers 0, 1, 2, 3. flag.flg1 = 2; if flag.flg1 > 1), etc.

Bit fields are used when want significance of number other than 8 bits
(char),16 bits (short on some machines) or 32 bits (long on most
machines). Used in hw6 assignment.

 struct blockr {
 unsigned tag : 8;
 unsigned size : 24;
 };

Now introduce alloc and freef assignment, hw5.

 struct blockl { Later
 unsigned tag : 8; static struct blockl
 unsigned size : 24; *freep /* head of chain */

struct blockl *nextp; *cursorp /* into chain */
struct blockl *prevp;

 };

- 6 6 -

Now consider the idea of a Binary tree given in Section 6.5. Nodes contain
pointer to left children and right children.

Words encountered in stdin are inserted into nodes as "keyvalues" to look
up an inforec (here just int count of number of times word encountered).

struct tnode { /* the tree node PUT ON BOARD
 char *word; /* points to the word encountered */
 int count; /* could be more general inforec */
 struct tnode *left; /* left child: words < one at this node */
 struct tnode *right;/* right child: word > one at this node */
};

As encounter new words (C identifiers) in stdin, we add nodes to tree so
far built, set count to 1; if word already exists, increment node count by
1.

Picture of binary tree, page 139, as encounter words: Now is the time for
all good men to come to the aid of the (instead of their) party.

Here is code to do this on pg 140. ***NOTE*** that from now on in the
course you are encouraged to use library functions whenever possible and
learn everything about the library functions in Appendix B of K&R.

#include <stdio.h>
#include <ctype.h> (see functions in App. B2, pp. 248-249, K&R)
#include <string.h> (see functions in App. B3, pp. 249-250, K&R)
#define MAXWORD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);
int getword(char *, int); (***ASIDE TO LOOK AT THIS, pg. 136***)

int getword(char *word, int lim) {
int c, getch(void); void ungetch(int); char *w = word;
while (isspace(c = getch())) /* skip spaces; c first non-space */
;

if (c != EOF) *w++=c; /* c might be EOF here (empty word) */
if(!isalpha(c)) { /* c (identifier) starts with alpha */
w = '\0'; return c; / if not, have single char or EOF */

}
for(; --lim > 0; w++)
if (!isalnum(*w = getch())) { /* identfier alpha or digits */
ungetch(); break; /* e.g., + might be needed later */

}
*w = '\0'; return word[0];

}

- 6 7 -

int main()
{
 struct tnode *root; /* ptr to root for binary tree */
 char word[MAXWORD]; /* word to get from stdin */

 root = NULL; /* initially, no tnodes in tree */
 while (getword(word, MAXWORD) != EOF) /* getword from stdin */
 if (isalpha(word[0])) /* from ctype.h library */
 root = addtree(root, word); /* expect not NULL anymore */
 treeprint(root); \ /* print it out in order */
 return 0; \
} OK that root ptr points to NULL; it is set recursively

Now here is addtree. Need a few functionson pg 142 &143 (See below).

struct tnode *talloc(void); /* allocate. return ptr to tnode */
char *strdup(char *); /* allocate space, copy word there */

struct tnode *addtree(struct tnode *p, char *w)
{ /* p may be NULL */
/* finds place in tree for word; increments count if found, */
/*...else extends tree -- recursive */
 int cond;

/* for empty tree, root is NULL */
 if (p == NULL) { /* nothing at this node yet */
 p = talloc(); /* allocate a new node */
 p->word = strdup(w); /* allocate space, copy word there */
 p->count = 1; /* count is 1 */
 p->left = p->right = NULL; /* this works; see precedence */
 } else if ((cond = strcmp(w, p->word)) == 0) /* string.h */
 p->count++; /* repeated word, increment count */
 else if (cond < 0) /* note cond remembers strcmp above */
 p->left = addtree(p->left, w); /* less: go left subtree */
 else /* more, go to right subtree */
 p->right = addtree(p->right, w);
 return p;
}

Note, of course, that addtree is recursive. If it has to add a node, might
need to add root or any left or right child anywhere down the tree.

We pass in as first argument struct tnode *p, and also pass back the same
type: always the node we are at the current recursive nesting level.

This means that when main() calls addtree, it resets root value EVERY
TIME, even if the root has been created long ago. Allows deletion.

But any time a new node is created, at root or p->left or p->right from
node above, will be set for the FIRST time by return from addtree.

- 6 8 -

Why do we need to pass back struct tnode *p? We have struct tnode *p as
an argument. Can't we just set it there?

That is, couldn't we return void from addtree and write (in main):
 addtree(root, word); instead of root = addtree(root, word); ?

The answer is no, because addtree would be unable to modify root -- we
would have to pass a pointer to root before it could be modified.

Even though root is already a pointer, struct tnode *p, it is p that must be
modified. We would have to declare addtree with a pointer to p as arg 1:

void addtree(struct tnode **p, char *w);

and call it from main (and recursively) by the invocation:

addtree(&root, word);

before addtree could set the value for root directly instead of by return.
Same is true of lower levels when add left or right child.

Now consider how to write talloc to allocate a tnode and return a pointer.

struct tnode *talloc(void)
{
 return (struct tnode *) malloc (sizeof(struct tnode));
}

Now the strdup function to create space for a character string, copy a
word into it (up to null terminator) and return the char pointer.

char *strdup(char *s)
{
char *p;

 p = (char *) malloc(strlen(s)+1); /* +1 for null, '\0' */
 if p != NULL /* would mean malloc failed */
 strcpy(p, s); /* see library function in string.h */
 return p;
}

Note need to return p, and how in addtree(), when we found a passed tnode
pointer p was NULL, we first created the node, then filled in the word:

 p = talloc(); /* allocate a new node */
 p->word = strdup(w); /* allocate space at p->word, copy w there */

Another function that allocates space, does something, and returns the
ptr .

- 6 9 -

You are responsible for Table Lookup in Section 6.6, although it is not
going to be covered in class (used in hw4). There are good Exam questions
about this.

- 7 0 -

Class 18. Note: QUIZ Next class; we will start covering Glass &
Ables UNIX. You need to bring G&A to class for Quizzes, etc.

Section 6.8. Unions.
Union is like a struct in every respect, including form of pointer to union.
contactp -> noorg.address. Members of a union are like in struct, except
they OVERLAY each other.

Example: employee is either represented by Organized labor or not. If
Non-Organized, need to keep home address and telephone for contact in
event of extra shift work offerings; if Organized, contact should be made
through the Shop Steward. Have structs: (PUT ON BOARD)

 struct isorg {
 char steward[20]; /* shop steward name */
 char phone[12]; /* phone number, with area code */
 };
 struct noorg {
 char address[30]; /* employee home address */
 char phone[12]; /* phone number of employee */
 };

 struct employee {
 char age; /* between 18 and 65 */
 char dept[20]; /* department name */
 char orgflg; /* 1 if organized, 0 if not */
 union contact { /* one of two possibilities */
 struct isorg iso;
 struct noorg nono;
 } contct;
 } emp;

Have code like:

 if (emp.orgflag)
 printf("Contact through shop steward, %s, phone: %s\n",
 emp.contct.iso.steward, emp.contct.iso.phone);
 else
 printf("Contact directly at: %s, phone: %s\n",
 emp.contct.nono.address, emp.contct.nono.phone);

- 7 1 -

Space taken up in union is max space of members: in example above, it is
30 + 12 (or to be safe: sizeof(struct contact)).

Section 6.7. Typedef.
The idea here is to allow a programmer to define new types. The form of
use is:

 typedef oldtype newtypename; (e.g. typedef int Boolean)

For example:

 struct tnode {
 char *word;
 int count;
 struct tnode *left;
 struct tnode *right;
 }
Used in example in 6.5, listing all words in text and count of number of
times encountered. Use binary tree structure to do this.

 typedef struct tnode Treenode;
 typedef struct tnode *Treeptr;

Treenode and Treeptr are new types. By our convention, typedef types
begin with a capital letter (not general convention). Note these names are
in the position of variables to be declared, except declaration preceded by
a "typedef". Can now write.

 Treeptr talloc(void)
 {
 return (Treeptr)malloc(sizeof(Treenode));
 }

What good are they? Couldn't we always write "struct tnode *" in place of
Treeptr and "struct tnode" in place of Treenode? Yes, but not always a
struct that's involved. For example, what is the appropriate size of an int
to represent the difference between two pointers? Depends on the
machine, doesn't it? ANSII C has type ptrdiff_t:

 typedef int ptrdiff_t; /* max result of subtracting two pointers */
\ This is a typedef; note not capital letter

On another machine, ptrdiff might be long int!

Subtle bugs can arise replacing a simple type with a typedef. E.g., int can
be register variable, but struct cannot, so can cause error in compile.

- 7 2 -

Another example. Recall how we had to rewrite stack.c in the program
calc because there was a new type of object (unsigned int) to place on the
stack. We could instead declare an object to be placed on a stack thus.

 typedef float Object;

Now define a Stack type as having the declaration:

 typedef struct {
 int sp; /* Stack position, initially zero when empty */
 Object arr[MAX]; /* array of objects representing Stack */
 } Stack;

Now, after a Stack has been created, we can push a new Object
with:

 int push(Object x, Stack *stkp) /* push new object on stack */
 {
 if (stkp -> sp < MAX) /* there is room on the stack */
 stkp -> arr[stkp -> sp++] = x;
 else
 printf("error: stack full.\n");
 }

We can write a set of primitives in these terms and change the type of
Object which lives on the stack merely by changing the typedef definition
of Object.

Note that we can also use typedef to define a name for an array shape.

 typedef char Name[NAMELEN]; /* now Name is array type */
 Name firstname, lastname; /* firstname & lname are arrays */

Section 5.7, 5.8. Multi-Dimensional Arrays.

Rectangular Multi-dimensional arrays can be declared; not very much used.
Example in text of converting a month & day (July 21, 1990) into a day of
the year (193 or something). Have to worry about Leap Year. Consider:

 static char daytab[2] [13] = {
 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
 {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
 };

- 7 3 -

Book suggests two separate rows of day counts rather than perform a
calculation of days in February. Now daytab[0] [3] is 31 (same as daytab[1]
[3]) but daytab[1] [2] is 29.

Note that the rightmost subscript varies fastest as one looks at how data
lies in memory. daytab[0] [0], then daytab[0] [1], then [0] [2], . . . This is
standard in most languages. But there is a difference.

 NOTE THAT daytab[1, 3] IS WRONG!

The array declared as char daytab[2] [13] can be thought of as:

 char (daytab[2]) [13]; /* for [], see pg. 53; Left-To-Right associativity*/

Each one dimensional array element (daytab[0], daytab[1]) is like the NAME
of an array (char <name>[13]). As if we had declared:

 char xx[13]; char yy[13]

where xx is daytab[0] and yy is daytab[1]. Look at initialization above;
first init daytab[0], then daytab[1]. Now recall duality of pointer and array.

char (daytab[2]) [13]; Think of it as:
char (*daytab) [13]; /* not quite the same; no 2 elts in memory * /

Here daytab is a pointer to an array of char[13]. Thus *daytab is an array
and daytab[0] is an array of 13 elements . Think of

char (*daytab) [13]; /* doesn't set aside 13 element array in memory*/

as meaning hat daytab is a pointer to char[13]. Examples follow.

 (*daytab)[3] is the same as daytab[0] [3]
 Note need () above because of precedence
 (*(daytab + 1))[2] is the same as daytab[1] [2]
 ((daytab + 1) + 2) is also the same as daytab[1] [2]

NEXT IS IMPORTANT. In passing a two dimensional array to a function,
need not specify bound on first subscript (doesn't help -- there's no
checking), but must specify second.

- 7 4 -

This is how system knows where daytab[0] [j] ends and daytab[1] [0] be-
gins. The expression *((char *)daytab + 13*i+j) is same as daytab[i] [j],
but cast daytab so doesn't jump 13 bytes at a time.

 void func(char daytab[2] [13]) { . . . } is tolerated
 void func(char daytab[] [13]) { . . . } is OK
 void func(char (*daytab) [13]) { . . . } is also OK

IN GENERAL, array handling is poor in C; FORTRAN much better. Efficiency
and object-oriented implications. Reason for C problem? NXN array can't
be handled by function: Need to specify second subscript in call.

As it is pointed out in Section 5.9, the declarations

 int a[10] [20]
 int *b[10]

differ in that, although a[3] [4] and b[3] [4] are both legal, the declaration
of a actually sets aside 200 elements in memory, whereas the declaration
of b only sets aside 10 locations for pointers.

Then b[3] is a pointer to an int, and b[3] [4] is the same as (b[3]) [4] , the
fourth integer on from the integer pointed to by b[3].

