

 -1-

Daily Course Notes for CS240
Computer Architecture 1

Patrick E. O'Neil

Class 1.
Hand out: Syllabus, UNIX Guide, SHOW Texts
Hand out: Handin -- Taken Prereq? Phone #?
Hand out: Notes. NOTE: DON'T TRUST DUE DATES, EXAM DAYS in notes.
 Depend on class announcements. I will pass out notes or you can
 download notes from class home: http://www.cs.umb.edu/cs240
BUT All Assignments will be posted in UNIX Directory: ~poneil/cs240
 Bring $5/$10. for notes I wil l hand out in class.

Go over Syllabus. Grading. First Professional programming course: C, UNIX. Can
get low-level job as programmer after you learn CS240 properly. Go over texts,
when used. My name, office (Draw Map on board), and home phone: call with Qs.

Get UNIX Guide On-Line. First thing to do is Apply. YOU MUST DO THIS EVEN IF
YOU ALREADY HAVE A UNIX ACCOUNT IN ORDER TO BE IN CLASS LIST!
Keep at it CONTINUOUSLY if there is any problem. Have to show ID!!! Show
MAP, find Apply in Guide, And so on . . .

BRING UNIX GUIDE/BOOK (Glass), ESPECIALLY K&R, TO CLASS FROM NOW ON.

GET BUDDY PHONE # NOW, IF MISS CLASS -- CATCH UP.

This class starts slow because entering student experience is highly variable. If you
find it too easy, wait a few weeks. TAKE ROLL.

HW 1. Read K&R 1.1 -> 1.9, Ch 1 (20 min), Ch 2 (details) of Glass UNIX, All of
UNIX Guide. Find hw0 in UNIX at ~poneil/cs240/hw0/assignment.(explain directory
tree structure): This is NOT Web accessible!!

Create hw0 directory of your own under existing cs240 directory, place assignment
and solution files there.

One task is to create hello.c file in hw0 directory, use vi editor (covered in UNIX
Guide). File hello.c is first C program in Section 1.1 of K&R. (Next pg.):

 -2-

#include <stdio.h>

main()
{
 printf("Hello, world!\n"); (\n is special char - see P 193, K&R for others)
}
 (Allow class time to find it in K&R. Slight difference.)

After create with vi editor, compile and run with following commands:

 gcc hello.c (Compiles program, creates a.out run program file)
 a.out (Runs it)

Turn in assignment as script. Following command sequence for turn in:

 script (starts script of all input & output to typescript file)
 ls -l (lists files in directory, with timestamp last update)
 cat hello.c (displays the source file)
 gcc hello.c
 a.out
 exit (ends typescript)

Print out typescript and hand in hardcopy in class. Leave THAT copy of typescript
online (proof finished on time)

How to use vi editor, as in Guide (Look up in Guide - demonstrate index)

 vi hello.c (first time, creates file)

3 modes: command, insert, and last-line command modes
Idea of mode: program expects certain kind of input, like UNIX command
Enter vi always in command mode -- assume text exists -- commands are:

 x to kill char under cursor; dd to kill line cursor sits on,
 6x (for example) kills 6 chars, 3dd kills next 3 lines,
 arrows: ->, <-, up-arrow, down-arrow / if missing on home terminal,
 CNTRL-chars exist which are equivalent -- see Guide

 -3-

There are a number of commands to enter insert mode

 i - insert before cursor (Now is the time for all good . . .; type i, x, get:
 Now is xthe time for all good . . .)
 a - insert after cursor (a, z, gives: Now is tzhe time for all good . . .)
Need i to insert new char before line, need a to insert new char after end.
 O - create new line before current line, start insert
 o - create new line after current line, start insert

To leave insert mode, return to command mode type ESC (example of a mode that
you have trouble leaving if you don't know the key).

last-line commands for commands where character string must be typed, type
colon (:) and see (:) on last line of screen, ready for input.

 :w filename - write contents of vi buffer to file "filename"
 :w - don't need to name file if writing to file you're editing.
 :r filename - read file "filename" into current buffer (at end)
 :q (or :q!) - quit back to UNIX without saving updates to file

The command ZZ (CAP-Z CAP-Z) in command mode will quit back to UNIX and save
updates to file.

Too many commands in vi (Type your name and see what happens!), but note a few
special commands:
 /string search forward to find "string"
 5yy cut out (copy) next 5 lines (any digit)
 p paste (what just copied) after current cursor line

Go over basic UNIX commands in Guide. Responsible for them next time.

 -4-

Class 2.

New handout needs? HANDIN. GET BUDDY in class, phone # to find out details of
missed class!! YOU MUST APPLY, even if you already have a UNIX Account! Keep
at it now CONTINUOUSLY -- your responsibility.

Assignment hw1 now online or soon will be if you want to get head start. Glass
UNIX, Ch 1 (20 min), Ch 2 (know all commands), K&R1.1 -> 1.9

DON'T EVER miss class to finish homework. Time of last update for script output is
given by ls -l command, grader can check, and midnight of due date is ON TIME.
After that time, 1 point off out of 10 if get in by NEXT CLASS. After that I put
answer on-line, so only programs finished before that time can count (maybe some
are finished). I drop bottom 2 hw grades.
Have all your books? Any Questions? ROLL. Money for Notes: $5.00

Example program from pg 15 of K&R -- put on board

#include <stdio.h> /* copies definitions from library file for I/O funcs */

#define LOWER 0 /* Symbolic constant */
#define UPPER 300 /* Idea is, in large program don't want to write */
#define STEP 20 /* 20, hard to edit (other meanings for 20) */

 /* Print out Fahrenheit - Celsius conversion table, in steps of 20 C */
main()
{
 int fahr; /* declarations - MUST come first in C */

 for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
 printf ("%3d, %6.1f\n", fahr, (5.0/9.0)*(fahr-32));
}
(GO SLOW NOW!)
for loop parts: for (initialize; loop test; increment) -- Acts like Java:

 fahr = LOWER; -- initialize
 if(! (fahr <= UPPER)) -- if loop test fails then (see the !)
 goto next; -- end loop
body: printf(. . .); -- body of loop
 fahr = fahr + STEP; -- incremental step
 if (fahr <= UPPER) -- loop test -- if loop test succeeds
 goto body; -- go execute body of loop again
next: . . . -- otherwise fall through loop */
 for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
 ^initialize ̂ loop test ^increment

 -5-

But very general -- e.g., incremental step can MULTIPLY instead of adding, loop test
can test for entirely different condition than <= (SAME AS JAVA)

Now statement not in JAVA: printf ("%3d, %6.1f\n", fahr, (5.0/9.0)*(fahr-32));
Consider instead: printf ("Values:∆%3d,∆%6.1f\n", fahr, (5.0/9.0)*(fahr-32));

Where the characters specified by "∆" are what we write to show a space explicitly.
Quoted string "Value: . . ." is just like "Hello, world", but %3d and %6.1f are special
placeholders, called conversion specifications.

This means that the two expressions following the quoted string, fahr, and
(5.0/9.0)*(fahr-32), are to be printed according to the prescription given. The
table here would look like:

Values:∆∆∆0,∆∆-17.8
Values:∆∆20,∆∆∆-6.7
Values:∆∆40,∆∆∆∆4.4
 . . .
Other characters in "Values: . . .", such as "," and "∆" are printed literally.

The %3d means that an integer is printed so as to take up 3 spaces, right adjusted
-- "∆40", but no initial space for "100" -- still have space before 100 because
came after "Values:∆".

The %6.1f means to print a float number (floating point or “double” by default,
represented with a fractional part), with a total of 6 spaces used up and 1 digit
after the decimal point: thus "∆-17.8" uses 6 spaces.

See P 154 in K&R for a table of "conversion characters" like %3d and %6.1f.
(Allow class time to find it.) These pages in K&R are important, need in open book
Exams/Quizzes. So far have mentioned P 193 (\n) and P 154.

Note (5.0/9.0)*(fahr-32) prints with a fractional part: although fahr is int, and
(fahr-32) is int, (5.0/9.0) is double (floating point), and when we multiply a double
by an int we get a double to preserve accuracy (see Section 2.3).

Note that formula is right: if fahr = 32, centigrade should be 0, if fahr = 212,
centigrade should be 100.
New point. Idea of standard input (stdin) from keyboard and standard output
(stdout) to terminal screen. (NO stdin stdout IN JAVA. Hard to control I/O) Will
now write a program copy.c to copy stdin to stdout. If compile it:

gcc copy.c -o copy (executable file called copy now, like a.out before)

 -6-

Can run copy, typing "copy" on a new line, and will echo all characters you type on
the screen. Doesn't seem like much, but this is the basis of what a command
interpreter does.

By the way, the only way you can get it to terminate is by typing a CTRL-D (ON A
NEW LINE !) which is interpreted as an End Of File. (Stole a character, means you
can't echo a CTRL-D after a New Line).

We can "redirect" stdin and stdout. Take stdin characters from a file named
"copy.in" instead of keyboard:

copy <copy.in

will type out chars from copy.in to screen (acts like 'cat command'). Can also put
stdout characters to a file named "copy.out" instead of terminal screen:

copy >copy.out

When you type this, the command interface (UNIX Shell) will create the file
copy.out, overwriting any previous version, and redirect stdout to that file before
the copy program ever gets control. This command will take all characters you
type and put them in a file, copy.out, kind of like a cheap editor. Finally, you can
copy one file to another by giving command:

copy <file.in >file.out (acts like 'cp command') Now let's see the program, copy.c.

#include <stdio.h>
main() /* copy stdin to stdout */
{
 int c; /* c will hold characters */

 c = getchar();
 while (c != EOF) {
 putchar(c);
 c = getchar(); (LEAVE THIS ON BOARD WHILE TALK)
 }
}

getchar() and putchar() are functions which are defined (as macros) in stdio.h.
The function getchar() (with no argument) gets a character from stdin, returning
the int value of the ASCII code; putchar(c) puts the int-eger value c (argument) out
to stdout as a character (nothing is returned).

Go over logic -- what happens.

 -7-

Page 12 in these notes: values 0-127 decimal are ascii codes characters. Fits in
one byte: 01111111 (binary) is 127. (1 = 2-1. 1+2 = 4-1. 1+2+4 = 8-1 . .).

int type c uses four bytes of significance, from -2^31 to 2^31 -1. Have another
integer type, called char, which holds only 1 byte of significance from -128 to 127
(or else 0 to 255), unlike Java (16 bit Unicode). Why didn't we use type char c in
this program instead of int type? (Wait for answer.)

Because of EOF which must be a special integer value, different from any normal
character (some char sets go from 0 to 255). Needed more significance.

Now this form is not exactly the way a C programmer would want to write it.
(rewrite on side of pgm:)

 c = getchar(); while ((c = getchar()) != EOF)
 while (c != EOF) { ---> putchar(c);
 putchar(c); (Expression above OK in JAVA but no getchar().)
 c = getchar();
 }

Secret with new form is that an assignment statement (c = getchar ()) in C is
thought of as an expression, which itself has a value, equal to the value assigned to
the left-hand target variable.

Now evaluate the While from the most nested expression out. Bring in each stdin
character in testing TRUE, put it out in body of loop. Value of this economy is that
compiler probably compiles more efficiently.

Why not: while (c = getchar() != EOF) ? What does 6 + 2 * 5 mean? How
about (6 + 2) * 5? Go over table of precedence P 53 of K&R. What would happen
if rewrote while () as above?

 -8-

Class 3.
Turn in hw0. Hw1 assignment file on line in ~poneil/cs240/hw1.
DON'T USE <string.h> — WRITE YOUR OWN, e.g. strlen(s), pg 39 mentions

Anybody not yet have UNIX ID? Don't leave until talk with Operators, check twice a
day get ID, do first assignment. (Won't count as late.) Catch up.
Everyone have all books? With them? CLASS NOTES! Any Questions? Start
reading Chapter 2 of K&R. ROLL. Money for Notes.

What does this do?
main()
{
 int c, m;

 m = 0;
 while ((c = getchar()) != EOF) /* Counts lines in a file ASSUMING */
 if (c == '\n') /* each line ends with \n — if ends */
 ++m; /* with EOF, not counted */
 printf ("%d\n", m);
}
Note: if (c == '\n'); Use ==, >=, <=, !=, only single comparators are >, <. In
particular, c = '\n' is NOT A COMPARISON. It is an ASSIGNMENT statement.
If we use it, c will be set equal to '\n', and value will be TRUE, since int value is not
zero. No Boolean types in C: integer zero is FALSE, integer non-zero is TRUE. c ==
'\n' is set to zero or one, according to truth.

++m is an expression which when evaluated has the effect: m = m + 1; Recall that
an assignment statement gives a value; here is a seeming expression which has the
effect of an assignment statement.

Statement forms we have had so far:

while (logical expression)
 statement;

for (initialize; loop test; increment)
 statement;

if (logical expression)
 statement1;
[else /* optional else */
 statement 2;]

 -9-

Arrays
Idea of character string (Section 1.9). C language (unlike Java) has no "special"
string type. Character string,must have an array of char type values (integer
values) ending with '\0' = NULL (NULL character) = integer value zero.

Shorthand for initialization, printf, use quoted strings:
char msg[] = "hello\n"; (NOTE DOESN'T WORK AS ASSIGNMENT STMNT!)

 h e l l o \n \0

 #include <stdio.h>

/* count digit chars 0-9 coming from stdin */ (simpler than on p 22 K&R)
main ()
{
 int c, i; /* c for getchar - ASCII code for characters */
 int ndigit[10]; /* Note: subscripts 0 . . 9 -- 1 for each digit */

 for (i = 0; i <= 9; ++i)
 ndigit[i] = 0; /* initialize to zero */
 while ((c = getchar()) != EOF)
 if (c >= '0' && c <= '9') /* condition: if c is a digit — && is "and" */
 ++ndigit [c - '0']; /* SLOW: '0' is an integer */
 printf ("digits = ");
 for (i = 0; i < 10; ++i) /* print out counts of 10 digits */
 printf ("%d ", ndigit[i]); /* Note no \n, so all on 1 line */
 printf ("\n");
}

Go over program with several functions on pg 29 (see next page). First job is to
take a series of lines from stdin, save the longest line, and print it out to stdout
when stdin comes to EOF. (Copy onto board.

=> Go over logic. Point out function calls in main. Note len returned by getline
won't be zero until end of file, because counts 1 for '\n' character, even if that is
the only one, with two newlines in a row.)

Bunch of new ideas, including idea of functions, "%s", order of evaluation in X && Y
&& Z. Note will use getline in homework: trim, 1.18, 1.19.

printf ("%s", msg) keeps copying letters in msg to stdout until runs into '\0'. More
on this next time. Show how to program Visible Typewriter.

 -10-

Program from pg. 29 of K&R

#include <stdio.h>
#define MAXLINE 1000

int getline(char line[], int maxline);
void copy(char to[], char from[]);

/* print longest input line */
int main()
{
 int len, max; /* current/max line length */
 char line[MAXLINE], longest[MAXLINE]; /* current/max line */

 max = 0;
 while ((len = getline(line, MAXLINE)) > 0) /* only fails test at EOF */
 if (len > max) {
 max = len;
 copy(longest, line);
 }
 if (max > 0) /* there was at least one line */
 printf("%s", longest);
 return 0; /* should have int main() above */
}

/* getline: read a line into s[], return length */
int getline(char s[], int lim)
{
 int c, i;

 for (i = 0; i < lim-1 && (c = getchar())!= EOF && c != '\n'; ++i)
 s[i] = c; \ Note order of evaluation above!
 if (c == '\n') {
 s[i] = c;
 ++i;
 }
 s[i] = '\0';
 return i;
}

/* copy: copy string in array from[] to array to[]; assume to[] is big enough. */
void copy(char to[]; char from[])
{
 int i

 i = 0;
 while ((to[i] = from[i]) != '\0')
 ++i;
}

 -11-

Class 4.

HW: Reading Chapter 2. Hw 1 on-line. Quiz on Class 8 (MAY BE OVERRULED IN
CLASS ANNOUNCEMENT). Soon cover binary numbers. Questions?

In trim.c, trailing blanks means comes before newline: trim <trim.in .trim.out
Use od -x to see non-printing chars in trim.in and trim.out.
 od -x trim.in Form of output is:

 00000000 0909 4e68 . . . 2020
 00000020 2020 200a

Reason we use hex. Say string ends with four spaces, in hex 20202020. Translate
this to octal!!?? Characters keep changing representation!!

In writing visible typewriter, job is to read in character c, using getchar

 c = getchar() Put this in loop as we've seen in class and book

Print out ASCII name and hex value (ASCII value is simply int value held in c, use
conversion specification "%x" for hex): (WHERE FIND '%x' IN TEXT? pg 244.)

 printf ("%x ", c); /* NOT the same as putchar(c) -- prints the letter! */

But we need to look up NAME of ASCII character somewhere. See page 11 for
these names. We will create an array of char type with ALL these names.

 char asciiname[] = "NUL\0SOH\0STX\0ETX\0"
 "EOT\0ENQ\0ACK\0 . . . "
 . . .
 " \0∆∆|\0∆∆}\0∆∆~\0DEL\0";

Note that this form initializes the asciiname array, so that the code for 'N' goes in
asciiname[0], 'U' in asciiname[1], 'L' in asciiname[2], the zero value represented by
'\0' in asciiname[3]. We have now given the first asciiname. Starting the second,
we have 'S' in asciiname[4], and so on.

The initialization form: char s[] = "Hello," " world"; will concatenate the two
strings "Hello," and " world", so here is a convenient way to continue a single string
when we run out of room on a line. The initialization line is not complete until a
semi-colon appears at the end of the last line.

 -12-

Here is the ASCII Encoding, a correspondence of keyboard characters with
integers from 0 to 127 (0x7F in hexadecimal, 0177 in octal)

char hex oct char hex oct char hex oct char hex oct
 NUL 00 000 SP 20 040 @ 40 100 ` 60 140
 SOH 01 001 ! 21 041 A 41 101 a 61 141
 STX 02 002 " 22 042 B 42 102 b 62 142
 ETX 03 003 # 23 043 C 43 103 c 63 143
 EOT 04 004 $ 24 044 D 44 104 d 64 144
 ENQ 05 005 % 25 045 E 45 105 e 65 145
 ACK 06 006 & 26 046 F 46 106 f 66 146
 BEL 07 007 ' 27 047 G 47 107 g 67 147
 BS 08 010 (28 050 H 48 110 h 68 150
 HT 09 011) 29 051 I 49 111 i 69 151
NL/LF 0A 012 * 2A 052 J 4A 112 j 6A 152
 VT 0B 013 + 2B 053 K 4B 113 k 6B 153
NP/FF 0C 014 , 2C 054 L 4C 114 l 6C 154
 CR 0D 015 - 2D 055 M 4D 115 m 6D 155
 SO 0E 016 . 2E 056 N 4E 116 n 6E 156
 SI 0F 017 / 2F 057 O 4F 117 o 6F 157
 DLE 10 020 0 30 060 P 50 120 p 70 160
 DC1 11 021 1 31 061 Q 51 121 q 71 161
 DC2 12 022 2 32 062 R 52 122 r 72 162
 DC3 13 023 3 33 063 S 53 123 s 73 163
 DC4 14 024 4 34 064 T 54 124 t 74 164
 NAK 15 025 5 35 065 U 55 125 u 75 165
 SYN 16 026 6 36 066 V 56 126 v 76 166
 ETB 17 027 7 37 067 W 57 127 w 77 167
 CAN 18 030 8 38 070 X 58 130 x 78 170
 EM 19 031 9 39 071 Y 59 131 y 79 171
 SUB 1A 032 : 3A 072 Z 5A 132 z 7A 172
 ESC 1B 033 ; 3B 073 [5B 133 { 7B 173
 FS 1C 034 < 3C 074 \ 5C 134 | 7C 174
 GS 1D 035 = 3D 075] 5D 135 } 7D 175
 RS 1E 036 > 3E 076 ^ 5E 136 ~ 7E 176
 VS 1F 037 ? 3F 077 _ 5F 137 DEL 7F 177

 -13-

Note that single asciiname names, such as }, have two spaces before them so that
all names take up 3 characters followed by a \0. (Put spaces before, or strange
things can happen.) A \0, although two marks as we see it, will be interpreted by
the compiler to stand for a single character, a NULL (value zero), placed in the
array at that position.

Printf expects to receive a pointer to a (format) string of char values, types out
characters with these ASCII codes until it reaches a NUL. The full printf statement
to print out the hex ASCII code and the ASCII name is:
 / '&' is magic - creates pointer to array position.
 printf ("%x %s", c, &asciiname[4*c]);

We subscript asciiname by 4*c, because there are 4 chars to each ASCII name, e.g.
Try c = 0. See print out NUL. Try c = 4, show prints out EOT.

There are a few characters which can't simply be placed in the quoted initialization
string as they stand, for example " and \. How do we handle this?

 " . . . \0∆SP\0∆∆!\0∆∆"\0∆∆#\0 . . . " (" is hex 22)

Problem is that compiler will interpret " character as the end of string. We need to
indicate that it is quoted, that it is to be taken literally by the compiler as an ASCII
value, and the way to do that is precede it by a \.

 " . . . \0∆SP\0∆∆!\0∆∆\"\0∆∆#\0 . . . " (" is hex 22)

Now even though there seem to be five chars in that block, ∆∆\"\0, it is not true
because \" is a single character value, just as \0 is.

What other special characters like this need this special treatment? See pg. 193!

How to debug. See http://www.cs.umb.edu/helproot/cs240/cs240.html and UNIX
Guide. Talk about environment and what want to do. A debugger is what a
professional programmer uses, rather than putting in lots of printf statements to
track down a bug. Start with right compiler option.

 gcc -g vt.c -o vt (-g for debug, -o replaces a.out with filename vt)

See UNIX Guide. Now, instead of just typing name of program, use

 gdb vt

 -14-

Gives message; Ready to run -- not yet running. Want to interact with running
pgm, not just let it run free to end. Type:

 b main (break at main(); will stop running when it comes to main() in
 execution -- often lot of things done first)
 r <vt.in (run, taking stdin from vt.in -- less confusing)

Will stop when encounters main(). Now can single step through program, s or n
(skip entering called functions), put out values of variables. Examples follow.

 p i (print value of variable i)
 p 3*i (print value of expression 3*i)
 p/x i (print in hex format value of variable i)

 i lo ("info" - give values of all local variables)

 h (help -- pretty good messages -- lists topics)
 h topic (help on named topic)
 h p (help on command p for printf)

 q TO QUIT (leave debugger)

More complex stuff in UNIX Guide. Setting breaks at line numbers: b 36, b fn.c:22
if i == 3. Getting line numbers from "list" or "l" command: l 22, print 10 lines
around line 22 in main, l fn.c list first five lines, then l means next 10 lines. i b,
to get info on breakpoints, d 3, to delete bkpt 3. c for continue after bkpt
encountered. Good QUIZ Questions.

Starting Chapter 2 next time.

 -15-

Class 5. HAND OUT PRACTICE QUIZ.

QUIZ soon (Class 8). 3 short questions, time limit 20 minutes, open book.
Guarantee question on UNIX, might be something only MENTIONED in UMB UNIX
Guide (I'm not covering UNIX, but you're responsible).

Turn in hw1 soon. Full credit until Midnight, then 1 point off out of 10 until next
class midnight. After that answer is put on-line. Can't get credit.
Starting Chapter 2 K&R this time. Read ahead.

Hw 2 is on line soon/now. 2 weeks, but rather a lot to do. Questions?

Call by reference vs. call by value.

Simple variables passed as function parameters in C are actually only copies on
the stack. (Give short idea of stack, function call).

This is known as Call by Value. Unlike some languages, which have call by
reference, can't make changes to arguments in call by value -- just change a copy
on the stack (Explain). To allow changes, must pass pointers to variables. Give an
idea here, but you’re not responsible for pointers until later.

The following function
 (NOTE: No pointers in JAVA)
**** DOESN'T WORK **** **** POINTER VERSION INSTEAD ****
 (Read "int *pa" as: the thing pointed to
 by pa is an int -- pa is a pointer!)
int exchgint (int a, int b) int exchgint (int *pa, int *pb)
{ {
 int dummy; int dummy;

 dummy = a; dummy = *pa;
 a = b; *pa = *pb;
 b = dummy; *pb = dummy;
 return 0; return 0;
} }

Note, array names automatically passed by pointer; you don't have to create a
pointer yourself. (Recall: copy(longest, line)

Idea of Scope and Duration of a variable. Look at K&R pg 32, slightly different
definitions of variables from what we saw in 1.9.

 -16-

Note that variables named i in both getline and copy, but they are different: they
are private to the routines where they are declared.

Each local variable of a function (inside { }) comes into existence only with its call,
disappears when a return is performed. (The same can be said of the arguments of
a function – copied in call by value.) TALK ABOUT STACK! Local variables are said
to be automatic.

There is an alternative to this, known as static. A variable declared in a function
can be in durable memory if it is specially declared. E.g., the seed of a random
number generator so it will have memory from one invocation to the next and not
always give the same random number.

int rand()
{
 static int seed = 1; /* initialize to 1, remember between calls */
 . . .
The alternative to local is external.

The declarations you see on page 32 of K&R, for char line[] and char longest[],
are external (sometimes called global): they are outside any function, unlike on
page 29 when they were inside main() { . . . }, the main function.

When variables are declared outside any function like this, they are visible to all
functions in the file (there may be more than one file, and they must be specially
mentioned to be visible from a different file).

They are also automatically stored long-term, rather than automatic.

Advantage in this definition of getline, copy is don't have to pass variables "line"
and "longest" as parameters -- simpler calls E.g., function "copy" no longer has
"from" and "to" parameters.

Disadvantage is loss of flexibility -- copy no longer works for any 2 arrays. Normally
more important than simplification.

We will talk more about all this in Chapter 4. We have now finished Chapter 1. Now
starting Chapter 2.

Data types: char, int, float, double. A double variable is a float with more
significance -- both represent numbers with fractional parts. Don't do much with
float in this course.

 -17-

Much of what follows is different in C and Java.

In C, A char variable is an int with less significance. char has 8 bits (one byte): -27
≤ char ≤ 27-1. (in Java, char is 16 bits, Unicode, NOT an int. Java byte is
8 bit int.))

In C, with signed numbers (Java has ONLY signed numbers!), the leftmost
(sign) bit is on for negative numbers and off for positive numbers. (This does NOT
mean that you turn the leftmost sign bit on the get the negative of a positive
number.) Thus the largest positive char value in C is 01111111 = 27-1 = 127.
See smallest negative shortly.

The type int has 32 bits on our machine, -231 ≤ int ≤ 231-1. There are also two
other possible types: short int and long int. a short int on our machine has 16 bits,
-215 ≤ short int ≤ 215-1, and a long int, again on our machine, is the same as an
int. (In Java a long int is 64 bits on all machines.)

On general machines, we are only guaranteed in C that char has 8 bits and
length(short int) ≤ length(int) ≤ length(long int).

In C, there is also another kind of orthogonal type declaration, unsigned. (There is
no unsighed type in JAVA.) An unsigned int is interpreted as having no
negative numbers; therefore we have: 0 < unsigned int < 232-1 (instead of: -231
< int < 231-1).

A char type may or may not have negative values (it is implementation dependent)
but an unsigned char certainly doesn't.

The hardest thing to realize is that constants have types in C (and Java). This is
important in evaluating expressions. (3./2.) is equal to 1.5, but (3/2) is equal to 1
and has no fractional part. (Recall fahr to cent pgm, p15, (5.0/9.0)) Now what
value would you say the expression (3/2.) has?

Here are C constants and their types:
1234 int
1234L long int
1234UL unsigned long int
1234U unsigned int
123. double (decimal point)
1e-2 double (because of e, equal to .01)
037 37 octal (leading 0 -- base 8) = 3*8+7 or 31 decimal (int)
 NOTE: First character is a ZERO, not the letter "Oh". 037 == 31
0x37 37 hexadecimal (base 16) = 3*16+7 or 55 decimal (int)

 -18-

'a' char, integer value (range 0-127) of ascii code for the
 letter a (see these Notes pg. 11)
'0' char, integer value for digit 0
'\b' char, integer value of backspace char (K&R Pg 193)
'\123' char with value 123 octal (or 55 hex: '\x55'), == 'U'
'\ooo' char, any three octal digits with value in range 0-255
 decimal (0377)
'\xhh' char, any two hex digits with value in range 0-255 (0xff)

Note that char constants are nothing special except that they are stored as 1 char
integers and follow certain rules of conversion (in any expression, such as: if
(c=='0')); octal and hex don't even cause the constants to be stored differently --
we could just as easily use decimal.

Conversion of char type constant is usually the same as if we had used int.
However, we use char constants to remind the user that the constant is for a
particular character or is in the range 0-255. A hex number is often used because
it is important to picture a certain bit pattern.

Different bases for numbers: Binary, Octal, Hexadecimal

OCTAL BINARY OCTAL BINARY
 0 000 4 100
 1 001 5 101
 2 010 6 110
 3 011 7 111

 HEX BINARY HEX BINARY HEX BINARY HEX BINARY
 0 0000 4 0100 8 1000 C 1100
 1 0001 5 0101 9 1001 D 1101
 2 0010 6 0110 A 1010 E 1110
 3 0011 7 0111 B 1011 F 1111

0x7A (or '\x7A') = (in binary) 0111 1010 (digit 7 followed by digit A)
 Each hexadecimal number corresponds to a group of 4 binary digits
 A bit pattern can be specified in hexadecimal easily
0x39 = '\x39' = (in binary) 0011 1001

octal numbers are groups of three octal digits (START FROM RIGHT)

0132 = '\132' = 001 011 010 (NOTE! Underlined part is 8-bit char)

I can reblock this in groups of four (starting from the right) to get:

 -19-

0132 = 001 011 010 = 0 0101 1010 = 0x5A

Check this: 0132 = 1*8^2+ 3*8 + 2 = 90 (base 10)
 0x5A = 5*16 + 10 = 90.

Signed numbers. To get a negative form of a binary number, flip all bits and add 1
(in binary). Say start with value 0x55 for signed char variable X and want to write -
X. I will work with 8 bit char integers. 32 bit (int) form is 0x55, 8 bit (char) form is
'\x55'

 '\x55' = 01010101 (8 bit char number)
 flip bits: ~'\x55' = 10101010 (ONES COMPLEMENT)
 add 1 10101011 = '\xAB' (TWOS COMPLEMENT)

We say '\xAB' = -('\x55'), to mean that when we add these 2 numbers in binary:

 01010101
 + 10101011

(1) 0000000 We get 0 in the rightmost 8 bits (where the number is)
 \- Carry Bit

Definition of -X is that X + -X = 0 in 8 bits (with a carry out on the left side, which is
however not one of the 8 bits.) So -X is the same as
(~X + 1). Try testing this in a program!!! Note when we just flip all bits, X to ~X,
called 1’s complement, when take (~X + 1), called 2’s complement.

Note: -(-X) = X. True? X = 01010101 (FLIP: 10101010, add 1)
 -X = 10101011 (FLIP: 01010100, add 1)
 -(-X)= 01010101

Now note: if X = 01111111, FLIP: 10000000, add 1)
 -X = 10000001
But then since X is 127, -X is -127, have 10000000 is even more negative
 (-X - 1). 10000000 is most negative number, -128.

if X is 10000000, what is -X? FLIP: 01111111, add 1, 10000000.
Problem on this in hw.

Note we could have predicted that such a number exists. Even or odd number of 8
bit numbers? (Even.) But does every integer have a different negative? (No. not
zero.) But then another number must have a property like this, since even number
of integers total.

 -20-

Class 6.

Hand out Practice Quiz.
Turn in hw1 (by midnight). Hw2 on-line. Quiz 1 wil l be class 8.

Recall 2’s complement definition of -X from last time. IN PARTICULAR NOTE that
although there is a sign bit:

 01000101 (positive number (sign bit 0) = ‘\x45’ = 6910)

One DOES NOT get the negative of this by turning sign bit on ! In general, must flip
bits and add 1. (Do this, value is -69.) Show that X + ~X = 11111111. X+~X+1 =
00000000. Therefore ~X+1 is equal to -X)

If we did turn on sign bit in above, 11000101, what would we get? It's a negative
number, not -69. Try flipping bits, 00111010, add 1, 00111011, result is '\x3B',
value is 48+11 = 5910. Thus 11000101 was -59 !

Note that if now do this again with 00111011, flip 11000100, add 1, get
11000101, the original number, back. Always get same number back: -(-x) = x.
Except if x = 0, get it back right away. 00000000 -> 11111111 add 1, get
00000000. (Sure! -0 == 0)

Now there are an even number of binary numbers in k bits. If x -> -x -> x is a
closed loop for all pairs of numbers except 0, seems to be one left over. Indeed
there is. What are successively smaller negative numbers?

 number X -X

 00000000 00000000 Note successive values of X
 00000001 11111111 achieved by adding 1, successive
 00000010 11111110 values of -X by substracting 1.
 00000011 11111101 With -X values, if replace 1's by
 00000100 11111100 0's, starts with all 0's one line
 later and adds 1's.
 01111110 10000010
 01111111 10000001
 10000000

There seems to be no positive for smallest negative; char values go from -128 to
+127; int from -2^31 to 2^31-1. What happens if take negative of 10000000?
Get back 10000000 (like 00000000). Homework Problem on this.

 -21-

Note that humans think in terms of decimal, or after a bit of practice in terms of
binary or hex or octal. The computer thinks in an extremely large base -- sees a
pattern of bits (even 32 bits) all at once, as if it knew 2^32 digits. It is willing to
convert to help feeble minded users in printing out: %d, %x, %o (no binary
format).
 /-Don't Need subscript 10
How to convert decimal to binary. From 11710 get binary by halving the number
successively (rounding down) and writing down the digit 1 when have an odd result,
0 when result is even (consider number itself the first result):

 117 1 LSB
 58 0
 29 1
 14 0
 7 1
 3 1
 1 1 MSB

Then read UP the bit sequence: 01110101 = '\x75', or in base 10 have 7*16+5 =
112 + 5 = 117. Do it with another: 203. Works because dec # ends with 1 of
odd; now divide by 2, to work next digit left.

 bin bin
from any one of: oct to any one of : oct
 hex hex
 dec dec

From bin to oct or hex, block in groups of 3 or 4 from the right. From bin to dec,
sum up powers of 2 (01110101 = 1+4+16+32+64, or else go to hex first and sum
up multiple powers of 16. Thus, hex or oct to dec.

From hex or oct to bin, write down digits in blocks of binary digits from the right.
From hex to oct or reverse, go through bin.

From dec to bin, use algorithm. From dec to hex or oct, go through bin.

Bitwise operations. PROMISE LOTS OF EXAM QUESTIONS ! ! !

Ops: ~ (unary not), & (and), | (or), ^ (xor), << (leftshift), >> (rightshift)

 unsigned char n = '\xa6'; binary 10100110 (Why unsigned? Will see.)

~n : 01011001 (just the 1s complement: flip bits, 0 to 1, 1 to 0.)

 -22-

n | '\x65': 10100110
 | 01100101 turn on bit in result if it was on in either operand
 11100111

n & '\x65': 10100110
 | 01100101 turn on bit in result if it was on in both operands
 00100100

n ^ '\x65': 10100110
 | 01100101 turn on bit in result if was on in exactly 1 operand
 11000011

Call ^ the exclusive or (xor) operator - what is sometimes meant when we say "or"
-- one or other but not both.

 '\x18' : 00011000
 '\x18' << 1 00110000 shift 1 to left (like multiply by 2)
 '\x18' << 2 01100000 shift 2 to left (like multiply by 4)
 '\x18' << 4 10000000 shift 4 to left (bits disappear off left)
 '\x18' >> 2 00000110 shift 2 to right (like divide by 4)
 '\x18' >> 4 00000001 shift 4 to right (bits disappear off right)

If start with '\xa5', 10100101, and shift right result depends on whether
containing variable is signed or unsigned char:

 '\xa5' : 10100101
 '\xa5' >>2 : 00101001 (bring in 0 on left, like divide by 4 of UNSIGNED)
 '\xa5' >>2 : 11101001 (bring in 1 on left, like divide by 4 of SIGNED)

Bringing in 1 on the left is called "sign extension". Negative number divided by 2 or
4 is still negative number' '\xa5' >>2 = 11101001 = '\xe9'. (But this is not true on
all machines: See K&R pg. 49, lines 8-10.)

We can work this out to check that the proper division is occurring. '\xa5' is minus
what? 10100101 and '\xe9' is minus what? 11101001
Flip bits 01011010 Flip bits 00010110
add 1 01011011 add 1 00010111

So it's minus 0x5B, or So it's minus 0x17, or minus 16+7
minus 5*16 + 11 = -91. = -23.

 -23-

Note -91/4 = -22, -91%4 = -3 (or -91 = 4*(-91/4) + -3). When divide negative
number, remainder must be negative, not positive (ALWAYS rounds DOWN!)

Means (-1)/2 = -1. Try it in a program loop! Not the same as -(1/2).

But note that if the number being divided is UNSIGNED (e.g., an unsigned char with
value 'x\a5'), then >> will NOT bring in 1 bits on the left!

Note that there's an operator in Java, which has no unsigned type: the operator
>>> acts like >> in all cases except that it doesn't sign-extend for negative
numbers: brings in 0's on the left, even if sign bit is 1.

Now a new question: given char n, how to turn off all bits except the bottom 5: n
= n & '\x1f'. E.g., if n = '\xa5' or 10100101 binary

n & '\x1f': 10100101
 & 00011111 turn off all bits except bottom 5
 00000101

called "masking" the bits -- only see bits on where 1's found in mask constant.

Now, how to turn on the highest two bits in char n (if already on, leave it on). n =
n | '\xc0'. '\xc0' = 11000000. Assume n = '\xa5'

n & '\x1f': 10100101
 | 11000000 turn on top two bits
 11100101

Idea is this. Use bits in char n as flags. Turn on the flags in n corresponding to bits
on in '\x48. Test if any of the flag bits '\x64 are on.

Show that x ^ (x ^ y) == y. Do a real example!

Note that x = x & ~077 (octal for a change), SETS LAST 6 BITS in x to 0. If don't
know size of x (number of bytes in int), ~077 will become: ~00 . . . 00111111 or
11 . . . 11000000, of whatever size is needed (extends itself with 1 bits on left for
length of x).

 -24-

Class 7.

QUIZ 1 Next Class.

Other constants. String constant: "I am a string." Is an array (a pointer to a
string) of char values somewhere (where is the memory location for the constant
6?), ending with NUL = '\0', the char with zero value. Examples:

 printf("I am a string.\n") or declare: char msg[] = "I am a string";

Naturally, "0" is quite unlike '0'. The value "0" can't be used in an expression, only
in things like printf(). (Can't write "This " + "that"; just write strings next to each
other to catenate: "this" "that" same as "thisthat".)

Have string functions in C that work with these nul terminated char arrays:

 #include <string.h> (See pg. 241, Appendix B, then B3, pg. 249)

With this can use: len = strlen(msg); where msg is string in a string array.

IN ALL HOMEWORKS, EXAMS, WRITE YOUR OWN STRING FUNCTIONS. (This
is just until you know how they work. At end of this course, you will be expected
to know and use existing functions, not write your own.)

Logic of strlen code is like:

int strlen(char s[]) {
 int i = 0;

 while (s[i])
 i++;
 return i;
}

Enumeration constants mentioned in K&R.

 enum boolean {NO, YES}; (starts from 0 and increment)

Now can declare a variable of type boolean: (No Java built-in Boolean.)

 enum boolean x;

Later can write x = NO;

Just a shorthand for creating symbolic constants with #define. Except that if
define months as type with values 0, 1-12, (0 = ERR, 1-12 = JAN-DEC) declare x of
type months, debugger might type out value FEB for 2.

 -25-

Idea of "const" declaration (like "final" in Java): warns compiler string shouldn't
change. Commonly used for function parameter. For example:

 const char msg[] = "Warning: . . .";

 int copy(char to[], const char from[]);

Now if logic of copy function attempts to modify the from string, it will fail (the
exact form of failure is installation defined).

Operators. Arithmetic: +, -, *, /, %

 int x, y;

 x / y truncates (no fractional part) EXAMPLES
 x % y is the remainder when x is divided by y.
 Always true that: x == y*(x/y) + x%y

 int year; "or"
 /
 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) (See pg. 41.)
 printf("%d is a leap year\n", year);
 else
 printf("%d is not a leap year\n", year);

See precedence table, P 53, for why inner parens above NOT necessary.

We call a comparison between two arithmetic expressions a "relation"

 ae1 <= ae2 (comparisons: <, <=, ==, !=, >=, >)

A relation is either true or false (1 or 0) for any given ae's.

 if (i < lim-1 == j < k) (What's it mean? See precedence P 53)

Logical expressions are built up out of relations using &&, ||, ! (not):

 Instead of c != EOF, could write ! (c == EOF)

 -26-

Type conversion. Consider expression involving different types:

 /* atoi: convert character string of digits to int (base 10) */
 (e.g., atoi stands for ascii to int.)
 int atoi(char s[]) (Also have itoa, atox, atob)
 {
 int i, n;

 n = 0;
 for (i=0; s[i] >= '0' && s[i] <= '9'; ++i) /* note condition "is a digit" */
 n = 10*n + (s[i] - '0'); (SLOW)/* s[i]-'0' is int, add to int 10*n */
 return n;
 }

What happens with input 123afg? (stop at a, get integer 123) Computer has to
do this sort of thing every time the compiler reads a number you have typed in
base 10 as a constant in a program, since computer "sees" a number as an int
form, all at once as a single digit!!!

Could just as well type it in base 8 (atoo, ascii to octal). (Ask how to change the
program) Or base 16 (atox) (need to special case letter digits). Now jump ahead
to program in Section 3.7.

 /* itoa: convert int n to characters in base 10 in array s */
 void itoa (int n, char s[])
 {
 int i, sign;

 if ((sign = n) < 0) /* record sign */
 n = -n; /* make n positive */
 i = 0;
 do { /* new loop type -- generate digits in reverse order */
 s[i++] = n % 10 + '0'; /* generate next digit */
 /* what conversion takes place here? */
 } while(n /= 10 > 0); /* delete digit from end of int */
 if (sign < 0)
 s[i++] = '-';
 s[i] = '\0';
 reverse (s);
 }

 -27-

The loop do . . . while . . . executes once whether condition true or not. The
expression n /= 10 is the same as n = n / 10; Could also be n += 10 same as n = n
+ 10; Shorthand expression like n++. Note you wrote a reverse function yourself.

Example, with int of -253, generate '3', '5', '2', '-', '\0'. Then reverse.

Note function itoa is not in UNIX Library, but atoi IS in UNIX Library. To achieve aim
of itoa would use sprintf:

 sprintf(s, "%d", n) /* char s[], int n */

